Areas and Volumes

2)
$$y = x^2$$
 and $y = 4x - x^2$

3)
$$x = y^2$$
 and the line $x = y + 2$ $\begin{cases} 2 \\ 1 \end{cases} + 2$

4)
$$x = y^3 - y$$
 and $x = y^3 - y$

Find the volumes of the solids formed

Find the volumes of the solids formed

5) When
$$y = \sqrt{9 - x^2}$$
 is revolved around the x-axis $\sqrt{\frac{3}{3}} = \sqrt{\frac{2}{3}} = \sqrt{\frac{2}{3}}$ to $x = \sqrt{\frac{3}{4}}$

6) When region bounded by
$$y = \sec x$$
 and the x-axis from $x = \frac{\pi}{4}$ to $x = \frac{\pi}{4}$ is revolved around the x-axis

7) When the area bounded by
$$x = 1 - y^2$$
 and y-axis is revolved around the y-axis.

8) When the region bounded by
$$y = x^3$$
, $x = 2$ and x-axis is revolved around the line $x = 2$.

9) When the region bounded by
$$y = 16 - 4x$$
 and $y = 16 - x^2$ is rotated around the x-axis.
$$\pi \left(\frac{16 - x^2}{16 - 4x} \right)^2 = \frac{643.3982}{16 - 4x}$$

10) When the same two graphs as in # 9 are rotated about the line x = 8.

e same two graphs as in # 9 are rotated about the line
$$x = 8 - 16$$

$$\pi^{5} \int_{0}^{16} (8 - (16 - 1))^{2} - (8 - 16 - 1)^{2} = 128\pi$$