Electric Charge

1.	A lightning bolt has a charge of 20 C. Howmany electrons make up the bolt? $20 = n \left(\frac{1.602 \times 10^{-19}}{1.602 \times 10^{-19}} \right) = 1.2 \times 10^{20}$
2.	An electroscope has a charge of 1.2 μ C. How many electrons pass through your fingers as you ground this electroscope?
3.	A charged rod has an excess of 6.4 x 10 ⁸ electrons which it shares equally with a pith ball when they touch. What is the charge on the pith ball? $Q = 3.2 \times 10^{8} (1.602 \times 10^{19}) = 51 \times 10^{-11} C$
4.	Calculate the electrostatic force between a proton and an electron which are 1×10^{-10} m apart. $F = (9 \times 10^{9})(1.602 \times 10^{14})(-1.602 \times 10^{19}) = 2.3 \times 10^{8} \text{ M}$ $(1 \times 10^{10})^{2}$
5.	A pith ball with a charge of +6.0 μ C is placed 12 cm from another ball with a charge of -4.3 μ C. a) Which ball has an excess of electrons?
	i) How many electrons in excess does it have? $4.3 \times 10^{-6} = n \left(1.602 \times 10^{-9}\right) n = 2.7 \times 10^{13}$
	b) Which ball has a deficit of electrons?
	6,0 MC
	ii) How many electrons in deficit does it have? (1.602 \times (0 ¹⁹) $h = 3.7 \times 10^{13}$
	c) What is the force acting between the two balls? $F = (9 \times 10^9) (4.3 \times 10^{-6}) (6.0 \times 10^{-6}) = 16 \text{ N}$
	d) Is the force attractive or repulsive?
6.	A charge of 17.0 μ C is placed 15.0 cm from a second charge. The force of attraction between the two is 21.4 N. Caclculate the second charge.
	$21.4 = (9 \times 10^9) (17 \times 10^6) Q_2$ $Q_2 = 3.15 \times 10^6$
7.	a) Calculate the electric force holding an electron in orbit ($r = 0.53 \times 10^{-10} \text{ m}$) around a proton.
	a) Calculate the electric force holding an electron in orbit $(r = 0.53 \times 10^{-10} \text{ m})$ around a proton. $F = (9.0 \times 10^{9}) \times 1.602 \times 10^{-19}) \times 1.602 \times 10^{-19} = 8.2 \times 10^{8})$ $= (9.0 \times 10^{9}) \times 1.602 \times 10^{-19}) \times 1.602 \times 10^{-19}$
	6.53 × 10 1

b) Calculate the gravitational force between the same proton and electron. (mass of electron = 9.11 x 10^{-31} kg and mass of proton = 1.67 x 10^{-27} kg) $F_6 = (6.67 \times (0^{11}) (9.11 \times 10^{-3}) (1.67 \times 10^{-27})$ $= 3.6 \times 10^{-19} = 3.6 \times 10^{-19}$

- c) Which force is more significant within the atom, electrostatic or gravitational?

 8. How many electrons make up a charge of 30.0 μ C? $30 \times 10^6 = 1.9 \times 10^{14}$
- 9. Two charged smoke particles exert a force of 0.042 N on each other. What will the force if they are moved so they are only half as far apart?

 4x greater
- 10. What is the magnitude of the electric force of attraction between an iron nucleus (26 protons) and its innermost electron if the distance between them is $1.5 \times 10^{-12} \text{ m}$? $F = (9 \times 16^9) (26) (1602 \times 10^{-19})^2 = 000271$
- 11. A person scuffing her feet on a wool rug on a dry day accumulates a net charge of -60 µC. How many excess electrons does this person get, and by how much does her mass increase?
 - $60 \times 10^{-6} = n \left(\frac{1.602 \times 10^{-19}}{1.602 \times 10^{-19}} \right)$ $3.75 \times 10^{14} = x \frac{9.11 \times 10^{-31} \text{ kg}}{1 \text{ e}} = 3.4 \times 10^{-16} \text{ kg}$