13-1 Surface Areas of Right Prisms

CCSS: 7.G.B.6: Solve real-world and mathematical problems involving area, volume and surface area

One square foot of this cube-shaped sculpture takes you 10 minutes to polish. At this rate, how long will it take you to polish the whole thing? Justify your reasoning.

Each face of the cube has an area of $5 \mathrm{ft} \cdot 5 \mathrm{ft}=25 \mathrm{ft}^{2}$.
A cube has 6 equal faces, so you need to multiply by 6 to count all the faces. $6 \cdot 25 \mathrm{ft}^{2}=150 \mathrm{ft}^{2}$.

If each square foot takes 10 minutes to polish, $150 \mathrm{ft}^{2}$ will take $150 \cdot 10$ or 1,500 minutes to polish.

1,500 minutes $\div \frac{60 \text { minutes }}{\text { hour }}=25$ hours.

Reflect Why do you need only the length of one edge to solve the problem?
Sample: Because it is a cube, the lengths of each side of each face are equal. You can find the area of each face if you know the side length of one face.

Got It?

PART 1 Got lt mo

What is the surface area of a cube with edge length $\frac{3}{4} \mathrm{ft}$?
$3 \frac{3}{8} \mathrm{ft}^{2}$

PART 2 Got lt mo

What is the surface area of the triangular prism?

$96 \mathrm{~m}^{2}$

Got It?

PART 3 Got lt mo

To the nearest square inch, what is the surface area of the regular hexagonal prism?

116 in. 2

Close and Check

Focus Question

How can you apply what you know about finding the surface area of a right rectangular prism to finding the surface area of any right prism?

The surface area of any right prism is the sum of the areas of
the faces. You can apply the same formula, S.A. $=p h+2 B$, to
find the surface area of any right prism, but the formula for finding the area of a base (B) will depend on its shape.

SAMPLE SOLUTIONS ARE SHOWN BELOW.

Do you know HOW?

Find the surface area of each figure below.
1.

2.

3.

$56.7 \mathrm{~cm}^{2}$

Do you UNDERSTAND?

4. Error Analysis Explain the mistake made below. What is the correct surface area?

S.A. $=(2+2+2+2)(5)+4$
S.A. $=(8)(5)+4$
S.A. $=40+4$
S.A. $=44$ in. 2

The solution does not include
the area of both bases.
The surface area is $48 \mathrm{in}^{2}$.
5. Writing If you turned the rectangular prism from Exercise 1, would the surface area change? Explain.

No, the surface area does not change because the
dimensions are still the same.

Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

