Teacher Wong_Subject __Algebra 1 Dates_5/4-5/8 (Week 2) 7-12 Weekly Planner Welcome to our Distance Learning Classroom! Student Time Expectation per day: 30 minutes

Content Area \& Materials	Learning Objectives	Tasks		Check-i	ortunities	Submission of Work for Grades
Digital (If you can work digitally, please do. It will help to keep us all safe (:) - Khan Academy (KA) Access Code - Summary Assignment Posted on Edmodo	Suggested Order / Pacing Review - Factoring by Grouping (Monday) - Factoring w/Difference of Squares (Tuesday) - Strategies in Factoring (Wednesday) - Intro to Parabolas (Thursday) - Summary Assignment (Friday)	- Students are to complete the assigned Khan Academy assignments. - After completing the Khan Academy assignments, please complete the summary assignment.		Mrs. Wong is available during the office hours at the times indicated below. You can reach Mrs. Wong during these office hours via: - Zoom link provided in Edmodo - Email cwong@tusd.net		- KA assignments will be recorded with the highest scores attained - Submit the summary assignment through a picture via Remind App. (Scored on Accuracy)
Hard Copy (Please only use this if you do not have technology available) - Notes + Examples	Suggested Order / Pacing Review - Factoring by Grouping (Monday) - Factoring w/Difference of Squares (Tuesday) - Strategies in Factoring (Wednesday) - Intro to Parabolas (Thursday) - Summary Assignment (Friday)	- Students are to read the lesson and examples provided - On a separate sheet of paper for each assignment, complete ALL problems showing your work.		Mrs. Wong is available during the office hours at the times indicated below. You can reach Mrs. Wong during these office hours via: - Zoom link provided in Edmodo - Email cwong@tusd.net		- Group your work together for your math class IN ORDER, and with the following labels clearly displayed: Student Name: Teacher Name: Class Name/Subject: Period: Assignment Week \# - Assignments will be scored on accuracy.
Scheduled, if possible, - Discussion	Zoom classes will be held on Tuesdays and Thursdays for 30 minutes, followed by 30 minutes of office hours. Schedule meetings during office hours by emailing me. Discussions will revolve around discovery and application of concepts assigned for the week.					
Scaffolds \& Supports	KA assignments can often be re-tried to improve learning. Videos are utilized to demonstrate not only key concepts, but also frequent points of errors, helping students avoid pitfalls.					
Teacher Office Hours	Monday 10AM-12PM (30	Tuesday 1PM Alg. 1 min) followed by Q\&A	$\begin{aligned} & \text { Wec } \\ & 10 \mathrm{Ar} \end{aligned}$	nesday -12PM	Thursday 1PM Alg. $(30 \mathrm{~min})$ followe Q\&A	Friday 10AM-12PM

Student Name:
Teacher Name: Wong
Class Name/Subject:
Algebra 1
Period:
Assignment Week \#: 2

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Monday

Factoring by
Grouping.

Tuesday

Factoring difference of squares.

Directions: Factor each polynomial.

Directions: Factor each difference of squares. Check your work by distributing. If a polynomial cannot be factored, write "prime."

1. $a^{2}-4$

$(a+2)(a-2)$ $(9+8)(9-x)$	$(n+8)(n-8)$ $(c+10)(c-10)$
$3.81-x^{2}$	
$(3 b+10)(3 b-10)$	$8.25 x^{2}-49$ $(5 x+7)(5 x-7)$
$7.9 b^{2}-100$	10. $x^{2}-81 y^{2}$ $(x+9 y)(x-9 y)$
9. $16 a^{2}-121$ $(4 a+11)(4 a-11)$	

Remember perfect squares.

Directions: Look for a GCF first, then factor the remaining difference of squares. Check your work by distributing.
21. $2 n^{2}-72$
22. $18 x^{2}-50$
$2\left(n^{2}-36\right)$
$2(n+6)(n-6)$
$2\left(9 x^{2}-25\right)$
$2(3 x+5)(3 x-5)$

Problems look trickier, but you must recall perfect squares.

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Wednesday

Ratios must be exact answers. Do not convert to decimals.
(D) $\frac{2 p^{2}-32}{2}$
$2\left(p^{2}-16\right)$ Factor GCF $2(p+4)(p-4)$ Difernu of difference

3 terms

(A)	(E) $8 x^{2}-17 x+8$ Unfactorable
$\begin{aligned} & \text { (5) } 10 v^{2}+11 v+1 \\ & \frac{10 v^{2}+10 v+\frac{1 v+1}{1}}{10 v} 10 \frac{10}{11} \\ & 10 v(v+1)-+1(v+1) \\ & (10 v+1)(v+1) \end{aligned}$	$\text { (4) } \begin{gathered} \frac{30 k^{3}-123 k^{2}-54 k}{3 k} 3 k \\ 3 k\left(10 k^{2}-4 k-18\right) \\ \quad \frac{10 k^{2}+4 k-45 k-184}{2 k} 2 k-49-45 \\ 2 k(5 k+2)-9(5 k+2) \\ 3 k(2 k-9)(5 k+2) \end{gathered}$

GRARLELE QUADRATEES

Thursday

Do these assignments ONLY if you do not have digital access!

Complete all work on a separate sheet of paper. Show all work. Include the heading provided on each worksheet you turn in.
1.) Factor the quadratic expression completely.
a.) $2 x^{2}+7 x+3$
b.) $3 x^{2}-20 x-7$
2.) Factor the quadratic expression completely.
a.) $8 x^{2}-18 x-5$
b.) $12 x^{2}+17 x+6$
3.) Factor the quadratic expression completely.
a.) $2 x^{2}-13 x+20$
b.) $-8 x^{2}-15 x+2$
4.) Factor the quadratic expression completely.
a.) $-7 x^{2}-24 x-9$
b.) $-3 x^{2}+17 x-20$
5.) Factor the quadratic expression completely.
a.) $15 x^{2}-4 x-4$
b.) $6 x^{2}-13 x+6$
6.) Factor the quadratic expression completely.
a.) $96 n^{3}-84 n^{2}+112 n-98$
b.) $105 n^{3}+175 n^{2}-75 n-125$
c.) $28 n^{3}+16 n^{2}-21 n-12$
1.) Factor completely.
a.) $49 x^{2}-9$
b.) $4 x^{2}-1$
2.) Factor completely.
a.) $100 x^{2}-y^{2}$
b.) $2 x^{2}-162$
3.) Factor completely.
a.) $108-3 x^{2}$
b.) $640-10 x^{2}$
4.) Factor completely.
a.) $25 x^{2}-16$
b.) $81-4 x^{2}$
5.) Factor completely.
a.) $16-49 y^{2}$
b.) $5 x^{2}-320$
6.) Factor completely.
a.) $96-6 x^{2}$
b.) $16 x^{2}-81$
7.) Factor completely.
a.) $2 x^{2}-50$
b.) $3 x^{2}-147$
1.) Factor completely.
a.) $9 x^{2}-9$
b.) $20 x^{2}-1$
2.) Factor completely.
a.) $9 x^{2}-81$
b.) $25 x^{2}-64$
3.) Factor completely.
a.) $28 a^{2} b-63 b$
b.) $8 x^{4}-4 x^{3}-24 x^{2}$
4.) Factor completely.
a.) $2 x^{2}+38 w+140$
b.) $5 a^{2}+10 a b-3 a-6 b$
5.) Factor completely.
a.) $x^{2}-7 x-78$
b.) $24 a b+30 a c$
6.) Factor completely.
a.) $4 a^{3}-a^{2} b-36 a+9 b$
b.) $2 y^{2}-9 y-18$
7.) Factor completely.
a.) $14 x^{3}-7 x^{2}+2 x y-y$
b.) $3 x^{2}-6 x+3$

All graphs must be on graph paper. Scale and label your graphs appropriately. You must plot five points; the vertex and two points (to the left and right of the vertex). Label the axis of symmetry and the vertex.
1.) On graph paper sketch a parabola that opens-up.
2.) On graph paper sketch a parabola that has exactly one x-intercept.
3.) On graph paper sketch a parabola that intersects the x -axis at $\mathrm{x}=3$ and $\mathrm{x}=9$.
4.) On graph paper sketch a parabola whose vertex is at $(3,5)$ with y-intercept at $y=1$.
5.) On graph paper sketch a parabola whose x intercepts are at $x=-3$ and $x=5$ and whose minimum value is $(0,-4)$.

HINT: Remember to scale and label your graph.
6.) Sarah kicked a ball in the air. The function $f(x)$ models the height of the ball (in meters) as a function of time (in seconds) after Sarah kicked it.

Which of these statements are true? Justify your reasoning.
a.) Sarah kicked the ball from a height of about 1 m .
b.) Sarah kicked the ball from a height of about 14 m .
c.) At its highest point, the ball was about 1.75 m above the ground.
d.) At its highest point, the ball was about 14 m above the ground.

