Board Study Session:

Next Generation Science Standards

Presentation Outcomes

- Experience NGSS Activity
- View an NGSS Standard
- Review NGSS Timeline
- Learn about Instructional Shifts
- Consider Implications for Laguna Beach Unified

CORE IDEALO PRACTICES CROSSCUTTING **NGSS: Three Dimensional Learning** 3

DIVE IN!

Setting the Stage for Learning Let's begin with ice.

Essential Question

5

Why don't oceans freeze?

Performance Expectation (Unit Level):

How do the properties and movements of water shape Earth's surface and affect its systems? MS- ESS2-6

Guiding Question:

Will ice melt faster in fresh water or saltwater?

Guiding Question	Will an ice cube melt faster in fresh water or in salt water?
Draw a model. This is what I think will happen.	
Revise this model. This is what actually happened. <i>Note your</i> <i>observations</i> .	
Construct an explanation.	
Line of Learning	Θ

Partner talk:

- ✤ What did you observe?
- ✤ Was it expected?
- Can you construct an explanation?
- Revise your initial model

CORE IDEALO PRACTICES CROSSCUTTING **NGSS: Three Dimensional Learning** 9

NGSS by State

Rhode Island Kentucky Kansas Maryland Vermont California Delaware Washington **District of Columbia** Nevada Oregon Illinois **New Jersey**

10

NGSS Standards are written as Performance Expectations.

Disciplinary Core Ideas Crosscutting Concepts Science and Engineering Practices

Anatomy of a NGSS Standard

Students who demonstrate understanding car MS- Develop and use a model to de ESS2-6. Corolis effect, and resulting prev- corrolis effect, and resulting prev- convection cycle, which is constr diagrams, maps and globes, or d the Coriolis effect.]	I: scribe how unequal heating and rotation of the ine regional climates. [Clarification Statement: E tribution. Emphasis of atmospheric circulation is on alling winds; emphasis of ocean circulation is on t ained by the Coriolis effect and the outlines of co- igital representations.] [Assessment Boundary: As	Earth cause patterns of atmospheric and imphasis is on how patterns vary by latitude, on the sunlight-driven latitudinal banding, the he transfer of heat by the global ocean ntinents. Examples of models can be sessment does not include the dynamics of act A Emmunot for K 19 Science Education:	F	Performance Expectations
Science and Engineering Practices Developing and Using Models Modeling in-6 Builds on K-6 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. • Develop and use a model to describe phenomena.	Disciplinary Core Ideas ESS2.C: The Roles of Water in Earth's Surface Processes Variations in density due to variations in temperature and salinity drive a global pattern of interconnected coaen currents. ESS2.D: Weather and Climate Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, i.e., landforms, and living things. These interactions vary with latitude, attitude, and local and regional geography, all of which can affect coaenic and atmosphere flow patterns. The coaen exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.	Crosscutting Concepts Systems and System Models • Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems.		Dimensions Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Connections to other DCIs in this grade band: MS.PS2A.; MS.PS3.B; MS.PS4.B Anticulation of DCIs across grade-bands: ar92A.3.ESS2D.1.5.ESS2A.1 (HS.PS2.B; HS.PS3.I Common Core State Standards Connections: EL//Literacy - BL35. Integrate multimedia and visual display	3 ; HS.PS3.D ; HS.ESS1.B ; HS.ESS2.A ; HS.ESS2.D ys into presentations to clarify information, strengthen clair	ns and evidence, and add interest. (MS-ESS2-6)		Common Core & DCI Connections

LBUSD's Identified Decisions

Creating Our Team

- Leads: Alysia, Dustin and Steve
- Site Administrators
- Teacher Leaders from each site, grade span, including special education

Establishing Our Priorities

- Instructional Shifts
- All Standards
- Team collaboratively makes recommendations
- Take time needed to make informed decisions

NGSS Implementation Team: Important Considerations

What does our data tell us about our students in science?

Where do we want to begin?

- All performance expectations spiral

89.9% students take 3+ years of science already

11 of 12 (92 %) of our teachers credentialed to teach integrated

3rd and 4th Year Enrollment Numbers for this Year:ACR - 26AP Biology - 20AP Physics - 35Physics - 129Anatomy & Phys - 63Marine Ecology -58

NGSS Implementation Team: Important Considerations

Middle School Middle School Course Model

- Interdisciplinary
- Discipline Specific

High School

High School Course Model

- 3 Years of Science Literacy
- 2 Years for Graduation

Requirement

Essential Question: Why Don't the Oceans Freeze?

Guiding Question: Will an ice cube melt faster in fresh water or in salt water?

18

Laguna Beach Unified Board Study Session

Guiding Question	Will an ice cube melt faster in fresh water or in salt water?
Draw a model. This is what I think will happen.	
Revise this model. This is what actually happened. Note your observations.	
Construct an explanation.	
Line of Learning	Ŧ

Take a few moments to revise your model.

What actually happened?

Instructional Shifts

- 1. K-12 science education should reflect the interconnected nature of science as it is practiced and experienced in the real world.
- 2. The NGSS are student performance expectations, NOT curriculum
- 3. The science concepts build coherently from K-12
- 4. The NGSS focus on deeper understanding of content as well as application of content

20

- 5. Science and engineering are integrated in the NGSS from K-12
- 6. The NGSS are designed to prepare students for college, career and citizenship
- 7. The NGSS and Common Core State Standards (Math & ELA) are aligned

Disciplinary Core Ideas

Physical Science

4 Core Ideas 12 subtopics

Earth & Space Science 0

- 3 Core Ideas
 - 12 subtopics

Life Science • 4 Core Ideas 14 subtopics

Engineering, Technology & Application of Science • 1 Core Idea 3 subtopics

Science and Engineering Practices

- 1. Asking Questions and Defining Problems
- 2. Developing and Using Models
- 3. Planning and Carrying Out Investigations
- 4. Analyzing and Interpreting Data
- 5. Using Mathematical and Computational Thinking
- 6. Constructing Explanations and Designing Solutions
- 7. Engaging in Argument from Evidence
- 8. Obtaining, Evaluating, Communicating Information

Crosscutting Concepts

- 1. Patterns
- 2. Cause and Effect: Mechanism and Explanation
- 3. Scale, Proportion, Quantity
- 4. Systems and System Models
- 5. Energy and Matter: Flows, Cycles, Conservation
- 6. Structure and Function
- 7. Stability and Change

Laguna Beach NGSS Implementation Team

Hopes

- Not overwhelming for teachers
- Clear understanding
- Focus on instruction
- Hands-on, yet practical
- Integrate multiple content areas (science, literacy, math)

<u>Dreams</u>

- Equal access (SpEd)
- * Students will love science
- All students will have deep understanding
- Critical consumers of science
- * Relevant opportunities

Non-Negotiables

- Teacher driven
- K-12 learning progressions articulated
- Every student- every standard (rigorous)
- * Not assessment driven
- * Remain open minded

THANK YOU!

Any questions?

Resources

- 1. Today's NGSS Standard (MS-ESS2-6)
- 2. Disciplinary Core Ideas by Topic (NSTA)
- 3. <u>Middle School and High School Model Course Maps</u> (Appendix K, NGSS)