

PUBLIC SCHOOLS OF EDISON TOWNSHIP

 OFFICE OF CURRICULUM AND INSTRUCTION

Computer Science Discoveries

Length of Course: Term

Elective/Required: Elective

Schools: Middle School

Eligibility: Grade 8

Credit Value: N/A

Date Approved: August 26, 2019

Computer Science Discoveries 2

TABLE OF CONTENTS

Introduction 3

Scope and Sequence 4

Unit 1 5

Unit 2 9

Unit 3 14

Unit 4 20

Computer Science Discoveries 3

INTRODUCTION

CS Discoveries introduces students to computer science as a vehicle for problem solving,
communication, and personal expression. The course focuses on the visible aspects of computing and
computer science, and encourages students to see where computer science exists around them and
how they can engage with it as a tool for exploration and expression.

Computing is so fundamental to understanding and participating in society that it is valuable for every
student to learn as part of a modern education. Computer science is a subject that provides students
with a critical lens for interpreting the world around them. Computer science prepares all students to be
active and informed contributors to our increasingly technological society whether they pursue careers in
technology or not. Computer science can be life-changing, not just skill training.

This curriculum guide was created by Deborah Jasper (WWMS) and Eric McMahon (TJMS)

Advised by Jennifer Fischer - Supervisor of 21st Century Skills

Computer Science Discoveries 4

SCOPE & SEQUENCE*

UNIT 1: PROBLEM SOLVING and COMPUTING and Community

Building - MARKING PERIOD 1

Intro to Problem Solving
The Problem Solving Process
Exploring Problem Solving
What is a Computer?
Input and Output
Processing
Apps and Storage
Project - Propose an App

UNIT 2: WEB DEVELOPMENT- MARKING PERIODS 1 & 2

Exploring Websites
Websites for Expression
Intro to HTML
Headings
Digital Footprint
Lists
Intellectual Property and Images
Clean Code and Debugging
Project - Multi-Page Websites
Styling Text with CSS
Styling Elements with CSS
Sources and Search Engines
RGB Colors and Classes
Project - Personal Portfolio Website

UNIT 3: INTERACTIVE GAMES AND ANIMATIONS- MARKING

PERIODS 2, 3 & 4

Programming for Entertainment

Plotting Shapes

Drawing in Game Lab

Shapes and Randomization

Variables

Sprites

The Draw Loop

Counter Pattern Unplugged

Sprite Movement

Booleans Unplugged

Booleans and Conditionals

Conditionals and User Input

Other Forms of Input

Project - Interactive Card

Velocity

Collision Detection

Complex Sprite Movement

Collisions

Functions

The Game Design Process

Using the Game Design Process

Project - Design a Game

UNIT 4: THE DESIGN PROCESS- MARKING PERIOD 4

Analysis of Design
Understanding your user
User centered design Micro Activity
User Interfaces
Feedback and testing
Identifying user needs
Project- Paper prototype

* For students and teachers requiring further enrichment, you may explore Chapter 2 of Unit 4, Units 5 and/or Unit 6

Computer Science Discoveries 5

UNIT OF STUDY: UNIT 1: PROBLEM SOLVING

Students learn the problem-solving process, the input-output-store-process model of a computer, and how computers help humans solve

problems. Students end the unit by proposing their own app to solve a problem.

Targeted CSTA K-12 Computer Science Standards (2017):
 AP - Algorithms & Programming

● 1B-AP-08 - Compare and refine multiple algorithms for the same task and determine which is the most appropriate.

● 1B-AP-11 - Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process.

● 1B-AP-16 - Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation and review stages of
program development.

● 2-AP-10 - Use flowcharts and/or pseudocode to address complex problems as algorithms.

● 2-AP-17 - Systematically test and refine programs using a range of test cases.

● 2-AP-15 - Seek and incorporate feedback from team members and users to refine a solution that meets user needs.

● 2-AP-18 - Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.

 CS - Computing Systems

● 1B-CS-01 - Describe how internal and external parts of computing devices function to form a system.

● 1B-CS-02 - Model how computer hardware and software work together as a system to accomplish tasks.

 IC - Impacts of Computing

● 2-IC-20 - Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.

21st Century Skills/Career Ready Practices: Critical thinking, Creativity, Collaboration, Communication, Flexibility, Leadership, Productivity, Social
skills

Unit Objectives/Enduring Understandings:
 Students will be able to…

● Define and use the 4-step Problem Solving Process - Define,
Prepare, Try, Reflect

● Understand all Components of a Computer - Input, Output, Storage

and Processing

Attitudinal Goals:

 Students will...

● Build a collaborative classroom environment

● View computer science as relevant, collaborative, fun and

empowering

Essential Questions:

 The Problem Solving Process

● What strategies and processes can I use to become a more effective

problem solver?

Computers and Problem Solving

● How do computers help people to solve problems?

● How do people and computers approach problems differently?

● What does a computer need from people in order to solve problems

effectively?

Computer Science Discoveries 6

Unit Assessment: Students propose their own app to solve a problem; Students take a summative Unit Assessment

UNIT 1 Core Content Instructional Actions

Cumulative Progress
Indicators

Concepts
What students will know.

Skills
What students will be able to

do.

Activities/Strategies
Technology Implementation/
Interdisciplinary Connections

Assessment
Check Points

Lesson 4

● 1B-CS-01

Understanding
Computing
Devices

Students should be able to
identify input, output, storage,
and processing as four essential
components of a computing
device and explain the role that
each component takes when
computers are used to solve
informational problems.

Models of Computing
Devices: Identify a computer

as a machine that processes
information and give a high level
description of the input-output-
storage-processing model of
computing devices.

Input and Output: Identify

the inputs and outputs of
common computing devices and
select the inputs and outputs
used to perform common
computing tasks.

Storage: Provide examples of

common types of information that
is stored on a computer and
explain the need for storage as
part of processing information
with a computer.

Processing: Define

processing as the work done
(possibly by a computer) to turn
an input into an output and define
an algorithm as the series of
commands a computer uses to
process information

Lesson 4: What is a computer?
● Picture worksheet
● Groups sort, discuss,

and defend what a
computer is.

Objectives to be Assessed:

● Understand components of

a computer

❏ Class discussions

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Lessons 1, 2, 3

● 1B-AP-08

● 1B-AP-11

● 1B-AP-16

The Problem
Solving Process

Use a structured problem
solving process: Given

various problems, identify
individual actions that would fall
within each step of a structured

Lesson 1: Aluminum boat
building

● Collaboration
● Problem solving

Lesson 2: The problem solving

Objectives to be Assessed:

● Define and use the 4-step

Problem Solving Process

Computer Science Discoveries 7

Students should be able to define
and use a structured problem
solving process, identifying key
components of the process and
how they apply to various
problems. Students should use
multiple strategies to approach
problems, iteratively improving
on the solution through
collaboration and reflection.

process to solve them.

Define a problem to be
solved: Assess how well

defined a problem is and use
strategies to define the problem
more precisely

Plan a solution: Consider

various approaches to solving a
problem, and decide which is the
most appropriate

Implement a solution:
Carry out and evaluate a solution
to a problem, iteratively
improving on it as needed

process
● Define, Prepare, Try,

and Reflect
● Apply the process to

boat activity and other
situations for design

Lesson 3: Using the problem
solving process

● Word search partner
activity

● Use DPTR process
and discuss how each
group worked

❏ Class discussions

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Lesson 5, 6, 7, 8, 9

● 1B-CS-01

● 1B-CS-02

● 2C-CS-02

● 2-AP-10

● 2-AP-15

● 2-AP-17

● 2-AP-18

● 2-IC-20

Computing and
Algorithms

Students should combine their
understandings of computing and
problem solving to identify and
design solutions for
computational problems. In doing
so, they should develop
algorithms that can automate the
processing of information,
producing a desired output from
a given input.

Identify and define
computational problems:
Choose problems that can be
solved with computing and justify
those choices.

Develop computational
solutions: Identify the inputs

associated with a given problem,
and define the processing and
storage needed to produce the
desired output.

Developing algorithms:
Develop and iteratively improve
algorithms for processing
information.

Lesson 5: Inputs and Outputs

● Worksheet handout for
what is an input/output

● Use Definition of input
and output to discuss
with partners

Lesson 6: Card Sorting

● Playing cards
● Analyze method of

sorting cards and
define computer
algorithm

Lesson 7: Storage and
Processing

● Playing cards
● Analyze cards develop

algorithm to find
smallest card in stack

Lesson 8: App Exploration

● Worksheet on Apps
● Analyze different apps

to see what input is
needed for
functionality of app

Lesson 9: Propose an App

Objectives to be Assessed:

● Understand components of

a computer

● Use the 4-step Problem

Solving Process

Lesson Level Assessments:

❏ Class discussions

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Unit Level Assessments:

❏ End of unit project

❏ Student-facing rubrics

❏ Practice reflections

❏ Post-project test

Computer Science Discoveries 8

● Worksheet
● Poster
● Propose an App and

determine what inputs
are needed for desired
output

Resources: Essential Materials, Supplementary Materials, Links to Best Practices

Code.org platform; Journals; Activity Guides; poster paper; rubrics; supplies for
aluminum boat activity; playing cards

Instructional Adjustments: Modifications/Student

difficulties/Common errors/Possible misunderstandings

Appropriate accommodations and/or modifications as determined by 504s and

IEPs: shortened assignments, extended time, copy of class notes or access to

notes on Chromebook, preferential seating, oral reminders, etc.

Ask students to restate information, directions, and assignments.

Computer Science Discoveries 9

UNIT OF STUDY: UNIT 2: WEB DEVELOPMENT (HTML & CSS)

Unit 2 introduces computer languages and how students can use these languages to create digital artifacts. By the end of the unit, students should be able to create a digital

artifact that uses multiple computer languages to control the structure and style of their content. They should understand that different languages allow them to solve different

problems, and that these solutions can be generalized across similar problems. Lastly, they should understand their responsibilities as both creators and consumers of digital

media.

Targeted CSTA K-12 Computer Science Standards (2017):
 AP - Algorithms & Programming

● 1B-AP-11 - Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process.

● 1B-AP-12 - Modify, remix or incorporate portions of an existing program into one's own work, to develop something new or add more advanced
features.

● 1B-AP-15 - Test and debug (identify and fix errors) a program or algorithm to ensure it runs as intended.

● 2-AP-13 - Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.

● 2-AP-15 - Seek and incorporate feedback from team members and users to refine a solution that meets user needs.

● 2-AP-16 - Incorporate existing code, media, and libraries into original programs, and give attribution.

● 2-AP-17 - Systematically test and refine programs using a range of test cases.

● 2-AP-18 - Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.

● 2-AP-19 - Document programs in order to make them easier to follow, test, and debug.

● 3A-AP-20 - Evaluate licenses that limit or restrict use of computational artifacts when using resources such as libraries.

 IC - Impacts of Computing

● 1B-IC-18 - Discuss computing technologies that have changed the world and express how those technologies influence, and are influenced by,
cultural practices.

● 1B-IC-21 - Use public domain or creative commons media and refrain from copying or using material created by others without permission.

● 2-IC-20 - Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.

● 2-IC-21 - Discuss issues of bias and accessibility in the design of existing technologies.

● 2-IC-23 - Describe tradeoffs between allowing information to be public and keeping information private and secure.

 NI - Networks & the Internet

● 1B-NI-05 - Discuss real-world cybersecurity problems and how personal information can be protected.

21st Century Skills/Career Ready Practices: Critical thinking, Creativity, Collaboration, Communication, Information literacy, Media literacy,
Technology literacy, Flexibility, Leadership, Initiative, Productivity, Social skills

Unit Objectives/Enduring Understandings:
 Students will be able to…

● Implement the Problem Solving Process for Programming

● Set Up a Web Page - Content, Structure, Style

● Code in HTML and CSS

● Define and Understand Digital Citizenship

Attitudinal Goals:

 Students will...
● View computer science as a form of expression
● See themselves as creators and not simply consumers of online

content

Computer Science Discoveries 10

● Consider the impact of the choices they make when creating and
consuming digital content

Essential Questions:

Web Content and HTML

● How can text communicate content and structure on a web page?

● Why do people create websites?

● How can I incorporate content I find online into my own webpage?

● What strategies can I use when coding to find and fix issues?

Styling and CSS

● How do I modify the appearance and style of my web pages?

● How do I safely and appropriately make use of the content published

on the internet?

Unit Assessment: Students develop their own personal websites; Students take a summative Unit Assessment

UNIT 2 Core Content Instructional Actions

Cumulative Progress
Indicators

Concepts
What students will know.

Skills
What students will be able to

do.

Activities/Strategies
Technology Implementation/
Interdisciplinary Connections

Assessment
Check Points

Lessons 3, 4, 10, 11, 12, 13

● 1B-AP-11

● 1B-AP-15

● 2-AP-16

● 2-AP-17

● 2-AP-19

● 2-IC-20

● 2-IC-21

● 2-IC-23

Using Computer
Languages

Students should understand the
need for computer languages,
and how to choose a language
based on the task at hand. They
should understand that different
languages use different syntax,
and understand the need for
precision and syntax in using
multiple computer languages.

Understand and explain
the need for computer
languages: Understand why

specialized languages exist to
communicate with computers
and describe the features a
language might need.

Attend to precision and
syntax when creating a
digital artifact: Understand

the need for precision when
using computer languages and
use appropriate syntax.

Combine computer
languages within a digital
artifact: Use multiple computer

languages to manage the
complexity of a digital artifact.

Choose an appropriate

Lesson 3: Intro to HTML
● Unplugged analysis of

web pages
● Explore weblab
● Start to use HTML

code to open and
close pages

Lesson 4: Headings
● Introduce different tags
● Device to write code

and access internet
● Learn basic HTML

commands

Lesson 10: Styling Text with
CSS

● Learn the differences
between HTML and
CSS

● Use a separate style
sheet to enhance
HTML Code

Objectives to be Assessed:

● Set Up a Web Page -

Content, Structure, Style

● Code in HTML and CSS

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Computer Science Discoveries 11

computer language:
Understand differences between
HTML and CSS and choose the
most appropriate language for a
given task.

● Device and Internet
● Develop CSS style

poster sheet

Lesson 11: Styling Elements
with CSS

● Create CSS rule sheet
that will help enhance
style and appearance
of webpage

● Internet device

Lesson 12: Sources and
Search Engines

● Worksheets for
scavenger hunt and
strange animals

● Use internet device to
research privacy and
validity of information
on the web

Lesson 13: RGB Colors and
Classes

● Activity worksheet for
RGB colors

● Students use internet
device to investigate
how to get different
colors on webpages

Lessons 1, 2

● 2-IC-20

● 2-AP-13

● 1B-IC-18

Modularity and
Abstraction

Students should be able to break
down complex problems into
their component parts,
distinguishing between content,
structure, and formatting. They
should also recognize and use
abstraction as it is built into
computer languages, grouping
elements by type or by classes
that they create.

Logically separate the
content, structure and
formatting of a digital
artifact: Distinguish between

the content, structure, and
formatting in the design of a
digital artifact and ensure that
they are logically separated in its
encoding (e.g. by using HTML for
structuring and CSS for
formatting).

Create classes that can be
referenced and affected as
a group: Use classes to

identify and set the properties

Lesson 1: The purpose of
Websites

● Worksheet for website
analysis

● Device for Internet
access

● Partner work what are
websites used for?

Lesson 2: Websites for
Expression

● Worksheet for
developing personal
website

● Device for Internet
access

Objectives to be Assessed:

● Implement the Problem

Solving Process for

Programming

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Computer Science Discoveries 12

multiple elements as a group

Create rules that affect
entire groups of elements:
Use classes to create formatting
rules that will be applied to
groups of elements, either by tag
or by class.

Use stylesheets to apply
formatting rules across
multiple web pages: Create

and reference style sheets so
that consistent formatting rules
will apply to multiple web pages.

● Start to plan what you
want on your website

Lessons 9 & 14

● 2-AP-15

● 2-AP-16

● 2-AP-17

● 2-AP-18

● 2-AP-19

● 1B-IC-21

Creating a Digital
Artifact

Students should be able to
design and create their own
digital artifact using multiple
computer languages.

Structure content on a
web page using HTML: Use

HTML to create a web page that
includes hierarchical headings,
paragraphs, lists, and images.

Apply formatting in a web
page using CSS: Use

external style sheets to control
placement, size, and appearance
of elements.

Define colors with RGB
codes: Use RGB color codes to

specify colors for elements on a
web page.

Lesson 9: Project - Multi-Page
Websites

● Students will use Peer
review worksheet to
examine web pages

● Continue to develop
website to be
published

● Internet device for
research

Lesson 14: Project - Final
Personal Website

● Students use activity
guide to create,
analyze, and use peer
review for personal
website final project

● Internet device and
worksheets

Objectives to be Assessed:

● Set Up a Web Page -

Content, Structure, Style

● Code in HTML and CSS

Chapter and Unit Level

Assessments:

❏ End of chapter projects

❏ Student-facing rubrics

❏ Practice reflections

❏ Post-project tests

Lessons 6, 8

● 1B-AP-12

● 1B-AP-15

● 2-AP-19 - D

Debugging and
Clean Code

Students should understand the
importance of clean, readable
code and should use appropriate
formatting and commenting
conventions to make their code

Format code to make it
easier to read and
maintain: Use whitespace and

indentation to make code easier
to read and maintain.

Comment code where
appropriate: Use comments

Lesson 6: Lists
● Device to learn how to

create different kinds
of list in HTML

Lesson 8: Clean Code and
Debugging

● Students work with
partners to learn about
a bug and debugging

Objectives to be Assessed:

● Implement the Problem

Solving Process for

Programming

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

Computer Science Discoveries 13

easier to read and maintain.
Students should use multiple
strategies to find and eliminate
bugs from their code.

to make code more readable.

Use multiple debugging
strategies: Develop a set of

techniques for preventing bugs in
HTML and CSS code and finding
them when they occur.

HTML Code.
● Activity with white

board and sticky notes

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Lessons 5, 7

● 2-AP-16

● 3A-AP-20

● 1B-IC-21

● 1B-N!-05

● 2-IC-20

● 2-IC-23

Responsible
Creation and
Consumption of
Digital Media

Students should recognize their
responsibilities as creators and
consumers of digital media. They
should be able to make ethical
and safe choices when
publishing information online.
They should understand that not
all information found online is
trustworthy, and have strategies
for finding relevant and reliable
information on the web.

Use good judgement in
sharing personal
information online: Justify

and adhere to guidelines for
safely publishing information
online,

Respect Copyright: Explain

the purpose of copyright and
follow copyright law, accurately
attributing others when using
their work.

Vet sources: Use basic web

searching techniques to find
relevant information online,
identify elements that contribute
to a website's trustworthiness or
untrustworthiness.

Lesson 5: Digital Footprint
● Social Sleuth and

social privacy
worksheets

● Internet and code
device to do detective
work and investigate
where privacy and
content needs to be
protected

Lesson 7: Intellectual Property
and Images

● Worksheet on
LIcensing your work

● Students research
different ways to
protect their content

● Device for Internet and
coding

Objectives to be Assessed:

● Define and Understand

Digital Citizenship

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Resources: Essential Materials, Supplementary Materials, Links to Best Practices

Code.org platform; Journals; Activity Guides; Web Lab — A browser-based tool for
creating and publishing HTML and CSS web sites.

Instructional Adjustments: Modifications/Student
difficulties/Common errors/Possible misunderstandings

Appropriate accommodations and/or modifications as determined by 504s and

IEPs: shortened assignments, extended time, copy of class notes or access to

notes on Chromebook, preferential seating, oral reminders, etc.

Ask students to restate information, directions, and assignments.

Computer Science Discoveries 14

UNIT OF STUDY: UNIT 3: INTERACTIVE GAMES AND ANIMATIONS (JavaScript)

Unit 3 focuses on algorithms and programming. By the end of the unit, students should be able to create an interactive animation or game that includes basic programming

concepts such as control structures, variables, user input, and randomness. They should manage this task by working with others to break it down using objects (sprites) and

functions. Throughout the process, they should give and respond constructively to peer feedback and work with their teammates to complete a project.

Targeted CSTA K-12 Computer Science Standards (2017):
 AP - Algorithms & Programming

● 2-AP-10 - Use flowcharts and/or pseudocode to address complex problems as algorithms.

● 2-AP-11 - Create clearly named variables that represent different data types and perform operations on their values.

● 2-AP-12 - Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.

● 2-AP-13 - Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs.

● 2-AP-15 - Seek and incorporate feedback from team members and users to refine a solution that meets user needs.

● 2-AP-16 - Incorporate existing code, media, and libraries into original programs, and give attribution.

● 2-AP-17 - Systematically test and refine programs using a range of test cases.

● 2-AP-18 - Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts.

● 2-AP-19 - Document programs in order to make them easier to follow, test, and debug.

 IC - Impacts of Computing

● 2-IC-21 - Discuss issues of bias and accessibility in the design of existing technologies.

21st Century Skills/Career Ready Practices: Critical thinking, Creativity, Collaboration, Communication, Technology literacy, Flexibility,
Leadership, Initiative, Productivity, Social skills

Unit Objectives/Enduring Understandings:
 Students will be able to…

● Implement the Problem Solving Process for Programming
● Learn and correctly implement sequencing and program flow
● Implement abstraction in programming
● Define and correctly use common programming structures: Variables,

Conditionals, Functions
● Code using JavaScript

Attitudinal Goals:

 Students will...

● View programming as fun, creative, and expressive
● See themselves as computer programmers
● Feel that programming is a form of communication

Essential Questions:

 Images and Animations
● What is a computer program?
● What are the core features of most programming languages?
● How does programming enable creativity and expression?
● Which practices and strategies will help me as I write programs?

Building Games
● How do software developers manage complexity and scale?
● How can programs be organized so that common problems need to

be solved only once?
● How can I build on previous solutions to create even more complex

behavior?

Computer Science Discoveries 15

Unit Assessment: Students design their own animations and games; Students take a summative Unit Assessment

UNIT 3 Core Content Instructional Actions

Cumulative Progress
Indicators

Concepts
What students will know.

Skills
What students will be able to

do.

Activities/Strategies
Technology Implementation/
Interdisciplinary Connections

Assessment
Check Points

Lessons 1, 14, 19, 20, 21, 22

● 2-IC-21

● 2-AP-10

● 2-AP-11

● 2-AP-12

● 2-AP-13

● 2-AP-14

● 2-AP-15

● 2-AP-16

● 2-AP-17

● 2-AP-18

● 2-AP-19

Program
Development

Students should be able to
collaborate with peers to develop
a piece of software. This process
involves defining the needs of the
program, designing a program to
meet those needs, and breaking
down the design into
manageable pieces. Student
code should be written so that
others can read and understand
it, and they should give and
receive feedback on their work,
as well as test and revise the
program.

Constructively give and
respond to peer feedback:
Give feedback to peers using a
structured process that points out
strengths and areas for growth in
a project, and incorporate given
feedback for their own programs
into their revisions.

Write readable code:
Organize code such that it is
readable and make comments
where appropriate to help
readers understand the purpose
of specific sections. Use
reasonable variable and function
names.

Using a structured
process to plan and
develop a program: Use a

structured process to describe a
program’s behavior, identify the
core programming constructs
necessary to complete the
project, then use them as a guide
to complete the program.

Collaborate effectively
with team members in
distributing and
completing tasks on time:
Break up tasks so that each team
member can make a meaningful
contribution. Ensure that the
code will work together once it is

Lesson 1: Programming for
Entertainment

● Activity worksheet for
examining the impact
of computer science in
different entertainment
areas

● Device for research

Lesson 14: Project - Interactive
Card

● Students make an
interactive greeting
card using cumulative
programming skills

● Peer review
● Device and Internet

Lesson 19: Functions

● Learn how to create
functions and organize
code

● Make it more readable
and remove repeated
blocks of code

● Device and Internet

Lesson 20: The Game Design
Process

● Use project guide
handout to plan for
game design for the
rest of the unit

● Define sprites,
variables and functions

Objectives to be Assessed:

● Implement the Problem

Solving Process for

Programming

● Learn and correctly

implement sequencing and

program flow

● Define and correctly use

common programming

structures: Variables,

Conditionals, Functions

● Code using JavaScript

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Chapter and Unit Level
Assessments:
❏ End of chapter projects

❏ Student-facing rubrics

❏ Practice reflections

❏ Post-project tests

Computer Science Discoveries 16

finished. before beginning
● Device and Internet

Lesson 21: Using the Game
Design

● Draw game in project
guide game platform
handout

● Design game to catch
alien stars

Lesson 22: Project - Design a
Game

● Students will design
and build their own
game using project
guide from previous
two lessons

● Describe games
behavior and scope of
variables

● Handouts, Device, and
Internet

Lessons 4, 6, 7, 8, 9

● 1B-AP-11

● 1B-AP-12

● 1B-AP-15

● 1B-IC-21

● 2-IC-23

● 2-AP-15

● 2-AP-16

● 2-AP-17

● 2-AP-18

● 2-AP-19

● 3-A-AP-20

Modularity

Students should be able to break
down complex problems into
their component parts, both to
increase readability and
organization of code and to allow
them to reuse portions of code
many times. Algorithms should
be broken into functions, and
screen elements into
sprites/objects. They should also
recognize and use abstraction as
it is built into programming
languages.

Use objects to manage the
complexity of on-screen
elements: Create and modify

objects (sprites) to represent on
screen elements and their
associated properties. Use dot
notation to get and set sprite
properties.

Manage complexity through
abstraction: Use abstraction to

reason about a program at
different levels of complexity.
Describe the benefits of
abstraction, including simplifying
code to more easily program
complex behavior.

Define and call functions
in a program: Create and

use functions to organize reuse
code within the same program.
Modify and use functions created

Lesson 4: Shapes and
Randomization

● Students explore
drawing ellipses and
rectangles using
“parameters”

● Internet and device

Lesson 6: Sprites

● Use sprites, shapes,
and text to create a
simple scene

● Device and Internet

Lesson 7: The Draw Loop

● Introduce draw loop in
game lab

● Study flip books and
then try basic
animation

● Device and Internet

Lesson 8: Counter Pattern

Objectives to be Assessed:

● Implement the Problem

Solving Process for

Programming

● Learn and correctly

implement sequencing and

program flow

● Implement abstraction in

programming

● Define and correctly use

common programming

structures: Functions

● Code using JavaScript

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

Computer Science Discoveries 17

by others Unplugged
● Connect sprites

location and sprites
movement on a screen

● Unplugged worksheets
for variables
unplugged and counter
pattern

Lesson 9: Sprite Movement

● Combine draw loop
and counter pattern to
move sprites across
screen

● Device and Internet

complete a small

programming task.

❏ Activity Guides

Lessons 10, 11, 12, 13

● 2-AP-10

● 2-AP-11

● 2-AP-12

● 2-AP-13

● 2-AP-16

● 2-AP-17

● 2-AP-19

Algorithms and
Control

Students should be able to use
basic programming constructs to
create a wide range of behaviors
in their programs. These
constructs should be combined
to create complex behaviors,
such as screen elements that
move according to user input, or
properties that change after a
certain threshold has been
reached. Programs should run
differently each time according to
user input or random chance.

Use arguments to change
the way a method runs:
Use arguments to change the
way a method runs,
distinguishing between the roles
of multiple arguments passed to
a method

Detect and respond to
user input: Use input from the

keyboard and mouse to change
the behavior of a program while it
is running.

Use iteration to repeat
behavior within a
program: Use loops to repeat

behavior in a program, combing
repetition with other control
structure to produce ongoing
complex behaviors.

Use conditionals to
control the flow of a
program: Use conditional

statements to control the flow of
a program based on user input,
variable values, or properties of
objects (sprites).

Generate and use random

Lesson 10: Booleans
Unplugged

● Use activity worksheet
to organize simple
shapes based on
boolean commands

Lesson 11: Booleans and
Conditionals

● Learn to predict the
outcome of certain
boolean statements

● Device and Internet

Lesson 12: Conditionals and
User Input

● Use conditionals to
react to keyboard input

● Move sprites in
response to keyboard
input

● Device and Internet

Lesson 13: Other Forms of
Input

● Explore ways to use
conditional statements
to take user input

● Device and Internet

Objectives to be Assessed:

● Implement the Problem

Solving Process for

Programming

● Learn and correctly

implement sequencing and

program flow

● Define and correctly use

common programming

structures: Conditionals,

● Code using JavaScript

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Computer Science Discoveries 18

numbers in a program:
Use random numbers to
introduce variation in how a
program is run.

Lessons 2, 3, 15, 16, 17, 18

● 2-AP-10

● 2-AP-11

● 2-AP-12

● 2-AP-13

● 2-AP-16

● 2-AP-17

● 2-AP-19

Position and
Movement

Students should use the
coordinate plane to place and
move screen elements. They
should be able to model various
types of motion, including
acceleration, linear movement
and simulating gravity.

Place elements on screen
using a coordinate plane:
Use a coordinate system to place
elements on a screen,
accounting for object size and
overlay.

Model two dimensional
movement on a coordinate
plane: Manipulate the x and y

coordinates of an object on a
screen to create the illusion of
smooth motion.

Model complex movement
on a coordinate plane:
Combine different types of
movement to create more
complex behaviors such as
acceleration, jumping, and
bouncing.

Lesson 2: Plotting Shapes
● Students learn to how

a computer processed
information to come up
with different styles

● Easel for computer
drawing simulation

Lesson 3: Drawing in Game
Lab

● Students are
introduced to game lab

● They need to change
three colors of an
existing page

Lesson 15: Velocity

● Students are
introduced to the
properties that set
velocity and rotation
speed directly

● Create basic side
scroller game

● Device and Internet

Lesson 16: Collision Detection

● Use sprite location and
size and math to
determine if two sprites
are touching

● Use activity sheets to
draw sprites

● Create different effects
when sprites collide

Lesson 17: Complex Sprite
Movement

● Combine the velocity
property of sprites with
the counter pattern to
create complex sprite

Objectives to be Assessed:

● Learn and correctly

implement sequencing and

program flow

● Define and correctly use

common programming

structures: Variables,

Conditionals, Functions

● Code using JavaScript

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Computer Science Discoveries 19

movement
● Simulate gravity, make

sprites jump and float
● Device and Internet

Lesson 18: Collisions

● Program sprites to
interact and brainstorm
other ways they could
interact

● Device and Internet

Lesson 5

● 2-AP-11

● 2-AP-13

● 2-AP-17

● 2-AP-19

Variables/Storing
Information

Students should be able to
create new variables as needed
in their programs, and update
and access the variable values
as the program runs.

Use variables to store and
update information: Create

and assign values to variables as
a program is run to store and
update changing information

Lesson 5: Variables
● Learn about variables

and how they are used
with html

● Device and internet

Objectives to be Assessed:
● Define and correctly use

common programming
structures: Variables

● Code using JavaScript

❏ Journal Questions
❏ Quick-check levels

include multiple choice or
short answer questions.

❏ Programming levels

challenge students to
complete a small
programming task.

❏ Activity Guides

Resources: Essential Materials, Supplementary Materials, Links to Best
Practices

 Code.org platform; Journals; Activity Guides; Game Lab — A browser-based JavaScript

programming environment designed to create sprite-based drawings, animations and games.
Enables students to switch between programming in blocks or text.

Instructional Adjustments: Modifications/Student

difficulties/Common errors/Possible misunderstandings

Appropriate accommodations and/or modifications as determined by 504s and

IEPs: shortened assignments, extended time, copy of class notes or access to

notes on Chromebook, preferential seating, oral reminders, etc.

Ask students to restate information, directions, and assignments.

Computer Science Discoveries 20

UNIT OF STUDY: UNIT 4: The Design Process (Chapter 1, paper prototype only)

Unit 4, Chapter 1 extends the problem solving process to incorporate user centered design. By the end of the chapter, students should see the design process as a form of

problem solving that prioritizes the needs of a user. They should be able to identify user needs and assess how well different designs address them. In particular they know

how to develop a paper prototype, gather and respond to feedback about a prototype, and consider ways different user interfaces do or do not affect the usability of their apps.

Students should leave the unit with a basic understanding of other roles in software development, such as product management, marketing, design, and testing, and to use

what they have learned as a tool for social impact.

Targeted CSTA K-12 Computer Science Standards (2017):
 AP - Algorithms & Programming

● 2-AP-10 - Use flowcharts and/or pseudocode to address complex problems as algorithms.

● 2-AP-15 - Seek and incorporate feedback from team members and users to refine a solution that meets user needs.

● 2-AP-17 - Systematically test and refine programs using a range of test cases.

 IC - Impacts of Computing

● 2-IC-20 - Compare tradeoffs associated with computing technologies that affect people's everyday activities and career options.

● 2-IC-21 - Discuss issues of bias and accessibility in the design of existing technologies.

● 2-IC-22 - Collaborate with many contributors through strategies such as crowdsourcing or surveys when creating a computational artifact.

 CS - Computing Systems

● 2-CS-01 - Recommend improvements to the design of computing devices, based on an analysis of how users interact with the devices.

● 2-CS-02 - Design projects that combine hardware and software components to collect and exchange data.

21st Century Skills/Career Ready Practices: Critical thinking, Creativity, Collaboration, Communication, Information literacy, Media literacy,
Technology literacy, Flexibility, Leadership, Initiative, Productivity, Social skills

Unit Objectives/Enduring Understandings:
 Students will be able to…

● See the design process as a form of problem solving that prioritizes

the needs of a user.

● Identify user needs and assess how well different designs address

them:

○ know how to develop a paper prototype,

○ gather and respond to feedback about a prototype, and

○ consider ways different user interfaces do or do not affect the

usability of their apps.

Essential Questions:
● How do designers identify the needs of their user?

● How can we ensure that a user's needs are met by our designs?

● What processes will best allow us to efficiently create, test, and

iterate upon our designs?

Unit Assessment: Students create a Paper Prototype project; Students take a summative Unit Assessment

Computer Science Discoveries 21

UNIT 4 Core Content Instructional Actions

Cumulative Progress
Indicators

Concepts
What students will know.

Skills
What students will be able to

do.

Activities/Strategies
Technology Implementation/
Interdisciplinary Connections

Assessment
Check Points

Lessons 1, 2, 3, 6

● 2-CS-01

● 2-CS-02

● 2-IC-20

● 2-IC-21

● 2-IC-22

● 2-AP-10

● 2-AP-15

● 2-AP-17

Understanding the
user

Students should actively consider
the needs of others while
developing a solution to a
problem. They should identify
user needs as central criteria for
the development of a
computational artifact and
distinguish their own needs from
those of the user, taking steps to
identify those needs through a
variety of strategies.

Identify user needs as
distinct from the needs of
the developer: Describe the

target users for a computational
artifact and identify those user’s
needs, distinguishing between
the needs of the student and
those of the user.

Collect and analyze user
information to better
understand user needs:
Collect information on users,
either through research,
interviews, or surveys, and
analyze that information to create
a profile for the user, including
the needs that the user may have
in interacting with the intended
computational artifact.

Lesson 1: Analysis of Design
● Examine real world

objects to see how the
problem solving
process can be used
to help others

● Tea pot activity
handout

Lesson 2: Understanding Your
User

● Handouts for user
profiles

● Students role-play to
determine the wants
and needs of potential
customers.

● Helps to address
marketing issues

Lesson 3: User-Centered
Design Micro Activity

● Brainstorm a list of
smart clothing users

● Put them into potential
groups and identify
needs or concerns of
the user

● Design clothing for the
user based on
information

Lesson 6: Identifying User
Needs

● Activity guides user
interface and paper
prototype.

● Conduct an interview
to collect information
about user needs

● Analyze interview

Objectives to be Assessed:

● Identify user needs and

assess how well different

designs address them:

● consider ways different

user interfaces do or do

not affect the usability of

their apps

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Computer Science Discoveries 22

notes to identify
specific user needs

Lessons 4, 5, 7

● 2-CS-01

● 2-AP-10

● 2-AP-15

● 2-AP-17

● 2-IC-21

● 2-IC-22

Designing to
criteria

Students should be able to use
set criteria to guide their design
of a computational artifact, both
in the overall design and purpose
of the artifact and in the specific
ways that users can interact with
it.

Generate and evaluate
ideas for meeting specific
criteria: Generate multiple

strategies for meeting user
needs, then organize them into
meaningful categories so that
they can be analyzed. Select the
most appropriate strategies from
the list.

Design according to
specific user needs:
Design an artifact, including core
functionality and user interface,
that meets the needs of a
specific user, or design
improvements to an existing
artifact in order to meet those
needs.

Lesson 4: User Interfaces
● Students use the mini

design process to
develop a prototype to
meet a user’s needs

● Activity sheets for user
interface, testing
computer, and testing
user

Lesson 5: Feedback and
Testing

● Use feedback to create
a development plan to
improve an app

● Activity guides for
feedback, improve a
screen, use interface
screens

Lesson 7: Project - Paper
Prototype

● Activity guide
computer science best
practices

● Design the
functionality of an app
to address the specific
needs of a user

● Identify improvements
to an app based on
user testing

● Design the user
interface of an app

Objectives to be Assessed:

● See the design process as

a form of problem solving

that prioritizes the needs of

a user.

● Identify user needs and

assess how well different

designs address them:

● know how to develop a

paper prototype

● gather and respond to

feedback about a

prototype

❏ Journal Questions

❏ Quick-check levels

include multiple choice or

short answer questions.

❏ Programming levels

challenge students to

complete a small

programming task.

❏ Activity Guides

Chapter Level Assessments:
❏ End of chapter project

❏ Student-facing rubric

❏ Practice reflections

❏ Post-project test

Resources: Essential Materials, Supplementary Materials, Links to Best Practices

Code.org platform; Journals; Activity Guides;

Instructional Adjustments: Modifications/Student
difficulties/Common errors/Possible misunderstandings

Appropriate accommodations and/or modifications as determined by 504s and

IEPs: shortened assignments, extended time, copy of class notes or access to

notes on Chromebook, preferential seating, oral reminders, etc.

Ask students to restate information, directions, and assignments.

