Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4+3=7 Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all. 4 7	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4+2

Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.

Chidren to represent the counters in a place value chart, circling when they make an exchange.

243

+368 611

Conceptual variation; different ways to ask children to solve 21 + 34

?	
21	34

Word problems:

In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?

21 + 34 = 55. Prove it

_	
•	_
_	
-	

21+34=

Calculate the sum of twenty-one and thirty-four.

BB		BBB
ㅂㅂ		
HH		
HH		
HHo	+	<u>868</u> 0000

Missing digit problems:

10s	1s
0 0	0
000	?
?	5 -

Regrouping to make 10; using ten frames and counters/cubes or using Numicon.

6+5

Children to draw the ten frame and counters/cubes.

Children to develop an understanding of equality e.g.

$$6 + \Box = 11$$

$$6 + 5 = 5 + \square$$

$$6 + 5 = \Box + 4$$

TO + O using base 10. Continue to develop understanding of partitioning and place value.

41 + 8

Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.

41+8

1 + 8 = 940 + 9 = 49

TO + TO using base 10. Continue to develop understanding of partitioning and place value.

36 + 25

Chidlren to represent the base 10 in a place value chart.

Looking for ways to make 10.

Formal method: +25 61

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=
4-3=1	Ø Ø Ø O	3 ?
Counting back (using number lines or number tracks) children start with 6 and count back 2. $6 - 2 = 4$	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
1 2 3 4 5 6 7 8 9 10	12345678910	0 1 2 3 4 5 6 7 8 9 10
		111261111111

Finding the difference (using cubes, Numicon or Cuisenaire Children to draw the cubes/other concrete objects which Find the difference between 8 and 5. rods, other objects can also be used). they have used or use the bar model to illustrate what they need to calculate. 8 - 5, the difference is Calculate the difference between 8 and 5. 00000000 Children to explore why 9 - 6 = 8 - 5 = 7 - 4 have the same difference. Making 10 using ten frames. Children to present the ten frame pictorially and discuss Children to show how they can make 14 - 5 what they did to make 10. 10 by partitioning the subtrahend. 14 - 5 = 914 - 4 = 1010 - 1 = 9Column method or children could Column method using base 10. Children to represent the base 10 pictorially. 48-7 count back 7. 105 1s 15 10s 10s 1s 111;

Represent the base 10 pictorially, remembering to show the exchange.

Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because 41 = 30 + 11.

Column method using place value counters.

4

6

Represent the place value counters pictorially; remembering to show what has been exchanged.

Formal colum method. Children must understand what has happened when they have crossed out digits.

Conceptual variation; different ways to ask children to solve 391 - 186

Raj spent £391, Timmy spent £186. How much more did Raj spend?

Calculate the difference between 391 and 186.

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model. 88 88 88	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups- 3 × 4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. 3 × 4 = 12

Use arrays to illustrate commutativity counters and other objects can also be used.

$$2 \times 5 = 5 \times 2$$

2 lots of 5

5 lots of 2

Children to represent the arrays pictorially.

Children to be able to use an array to write a range of calculations e.g.

$$10 = 2 \times 5$$

 $5 \times 2 = 10$
 $2 + 2 + 2 + 2 + 2 = 10$
 $10 = 5 + 5$

Partition to multiply using Numicon, base 10 or Cuisenaire rods.

$$4 \times 15$$

Children to represent the concrete manipulatives pictorially.

Children to be encouraged to show the steps they have taken.

A number line can also be used

Formal column method with place value counters (base 10 can also be used.) 3×23

10s	1s
000	000
6	9

Children to represent the counters pictorially.

10s	Is
00	000
00	000
00	000
6	19

Children to record what it is they are doing to show understanding.

to show understanding.

$$3 \times 23$$
 $3 \times 20 = 60$
 $3 \times 3 = 9$
 $20 \times 3 \times 60 + 9 = 69$

Formal column method with place value counters. 6 x 23

Children to represent the counters/base 10, pictorially e.g. the image below.

Formal written method

$$6 \times 23 =$$

23

1 1

When children start to multiply 3d × 3d and 4d × 2d etc., they should be confident with the abstract:

To get 744 children have solved 6×124 . To get 2480 they have solved 20×124 .

Conceptual variation; different ways to ask children to solve 6 × 23

23 23 23 23 23 23

7

Mai had to swim 23 lengths, 6 times a week.

How many lengths did she swim in one week?

With the counters, prove that 6 x 23 = 138

Find the product of 6 and 23 $6 \times 23 =$

6 2

What is the calculation? What is the product?

100s	10s	1s
	000000	000

Calculation policy: Division

Key language: share, group, divide, divided by, half.

Concrete	Pictorial	A	bstract
Sharing using a range of objects. 6 + 2	Represent the sharing pictorially.	6+2=3	
	\odot	3	3
	··· ··	Children should al their 2 times table	so be encouraged to use s facts.
Repeated subtraction using Cuisenaire rods above a ruler. 6+2 -2 -2 -2	Children to represent repeated subtraction pictorially.	groups that have b	ine to represent the equal been subtracted.
0 1 2 3 4 5 6 7 8 9 10	0000000	3 9	3 4 5 6 roups
3 groups of 2			

Short division using place value counters to group. 615 ÷ 5

- 1. Make 615 with place value counters.
- 2. How many groups of 5 hundreds can you make with 6 hundred counters?
- 3. Exchange 1 hundred for 10 tens.
- 4. How many groups of 5 tens can you make with 11 ten counters?
- 5. Exchange 1 ten for 10 ones.
- 6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

Long division using place value counters 2544 + 12

00s	10s	0000 1s
00s	10s	15
00s	10s	1s
00s	10s	15
200	0000	0000
500		
500		
500		
	500	500

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

1000s	100s	10s	1s
	0000 0000 0000 0000	0000	0000

After exchanging the hundred, we 12 25 have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.

1000s	100s	10s	1s
	0000 0000 0000 0000 0000	0000	0000 0000 0000 0000 0000

After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remainder.

12 2544

12 2544

12 24

24 24

Conceptual variation; different ways to ask children to solve 615 ÷ 5

Using the part whole model below, how can you divide 615 by 5 without using short division?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

5 615

 $615 \div 5 =$

= 615 + 5

What is the calculation? What is the answer?

100s	10s	1s
	00000	00000 00000 00000