Assessment

*** ANSWER KEY ***

Student Name: Test Name: November Chemistry for All: Unit 11 - Equilibrium

Grade: 09

Version: 1

- ^{1.} The following describes the Haber Process for making fertilizer:
 - \cdot nitrogen + hydrogen \rightleftharpoons ammonia
 - · $N_{2(g)}$ + $3H_{2(g)}$ \rightleftharpoons $2NH_{3(g)}$ ($\Delta H = -92 \text{ kJ mol}^{-1}$)

Describe the effect of lowering the temperature inside the reaction vessel on the equilibrium of the reaction.

- \checkmark (a) The reaction is exothermic so the change favors the products.
 - (b) The reaction is exothermic so the change favors the reactants.
 - (c) The reaction is endothermic so the change favors the products.
 - (d) The change has no effect on the equilibrium position.

Explanation:

(a) Lowering the temperature drives the reaction forward to replace the energy removed from the exothermic reaction.

Standard:

MI_CHEM_HS-0912-C5-3x-a

MI HSCEs Science - Chemistry

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3a Describe equilibrium shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

```
\cdot nitrogen + hydrogen 🔁 ammonia
```

· $N_{2(\alpha)}$ + $3H_{2(\alpha)}$ <!--[if !vml]--> \overleftrightarrow $2NH_{3(\alpha)}$ (ΔH = -92 kJ mol⁻¹)

Describe the effect of decreasing the pressure inside the reaction vessel on the equilibrium of the reaction.

- (a) The change favors the products which has less gas molecules.
- \checkmark (b) The change favors the reactants which has more gas molecules.
 - (c) The change favors the products which has larger gas molecules.
 - (d) The change has no effect on the equilibrium position.

Explanation:

(b) Decreasing the pressure drives the reaction in the reverse direction because there are more particles

Standard:

MI_CHEM_HS-0912-C5-3x-a

MI HSCEs Science - Chemistry

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3a Describe equilibrium shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

```
• nitrogen + hydrogen \rightleftharpoons ammonia
```

• $N_{2(g)}$ + $3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ ($\Delta H = -92$ kJ mol⁻¹)

Describe the effect of increasing the concentration of nitrogen gas or hydrogen gas inside the reaction vessel on the equilibrium of the reaction.

- (a) The change causes an increase in ammonia favoring the reactants.
- ✓ (b) The change causes an increase in ammonia favoring the products.
 - (c) The change causes an decrease in ammonia favoring the reactants.
 - (d) The change has no effect on the equilibrium of the reactants.

Explanation:

(a) forward

Standard:

MI_CHEM_HS-0912-C5-3x-a

MI HSCEs Science - Chemistry

STANDARD C5: CHANGES IN MATTER

Topic C5.3x Equilibrium

C5.3a Describe equilibrium shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

```
• nitrogen + hydrogen \rightleftharpoons ammonia
```

• $N_{2(q)}$ + $3H_{2(q)}$ <!--[if !vml]--> \overleftrightarrow $2NH_{3(q)}$ (ΔH = -92 kJ mol⁻¹)

Describe the effect of decreasing the concentration of ammonia on the equilibrium of the reaction.

- \checkmark (a) Drives the reaction to the right which favors the products.
 - (b) Drives the reaction to the left which favors the reactants.
 - (c) Drives the reaction to the right which favors the reactants.
 - (d) Has no effect on the equilibrium of the reaction.

Explanation:

(a)

(b) reverse

Standard:

```
MI_CHEM_HS-0912-C5-3x-a
```

MI HSCEs Science - Chemistry

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3a Describe equilibrium shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

```
• nitrogen + hydrogen 🔁 ammonia
```

• $N_{2(g)} + 3H_{2(g)} <!--[if !vml]--> \overleftrightarrow 2NH_{3(q)} (\Delta H = -92 \text{ kJ mol}^{-1})$

Describe the effect of decreasing the volume of the reaction vessel on the equilibrium of the reaction.

- (a) The change causes an decrease in the pressure which favors the products.
- (b) The change causes an increase in pressure which favors the reactants.
- \checkmark (c) The change causes an increase in pressure which favors the products.
 - (d) The change has no effect on the equilibrium of the reaction.

Explanation:

(a) forward

Standard:

MI_CHEM_HS-0912-C5-3x-a

MI HSCEs Science - Chemistry

STANDARD C5: CHANGES IN MATTER

Topic C5.3x Equilibrium

C5.3a Describe equilibrium shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

```
• nitrogen + hydrogen ⇄ ammonia
```

• $N_{2(q)} + 3H_{2(q)} <!--[if !vml] --> \overleftrightarrow 2NH_{3(a)} (\Delta H = -92 \text{ kJ mol}^{-1})$

Describe the effect of the addition of a catalyst inside the reaction vessel on the equilibrium of the reaction.

- (a) The change increases the concentration of ammonia which favors the products.
- (b) The change increases the concentration of ammonia which favors the reactants.
- (c) The change decreases the concentration of the hydrogen gas which favors the reactants.
- \checkmark (d) The change has no effect on the equilibrium of the reaction.

Explanation:

(c) Catalysts do not affect the equilibrium only the rate of reaction.

Standard:

MI_CHEM_HS-0912-C5-3x-a

MI HSCEs Science - Chemistry

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3a Describe equilibrium shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

- 7. The equilibrium is a state of dynamic molecular behavior, which statement below describes the change that occurs in a reaction to establish equilibrium?
 - ✓ (a) The reactants turn into products and the products turn into reactants at equal rates.
 - (b) The reactants continually turn into products at a progressively slower rate until the reaction stops.
 - (c) The products continually turn into reactants at a progressively faster rate until the reaction stops.
 - (d) The reaction stops when the concentration of the products are equal to the concentration of the reactants.

Standard:

MI_CHEM_HS-0912-C5-3x-a

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3a Describe equilibrium shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

^{8.} Study the following aqueous reaction:

 $Fe^{+3} + SCN^{-} \qquad \overleftrightarrow \qquad FeSCN^{2+}$ (Light Yellow) <!--[if !vml]--><!--[endif]--> (Deep Red)

Adding $Fe(NO_3)_3$ produced the following change in the equilibrium:

- (a) The color in the test tube became a deeper red color because the equilibrium shifted to make more reactants.
- ✓ (b) The color in the test tube became a deeper red color because the equilibrium shifted to make more products.
 - (c) The color in the test tube became a lighter color because the equilibrium shifted to make more reactants.
 - (d) The color in the test tube became a lighter color because the equilibrium shifted to make more products.

Standard:

MI_CHEM_HS-0912-C5-3x-b

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3b Predict shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

9. Study the following aqueous reaction:

 $Fe^{+3} + SCN^{-} \rightleftharpoons FeSCN^{2+}$ (Light Yellow) <!--[if !vml]--><!--[endif]--> (Deep Red)

Adding $AgNO_3$ to the test tube removed SCN^- from the reaction, would result in the following observation.

- ✓ (a) The test tube will become more yellow in color as the reaction favors the reactants.
 - (b) The tube will become deep red in color as the reaction favors the products.
 - (c) The color of the tube will not change because the AgNO₃ has no effect on the equilibrium.
 - (d) The tube will become more yellow as the reaction favors the products.

Standard:

MI_CHEM_HS-0912-C5-3x-b

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3b Predict shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

Print Test

^{10.} Study the following aqueous reaction:

 $Fe^{+3} + SCN^{-} \rightleftharpoons FeSCN^{2+}$ (Light Yellow) <!--[if !vml]--><!--[endif]--> (Deep Red)

The reaction you studied is becoming a deeper red color when the tube is placed in an ice bath. Which statement best represents the observation?

- \checkmark (a) The reaction is exothermic and has shifted to favor the products.
 - (b) The reaction is endothermic and has shifted to favor the products.
 - (c) The reaction is exothermic and has shifted to favor the reactants.
 - (d) The reaction is endothermic and has shifted to favor the reactants.

Standard:

MI_CHEM_HS-0912-C5-3x-b

MI HSCEs Science - Chemistry

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3b Predict shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

- ^{11.} In the reaction $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$, an increase in pressure (by reducing the volume) would cause which of the following changes?
 - (a) The reaction shift will be to the right and form more products.
 - \checkmark (b) The reaction shift will be to the left and form more reactants.
 - (c) Increasing the pressure would have no effect on the equilibrium of the reaction.
 - (d) The concentrations of both the reactant and product would decrease.

Standard:

MI_CHEM_HS-0912-C5-3x-b

```
MI HSCEs Science - Chemistry
```

STANDARD C5: CHANGES IN MATTER

- Topic C5.3x Equilibrium
 - C5.3b Predict shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).
- ^{12.} In the reaction, $CO_{(g)} + NO_{2(g)} \rightleftharpoons CO_{2(g)} + NO_{(g)}$, which of the following changes would result in the formation of more products to return to equilibrium?
 - (a) increasing the pressure
 - (b) removing $CO_{(g)}$ from the reaction
 - \checkmark (c) adding NO_{2(g)} to the reaction
 - (d) adding CO_2 to the reaction

Standard:

MI_CHEM_HS-0912-C5-3x-b

MI HSCEs Science - Chemistry

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3b Predict shifts in a chemical system caused by changing conditions (Le Chatelier's Principle).

- ^{13.} Which of the following equilibrium constants indicates that its corresponding reaction goes nearly to completion?
 - (a) $K_c = 1.0 \times 10^{-2}$
 - (b) $K_c = 1.0 \times 10^{--8}$
 - (c) $K_c = 1.0$
 - ✓ (d) $K_c = 1.0 \times 10^{+8}$

(a)
$$K_{eq} = \frac{[O_3]^2}{[O_2]^3}$$

Standard:

MI_CHEM_HS-0912-C5-3x-c

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3c Predict the extent reactants are converted to products using the value of the equilibrium constant.

- ^{14.} Which of the following equilibrium constants indicates that its corresponding reaction stays far to the left?
 - ✓ (a) $K_c = 1.0 \times 10^{-8}$
 - (b) $K_c = 9.0 \times 10^{-2}$
 - (c) $K_c = 1.0$
 - (d) $K_c = 5.0 \times 10^{+8}$

(a)
$$K_{eq} = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

Standard:

MI_CHEM_HS-0912-C5-3x-c

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3c Predict the extent reactants are converted to products using the value of the equilibrium constant.

- ^{15.} The K_c value for $H_2 + I_2 \rightleftharpoons 2$ HI is 7.7 x 10⁻⁴. If only hydrogen gas and iodine vapors are placed in the reaction vessel, what will be the result?
 - (a) The reaction will move far to the right and equilibrium will favor the products.
 - ✓ (b) The reaction will stay far to the left and equilibrium will favor the reactants.
 - (c) The reaction will proceed until reactants equal products.
 - (d) The reaction will not start until some HI is introduced into the vessel.

(a)
$$K_{eq} = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$$

Standard:

MI_CHEM_HS-0912-C5-3x-c

MI HSCEs Science - Chemistry

STANDARD C5: CHANGES IN MATTER

Topic C5.3x Equilibrium

C5.3c Predict the extent reactants are converted to products using the value of the equilibrium constant.

- ^{16.} The K₂ for PCl₃ + Cl₂ \rightleftharpoons PCl₅ is 50. What statement best describes the result if only PCl₃ and Cl₂ is introduced into the reaction vessel?
 - (a) The reaction will not begin until some PCl₅ is introduced into the reaction vessel.
 - (b) The reaction will shift to the right until 50 molecules of PCl₅ are produced and then stop.
 - ✓ (c) The reaction will shift to the right and favor the formation of the products.
 - (d) The reaction will stay to the left and favor the presence of the reactants.

(a)
$$\mathbb{K}_{eq} = \frac{[\mathrm{PCl}_3] [\mathrm{Cl}_2]}{[\mathrm{PCl}_5]}$$

Standard:

MI_CHEM_HS-0912-C5-3x-c

MI HSCEs Science - Chemistry

STANDARD C5: CHANGES IN MATTER

Topic C5.3x Equilibrium

C5.3c Predict the extent reactants are converted to products using the value of the equilibrium constant.

^{17.} CO and H_2O are added into a reaction vessel and allowed to reach equilibrium at constant temperature according to the reaction:

$$\mathrm{CO}_{(g)}^{\circ} + \mathrm{H}_{2}\mathrm{O}_{(g)} \rightleftharpoons \mathrm{CO}_{2(g)} + \mathrm{H}_{2(g)}$$

the equilibrium constant was determined to be 4.0. What would happen if the same reaction was performed but a catalyst was added to the vessel?

- (a) The reaction will shift further to the right and the K_c value will increase.
- (b) The reaction will stay further to the left and the K_c value will decrease
- ✓ (c) The addition of a catalyst has no effect on the equilibrium constant.
 - (d) The reaction will shift further to the right and the K_c value will decrease.

Explanation:

(a) [CO₂ (g)] = 1.58 M

Standard:

MI_CHEM_HS-0912-C5-3x-c

MI HSCEs Science - Chemistry

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3c Predict the extent reactants are converted to products using the value of the equilibrium constant.

^{18.} Calculate the concentration of NO (g) in the following equilibrium

 $N_2(g) + O_2(g) \rightleftharpoons 2 \text{ NO } (g)$ if at equilibrium the

 $[N_2 (g)] = 1.3 M$ $[O_2 (g)] = 0.9 M$ and the Keq of the equilibrium is 4.5

- (a) 5.3 M
- ✓ (b) 2.3 M
 - (c) 3.9 M
 - (d) 2.0 M

Explanation:

(a) [NO (g)] = 2.3 M

Standard:

MI_CHEM_HS-0912-C5-3x-c

MI HSCEs Science - Chemistry

- STANDARD C5: CHANGES IN MATTER
 - Topic C5.3x Equilibrium
 - C5.3c Predict the extent reactants are converted to products using the value of the equilibrium constant.