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Letter from the editors

Fair Use Notice: This publication contains or may contain copyrighted material, the use of which has 
not always been specifically authorized by the copyright owner. We are making such material available 
in our efforts to advance understanding of mathematics. We believe this constitutes a “fair use” of any 
such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with 
Title 17 U.S.C. Section 107, this publication is distributed without profit for research and educational 
purposes. If you wish to use copyrighted material from this publication for purposes of your own that 
go beyond “fair use”, you must obtain permission from the copyright owner.    

Hello Horace Mann!
Thanks for picking up a copy of Prime! We're so excited to 
share   some of the interesting mathematical ideas our writers 
have been thinking about. From pure math topics, like topology, 
non Euclidean geometry and number theory, to in-depth per-
spectives of math you might encounter on a competition or in 
your classes, such as the golden ratio, inequalities and the bra-
chistochrone, to applied math topics like the Fourier Transform, 
quantum computing, or even mathematical art, we have a ton of 
super cool topics and articles for this issue. We hope you'll enjoy 
the articles, challenge problems and more that we've put togeth-
er!
We’d like to thank several people who have helped us to create 
this issue: first, Dr. Delanty, Dr. Kelly, Dr. Levenstein and all of 
the administrative faculty and staff without whom this publica-
tion would have been impossible, and second, Mr. Worrall, our 
wonderful advisor. Finally, we’d like to thank every student who 
took the time to write or edit an article for this issue. You guys 
rock!
Sincerely,
Dora Woodruff and Mandy Liu
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The Brachistochrone Problem
By Zachary Brooks
	
	

Diagram 1

Is the path of shortest duration a straight 
line (red), a parabola (yellow), a circle 
(green), a cycloid (black), a polynomial 
(blue) or something else?

	 Today the math community is predicated on collaboration. However, in the 17th century that was hardly 
the case. A common practice at the time was for mathematicians to pose problems that only they knew the 
answer to, and intentionally leave out their solution in order to perplex the rest of the community while flex-
ing their own abilities. One problem that came out of this was the Brachistochrone (Greek for “shortest-time”) 
Problem, which was prompted by Johann Bernoulli in 1696. Unfortunately for him, several of his contempo-
raries, such as Newton and Jacob Bernoulli (Johann’s brother and rival), were able to crack the problem before 
Johann could claim victory and announce his own solution. Nonetheless, the question has become one of the 
most fascinating in the history of mathematics.  
	 The question was simple: given two points A and B of different elevations, what is the path that allows a 
rolling object to get from A to B in the shortest amount of time possible? “What a stupid question, it’s a straight 
line!” one might think. However, that turns out to be one of the worst possible answers. Because you want your 
rolling object to pick up the most speed possible, our path would clearly benefit from having curvature. The 
question is, what type of curve?

	 In order to get ot the bottom of this, let's take a look at a different yet related problem. Say you’re at the 
beach, and you see something you really want floating in the water (say, for the sake of example, it is the oppor-
tunity to replace the alma-mater with Digital Love by EMatt). What would be the path you can take to get from 
where you are to the floating object (whatever it may be) as fast as possible? Straight line? Wrong again! You can 
travel much faster on land than water, so you want to maximize how much time you spend on land versus water. 
So in order to get to the floating object as quickly as possible, at what angle from the beach should you approach 
the water at? The answer is dependant on something called Snell's Law, which states that the angle you should 
approach the shore at is equal to the expression sin(θ₁)/n₁=sin(θ₂)/n₂, where n₁ and n₂ represent the speed at 
which you can travel through that medium and your  represents the angle your path should make with the 
orthogonal, or “normal,” line to the barrier before and after you transfer mediums. (See diagram 2 on the next 
page.)
	 How does this relate to the brachistochrone? Well, as an object falls, it moves faster the further down it 
travels. This is analogous to moment where our person moves from the beach to the shore, however instead of 
happening once, this process continues infinitely, at every moment in time. This would produce a curve where, if 
a vertical line were drawn across the resulting curve, the sine of the angle to the right of the curve divided by the 
velocity of the rolling object would be equal to the angle the curve (or more precisely, the tangent to the curve) 
makes with the vertical to the left divided by the new velocity. This fact would have to hold true not just for one 
particular vertical line, but for any drawn through the curve. (See diagram 3 on the next page.)
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	 If we think of a falling object, the velocity of the object will always be proportional to the square-root of 
the distance fallen, more specifically √(2yg) (I am not going to go over why this is true, but if you want to see for 
yourself think about finding the velocity knowing that the ∆PE=∆KE). Essentially, what this means is that sinθ/√y 
(where θ represents the angle the curve makes with the vertical at any given instant) is constant throughout the 
curve. Lo and behold, this is the description of a CYCLOID! This is the curve generated when you trace a point as 
a circle rolls along a line. To be fair, this does seem somewhat arbitrary; there does not appear to be any obvious 
explanation as to why the cycloid has this particular property. There is, however, a nice geometric proof of why 
sinθ/√y is constant for cycloids.
	 In the diagram below, angle θ at BAC represents the “incident” angle that the vertical axis has with the 
curve at any given moment. Angles ABC and DEA are right, and DC is constructed so that is passes from the 
“rolling” point D on the circle to the other side of the circle creating a diameter (because line D is tangent to circle 
O, DE is perpendicular to the diameter). Knowing this allows us to do some angle chasing and find three other 
angles equal to θ. If we let the diameter constructed be some value D, than AD is equal to Dsinθ and AE is equal to 
Dsin^2(θ). Since AE is also our ∆y, we can do some algebra to find:
	 y = D * sin2(θ)
	 √y = √(D) * sin(θ)
	 1/√D = sin(θ)/√y
And because the diameter is constant throughout the circle, we know that sin(θ)/√y is always constant, which 
meets the requirement for our Snell’s law curve! This is a beautiful explanation to one of the all-time famous math 
problems. The shortest time it takes from an object to role from two points on earth is a cycloid, which although 
does not seem obvious, has its roots in some very clean geometry. Cycloids also have a greater significance beyond 
their practical application; they demonstrate that even the most allusive and esoteric results in math have their 
foundation in eloquent, logical thinking.

Diagram 2: Snell's Law in action! An object 
at point P takes the shortest possible path to 
point Q. Its path bends so that it spends more 
time in the medium it can travel fastest in. 

Diagram 3: The path of the object changes instantaneously 
every moment, with the change of slope dictated by Snell's 
Law. Using Snell's Law, we get that the sine of angle theta over 
the square root of the velocity is constant for every point on 
the curve. So, for what curve is this property true???
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2018: A Golden Year?
By Alexis Fry

	 φ = 1 + 1/(1+(1/(1+(1/(1+φ)... and we can 
continue to substitute φ for its value 1 + 1/φ forever! 
This is a recursive definition of a variable where it is 
defined in terms of itself. 

But the question still remains: what is the value of 
φ? Let's use the quadratic equation to figure this one 
out. 

Let's take phi = 1 + 1/φ and multiply both sides by 
phi so that φ^2 = φ + 1. (A brief tangent: when we 
take the square root of φ^2 = φ + 1, we get φ = √(1 
+ φ), and we can now uncover another recursive 
definition by substituting for φ!  
 
φ = sqrt(1 + sqrt(1+sqrt(1+sqrt(1+...

Anyways, let's go back to solving for φ. Return to the 
equation φ^2 = φ + 1 and rearrange to get φ^2-φ-1 
= 0. Now, we can use the quadratic formula to solve 
for phi, where a = 1, b = -1 and c = -1. Additionally, 
we can negate the result of a negative solution, since 
we are determining the distance represented by seg-
ments a and b as noted above (and all distances are 
nonnegative.) 

Using the quadratic formula, phi evaluates to (1 
+ √5)/2 which is equal to 1.618033988... and that 
number looks quite familiar! Another interesting 
circumstance of φ is when we revisit φ - 1 = 1/φ, we 
can solve for 1/φ in our heads! 1/φ = 0.618033988 
(the inverse of φ is really the decimal remaining 
once we subtract 1 from it!) 

The golden ration surrounds us, occuring in nature, 
art, architecture, the solar system and even DNA. 

For example, we know that φ = a/b = (a+b)/a, so let's 
create a rectangle where the ratio of the width to the 
height is the golden ratio. Then, separate out a 'b by 
b' square so that the remaining distance of the side is 
a-b (see Figure 1 on the next page for a visual of this 
process.) 

Wouldn't it be interesting if the b by a-b rectangle is 
also a golden ratio rectangle? Let's find the ratio of b 
to a-b. 
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Although 2018 wasn't a great year for our country, 
it was a great year for math geeks! 2018 was the only 
year in the 21st century when the shorthand nota-
tion for the date, month/day/year, matched the first 
four digits of the golden ratio - January 6th, 2018 or 
1/6/18. Most of you probably know that the value of 
the golden ratio, symbolized by the Greek letter phi 
(φ), is 1.618033988749895... or (1 + √5)/2. But, what 
exactly is the golden ratio, and how does one derive 
its value? Nothing other than simple algebra can 
be used to reveal φ's true identity and the beautiful 
phenomena within.
	 We can find the golden ratio when we divide 
a line into two segments such that the ratio of the 
length of the long segment to the length of the short 
segment is equal to the ratio of the length of the 
whole segment to the length of the long segment. In 
other words, given a line of length a + b, where 'a' 
is the long segment, we need to find the value for a 
and b such that the ratio of a to b is equal to the ratio 
of a + b to a. This idea is illustrated in the following 
diagram: 

When a and b satisfy the equation a/b = (a + b)/a, we 
have found the golden ratio for the line of length a + 
b. 

As noted above, the golden ratio is symbolized by 
the Greek letter φ, so φ = a/b = (a+b)/a. And now, 
let's do math! 
 
If: φ = a/b = (a + b)/a, then rewrite (a + b)/a as (a/a + 
b/a) which can be recast as 1 + 1/φ (since 1/φ = b/a). 
Now, φ = 1 + 1/φ. 

There are a few interesting properties given φ = 1 + 
1/φ. 
1. Let's take φ = 1 + 1/φ and subtract 1 from both 
sides, so when we subtract 1 from both sides of this 
we get the multiplicative inverse of φ, neat!
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Figure 1: an interesting 
property of golden ratio 
rectangles, and the Gold-
en Spiral

Right: the nautilus shell 
is an example of where 
we can find golden spi-
rals in nature!

	 Finding the ratio of b to a-b: 

b/(a-b) = 
1/((a-b)/b) =  		  (by rearranging)
1/((a/b)-1) = 		  (by expanding the fraction)
1/(φ-1) = 		  (since a/b = φ)
1/(1/φ) = 		  (since φ - 1 = 1/φ)
φ.			   (by rearranging)



Non-Euclidean Geometry
By Danielle Paulson

	 Non-Euclidean geometry begins with the 
proposal of Euclidean geometry by Euclid, a geome-
ter from Alexandria during the 3rd century BC. He 
declared five basic postulates:

	 1. A straight line segment can be drawn join-
ing any two given points. 

	 2. Any straight line segment can be extended 
indefinitely in a straight line. 

	 3. Given any straight line segment, a circle can 
be drawn having the segment as the radius and one 
endpoint as the center. 

	 4. All right angles are congruent. 

	 5. Given any straight line and a point not on 
it, there exists only one straight line which passes 
through that point and is parallel to the first line. 

Euclid’s fifth postulate became known as the par-
allel postulate, and although attempted by many 
mathematicians, cannot be proven as a theorem. In 
1823, Janos Bolyai and Nikolai Lobachevsky realized 
that “non-Euclidean” geometries could be created 
in which the parallel postulate does not hold. If the 
phrase “exists only one straight line” of the fifth pos-
tulate is replaced by “exists no line” or “exists at least 
two lines,” the postulate describes two other types of 
geometries known as spherical and hyperbolic geom-
etries, respectively. In this case, we’re going to focus 
on spherical geometry. 
	 Spherical geometry refers to the study of 
figures on the surface of a sphere. The equivalent of a 
line in spherical geometry is not defined in the sense 
of a “straight line” as in Euclidean geometry, but rath-
er in the sense of the shortest distance between two 
points, which is along the arc of a great circle. A great 
circle is a circle on the surface of a sphere that lies in 
a plane passing through the sphere’s center. Thus, a 
great circle is the largest possible circle that can be 
drawn around a sphere. Because all lines are great 
circles, any two lines will always meet at two points, 
suggesting that parallel lines don’t exist in spherical 
geometry. This explains why Euclid’s fifth postulate 
doesn’t hold true in spherical geometry. 

	 Spherical geometry refers to the study of figures 
on the surface of a sphere. The equivalent of a line in 
spherical geometry is not defined in the sense of a 
“straight line” as in Euclidean geometry, but rather in 
the sense of the shortest distance between two points, 
which is along the arc of a great circle. A great circle 
is a circle on the surface of a sphere that lies in a plane 
passing through the sphere’s center. Thus, a great circle 
is the largest possible circle that can be drawn around a 
sphere. Because all lines are great circles, any two lines 
will always meet at two points, suggesting that parallel 
lines don’t exist in spherical geometry. This explains 
why Euclid’s fifth postulate doesn’t hold true in spheri-
cal geometry. 
	 A spherical triangle is a triangle that is mapped 
onto a sphere and bound by three great circles. The 
angles of a planar triangle sum to 180°; however, the 
angles of a spherical triangle have a sum that is greater 
than 180° and less than 540°. Consider figure 1 with a 
spherical triangle on the surface of the Earth.
Figure 1
To trace the sides of the triangle, you would start at the 
north pole at P, travel south to the equator at A, turn 
90°, travel a quarter of the way around the equator to 
B, turn 90°, and travel back to the north pole at P. The 
sum of the three angles in this spherical triangle is 
270°! 
	 The minimum measure of angle APB is ever so 
slightly greater than 0°. 
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	 Now that we have all of the basic ideas for Girard’s theorem, consider a sphere of radius r with a surface 
area of 4πr². If two great circles meet at a lunar angle of θ where 0<θ<2, the proportion of the surface of the 
sphere occupied by the lune is θ/(2π). Thus, we have that the

Area of a lune with a lunar angle of θ = (θ/(2π))*(4πr2) = 2r2θ

	 Three intersecting great circles give us three antipodal pairs of lunes all overlapping at triangle ABC. In 
figure (a), the original pair of lunes is shown with a lunar angle at B. Figure (b) shows the second pair of lunes 
with a lunar angle at C. Finally, figure (c) shows the third pair of lunes with a lunar angle at A. Let LA, LB and LC 
represent the areas of the lunes formed by angles A, B, and C respectively. Recall that each of these three lunes has 
its own antipodal duplicate. Let Trepresent the area of triangle ABC, which also has its own antipodal duplicate. 
	 (Article continued on page 21)

	 In this case, the sum of the three angles of spherical triangle APB would be slightly greater than 180°. The 
maximum measure of angle APB is ever so slightly less than 360°. In this case, the sum of the three angles would 
be slightly less than 540°. Thus, the sum of the three angles of a spherical triangle must be greater than 180° and 
less than 540°. Spherical excess refers to the difference between the sum of the angles A, B, and P and 180°. In 
other words, it determines how much the sum of the angles deviates from 180°. Since the sum of the angles must 
be greater than 180° and less than 540°, the spherical excess must be greater than 0° and less than 360°. The equa-
tion for spherical excess represented by E is shown below. 
						      E = A + B + P -180	
	 Girard’s theorem describes the area of a spherical triangle drawn on the surface of a sphere of radius r 
and having angles A, B, and C. First, it is important to establish how a spherical triangle relates to ‘lunes.’ Two 
great circles intersect at two points on the surface of a sphere. These points are antipodal, and they form a cres-
cent shape on the surface of the sphere called a lune. A lune stretches exactly halfway around the sphere, from 
one pole to another (not necessarily the North and South poles). A third great circle will cut this lune into two 
spherical triangles. Notice that in the figure at (a), spherical triangle ABC is formed by the great circles QAB, 
through A and B, QCB, through C and B, and QAC, through A and C. The figure at (b) shows the great circle 
QAC cutting the line formed by the great circles QAB and QCB into two spherical triangles depicted in red and 
blue. The figure at (c) shows a second pair of these spherical triangles on the ‘back’ of the sphere. These spherical 
triangles are congruent to the first pair and located antipodally. 
	 (See the diagram below)
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Intro to the Fourier Transform
By Mandy Liu
	

	

	 Almost everything can be described by means of a waveform–a variable that fluctuates with time. 
And all waveforms are actually just the sum of sinusoids, or sine waves, of various frequencies. 
The Fourier Transform, named after the French mathematician and physicist Joseph Fourier, breaks down a 
waveform into sinusoids. In order to understand that a little bit better, here’s a metaphor: 
“What does the Fourier Transform do? Given a smoothie, it finds the recipe.”
“How?” 
“Run the smoothie through filters to extract each ingredient.”
“Why?” 
“Recipes are easier to analyze, compare, and modify than the smoothie itself.”
“How do we get the smoothie back?” 
“Blend the ingredients.” 
The fundamental idea of the Fourier Transform is that adding up different sinusoids gives you functions  that 
look very different - for example, we know what sin(x) and sin(2x) look like, but what if you added them to-
gether? (Try adding the functions on Desmos.) And, given only a graph like that, is there a way to decomose 
it and figure out what the original pure sinusoids were?

The first equation is the Fourier Transform. The yellow arrow shows that the first equation turns a function 
of time (t) into a function of frequency (v). And, the blue arrow in the second equation shows the vice versa. 

The Fourier transform changes the information in the time domain f(t) into information in the frequency 
domain f(v). The data in the two domains look different, but they both represent the same information. The 
Fourier transform also expresses your output or function in the frequency domain using cosines and sines. 
Sinusoids are described by their amplitude, frequency and phase. These three basic parameters are every-
thing we need to know in order to describe the signal. We can plot the amplitude and phase at every frequen-
cy and that would be the frequency domain representation of the signal. Sinusoids are great because they are 
the only waveform that doesn’t change shape, which is a property that makes sinusoids easier to work with. 

	 Here is an example of a problem that can be solved with these ideas. Let's take a look at this rectangu-
lar pulse, X(t): 

	
First, come up with a piecewise linear function that represents X(t). Put your answer into the equations given 
above for the Fourier Transform; if you know a bit of calculus, try solving the integral to see what you get! 
Your answer will represent the composition of sinusoids that, when combined, give back the original func-
tion. 

(Assume that this function 
continues infinitely in both 
directions)
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Brouwer's Fixed Point Theorem
By Dora Woodruff
	
 	

In the diagram above, the red curve shows a possible path 
from point a to point b that does not have a point whose y 
coordinate does not change (represented by black points.) 
This diagram shows that the black points must form a con-
tinuous path, by the Jordan Curve Theorem

	 Brouwer’s Fixed Point Theorem is one of the 
most beautiful theorems in topology. Not only is 
it an interesting theorem in and of itself, but it can 
also be used in surprising ways to prove seemingly 
unrelated statements. The theorem itself essen-
tially says that if you have a continuous function 
that takes points from a disk (the inside of a circle, 
including the circle’s perimeter) to other points in 
the disk, that function always has to have a fixed 
point, that is, a point whose position does not 
change under the function. An example of such a 
function is one that takes every point in the disk 
and rotates it about the disk’s center by a fixed an-
gle; in this case, the fixed point is the center. (This 
theorem also applies to n-dimensional spheres as 
well as circles, but in this article, we will mostly just 
focus on circles.) There are many ways to interpret 
this theorem physically - for example, it means that 
if you shake a glass of water, then no matter how 
you shake it, there will always be at least one water 
molecule that ends up in exactly the same place as 
it started, because a water bottle is topologically 
the same as a sphere, and shaking it sends points in 
the water bottle to other points in the water bottle 
continuously, so there must be a fixed point. 
So, how do we prove this theorem? There are sever-
al proofs, but this article will cover two: one which 
uses an analytic approach and one which uses a 
rather surprising, combinatorial approach.

Proof 1:

	 Imagine that the disk is in the Cartesian 
plane, that is to say, every point on the disk has an 
x and y coordinate. We want to prove that there is 
a point in this disk whose x and y coordinates both 
stay the same when a continuous function f sends 
each point to another point of the disk. First, we 
will define another function, which we’ll call F, on 
the circle. This function will send points to two 
dimensional coordinates. If the original coordinates 
of point p are (x, y) and the coordinates under f be-
come (f(x), f(y)), then F(p) = (x-f(x), y-f(y)). Since f 
is a continuous function, Fmust be as well. We want 
to prove that there is a point whose output of F is 
(0,0).

	 Next, consider the point in the circle that, be-
fore f is applied, has the highest y coordinate (we will 
call this point a.) This point’s y coordinate cannot 
increase, so the x coordinate of F(a) must be posi-
tive. Similarly, if point bis the point that starts out 
with the lowest y coordinate, the x coordinate of F(b) 
must be negative. If you travel from ato balong any 
continuous path, since Fvaries continuously, by the 
intermediate value theorem, there must be a point c 
along that path such that the x coordinate of F(c) is 0. 
	 In fact, there must be a continuous path 
of such points (whose x coordinate of F is 0) that 
stretches from one side of the disk to the other (see 
the diagram below.) Because, if there was not such 
a path, then we could draw a curve (like the curve 
drawn in the diagram) that goes from point ato 
point bbut does not contain any of those points, and 
we proved above that every such curve must con-
tain one. (Very technically, for this step to work, we 
need to use the Jordan Curve Theorem here. This 
theorem says that a closed ‘Jordan’ curve, which is a 
non-intersecting continuous closed loop in the plane, 
divides the plane into an exterior and an interior, 
such that any path from an exterior point to an in-
terior point intersects the Jordan curve somewhere. 
Although this theorem seems really intuitive and 
obvious, it is actually very difficult to prove formally 
and requires a lot of heavy machinery, so we won’t 
prove it here.)



Above: one possible coloring of a triangulation that 
matches all of our requirements!

	 Now, consider the endpoints of this path. 
We’ll call them cand d. WLOG, the y coordinate of 
F(c)is greater than or equal to the y coordinate of 
F(d).So, again by the intermediate value theorem 
and the reasoning above, there is a path of points 
‘separating’ cand d whose y coordinates F are 0. 
These two paths, of points whose x coordinates are 0 
and whose y coordinates are 0, must intersect some-
where since they are both continuous. This point 
of intersection is the fixed point we are looking for; 
since both its x and y coordinates of Fare 0, there 
is no difference between its starting location and 
its final location under f. (This proof as it’s written 
only works for two-dimensional circles, but it can 
be extended to higher dimensions. This is left as an 
exercise for the reader!)
	 Something interesting about this proof is 
that it is similar to a different, seemingly unrelated 
math problem, called the Hex Problem. Hex is a 
game, played on a board made of tessellating hexa-
gons (usually arranged in an 11 by 11 rhombus), 
with two players: one who colors hexagons red, and 
one who marks hexagons blue. The red (or blue) 
player wins when there is a connected path of red 
(or blue) hexagons from one side of the rhombus to 
an opposite side. The Hex Problem is to prove that if 
every hexagon is filled in, the game cannot possibly 
end in a tie. It turns out that the Hex Theorem is 
logically equivalent to Brouwer’s Fixed Point Theo-
rem (although we won’t prove this.) 
There is an interesting, informal way to see why the 
Hex Problem should be true: once the game has 
been played, cut out all the blue hexagons. Either the 
left edge of the rhombus and the right edge of the 
rhombus fall apart from each other or they do not. 
If they do not, there must be a path of red hexagons 
connecting them - in which case, red has won. If 
they do, then there must be a path of blue hexagons 
from the top to the bottom of the rhombus that sep-
arated the two edges, in which case blue wins. Either 
way, it is never a tie.

	 Proof 2

	 The second proof uses a surprising lemma. 
First, say you have triangulated a triangle. Now, 
we’re going to use three colors to color the points in 
a specific way: the three vertices of the triangle are 
all colored differently, and then any points on the 
segment between one vertex and another vertex are 
colored either with the color of the first vertex or the 
second vertex.

	 The points on the inside of the triangulation 
can be any of these three colors. The lemma then 
says that there must be a triangle in the triangula-
tion whose vertices are also three different colors 
(see the diagram below.) Proving this lemma is not 
too hard; if you want to try proving it yourself, try 
proving that there must be an odd number of such 
triangles in the triangulation, rather than proving 
that there are not 0, and use the fact that on each 
edge of the triangle, there is an odd number of seg-
ments whose vertices are colored differently (can 
you see why?) 

	
	 This lemma might seem completely unrelat-
ed to Brouwer’s Fixed Point Theorem, but it is actu-
ally quite simple to complete the proof from here. 
First of all, it doesn’t matter whether we prove the 
theorem for a triangle or for a circle since triangles 
and circles are topologically the same. Now, we’re 
going to use 3D geometry. If we consider the plane 
x+y+z=1, if x, y and z are all positive, this equation 
gives an equilateral triangle (see the diagram be-
low.) We will consider a continuous function from 
the triangle to itself, and also triangulate the trian-
gle in some random way. Now, we want to ‘color’ 
all the points in the triangulation in a certain way, 
using the function. Let’s say we have a point in the 
triangle whose coordinates are (a, b, c) and whose 
coordinates under the function are (f(a), f(b), f(c)). 
Since a+b+c=1=f(a)+f(b)+f(c)(since both the point 
and its image are in the plane x+y+z=1), which 
means that either a<f(a), b<f(b) or c<f(c)(unless 
they are all equal, in which case, there is definitely a 
fixed point.) 	
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Above: if you look at only the positive x, positive y, positive z 'quadrant' of 3D space, the equation x + y + 
z = 1 looks like an equilateral triangle, intersecting the axes at (0, 0, 1), (1, 0, 0) and (0, 1, 0). The image to 

the right shows what the plane x + y + z = 1 looks like in only that quadrant, the image on the left shows the 
plane as a whole (where the three yellow axes in the middle of the cube are the x, y and z axes.)

 

	 So, if the first time a coordinate is less than or equal to its image is the first coordinate, we’ll ‘color’ 
that point with a 1 (if the first time is with the second or third coordinate, the point is colored with a 2 or 
3.) For example, if the point (0.1, 0.3, 0.6)is sent to (0.05, 0.2, 0.75), 0.1>0.05 and 0.3>0.2,so the first time 
that a coordinate is less than its image is the third coordinate, 0.6. Thus, this point would be colored with 
a 3. 

	 This coloring satisfies the requirements for 
the lemma - that the three vertices of the triangle 
are colored with 1, 2 and 3, and that points on the 
segment between one of the triangle’s vertices and 
another vertex are colored with one of those two 
vertices’ colors (can you see why this is true?) So, 
there must be a triangle in the triangulation whose 
vertices are all colored differently. Now comes the 
odd step: you take this triangle, triangulate it again, 
and get another smaller triangle whose vertices are 
colored differently (there must be one - can you see 
why?) Continue this process infinitely many times. 
The area of the triangle continues to get smaller, 
converging to one point (again, to prove this state-
ment more formally, you have to use a couple of 
techniques outside the scope of this article, but it 
intuitively it makes sense). The point at which the 
three differently colored vertices of these triangles 
converge at therefore must exist. I claim that this 
point is, in fact, our fixed point: according to the 
way we colored the points in the triangle, the x, y 
and z coordinates are all less than or equal to the 
coordinates of the point this point is sent to. 

	 None of the first coordinates can be less 
than the second coordinates, , because if that were 
true, then the sum of the first coordinates would 
not equal the sum of the second coordinates, and 
both of the sums should be 1 since the plane the 
triangle is in is x + y + z = 1. Therefore, the coor-
dinates of the point and the point’s image are the 
exact same, which is the definition of a fixed point. 
		  Brouwer’s Fixed Point Theorem is 
a very important, well-known theorem in topolo-
gy, and it can be used to prove many other results 
(such as Borsuk Ulam and the Ham Sandwich 
Lemma - articles explaining these two theorems, 
which are just as beautiful as Brouwer's Fixed Point 
Theorem, will be in the next issue, to keep an eye 
out for them!) Brouwer's Fixed Point Theorem is 
even used in economics and game theory, to prove 
theorems about the Nash Equilibrium. It also has 
many other proofs - to read through some of them, 
look up the citations listed in the citations section 
on page 22. All in all, it is a fascinating theorem, 
with many beautiful proofs and surprising, useful 
applications. 

﻿ 1 3



Cool Graphs!
By Henry Bloom

	

Left: the graph of a 
heart on Desmos

	 To be blunt, I think that graphing is really cool. There are just so many possibilities and many of 
them create interesting shapes, which can be intriguing to people who love geometry, algebra, or both. Some 
graphs are quite simple, such as y=x, y=x^2, and y=x^3, shown below.

Some graphs, however, are much more interesting. Using trigonometry is a strong tool in creating these graphs 
as it brings many different functions that can alter our graphs’ forms. Particularly, sine and cosine are used in 
many of these graphs, and the graphs which utilize them are very cool. Desmos, a website which is based on 
graphing, has many neat graphs on their website, (found on https://www.desmos.com/calculator/h68atkr5ic) 
and I will showcase a few of them. 
As hearts are quite similar in shape to circles, the formula for a heart that is used in Desmos is similar to the 
formula for a circle, (x-h)2+(y-k)2=r2. The formula they use is x2+(y-3√(x)2)2 = a. The y-intercepts of the heart 
will be equivalent to ±√a. For example, when a = 4, the graph looks like this:
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	 Another graph Desmos showcases, called “The Leaf,” uses sine and cosine to graph multiple shapes 
which come together into a shape that looks like a leaf:

	 The only difference between each shape is that 
they are multiplied by different powers of sin(t/2), 
which changes the way that they curve.
	 The next graph Desmos shows off is one they 
call “Sinusoidal-Function-Seption,” which shows a 
bunch of oval-like shapes formed by lines which con-
sistently go up and down at differing heights. The equa-
tion takes the form sin(ax)cos(bx)=y, where a controls 
the frequency of the ovals and b controls the frequen-
cy of the lines which create the ovals. When a=1 and 
b=25, the graph looks like this:

		  There are a few other graphs Desmos shows here, but I am going to move on to a few cool 
curves which we can look at. While most people know what a circle, oval, and parabola are, there are many 
other curves, some of which can be quite interesting to graph. 
	 First, a curve called “The Devil’s Curve,” (which isn’t a fluid curve), expressed by the equation y⁴-
x⁴+ay²+bx² = 0, creates an unusual graph. Simply watching the graph change when the values for a and b 
change is very interesting. When a=-100 and b=97, the graph looks like this: (graph on the next page)

﻿ 1 5



P R I M E1 6

Left: The Devil's Curve. Right: one of Dürer’s Shell Curves
	

Mustang, by Jus-
tin Gauthier (155 
lines of equations)

	 Another curve, called Dürer’s Shell Curves, expressed (x²+xy+ax-b²)²=(b²-x²)(x-y+a)², forms a 
very cool graph that changes a lot when the values for a and b change. When a=0.5 and b=7.5, the graph 
looks like the image above. There are many more curves, many of which are included on a list found here, 
on http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html; however, I will not be looking at 
any more curves and will not return to Desmos to look at a few more cool graphs. Desmos has a list of 
interesting graphs which showcase mathematical ideas, (https://www.desmos.com/math), which I rec-
ommend looking at, however I will showcase the Desmos list of creative art people have graphed (https://
www.desmos.com/art). This art is incredible, as people have managed to create recognizable forms that 
are constructed by graphs that the artists needed to fit together perfectly. It is incredibly to look at some 
of these and realize that the artists needed to find the exact numbers to input as coefficients and for other 
values in their graphs, and the ability they had to figure out what graphs they needed to use to create their 
forms. I will include a few of these and mention how many separate equations, variables, or other lines in 
Desmos were necessary to create the images:
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Graphing Poster, 
by Coffee Tiramisu 
(215 lines of equa-
tions)

Snow Globe, by Lisa Wer-
mers (1285 lines of equa-
tions)

		
	 To conclude, while there are many people who think graphing is just a simple, boring tool in science and 
math, it is an incredibly complex topic with endless possibilities for artistic purposes and just as an interesting topic.



Quantum Computing
By Ashley Dai

	 From graphing calculators to smartphones to 
computers calculating rocket trajectories at NASA, 
all classical computing systems use pieces of data 
called ‘bits’. These bits exist as either 0s or 1s- up or 
down, on or off, true or false- stored in transistors 
using electrical currents; when current flows through 
the transistor, the transistor stores a ‘1’ bit. Classical 
computers take a string of bits and break up compli-
cated algorithms into simple logical operations- AND, 
OR, NOT- to arrive at a final answer. These operations, 
called logic gates, are combinations of smaller gates 
known as transistors. A transistor can either block 
or pass information by closing or opening a circuit 
to allow for electron flow. In the past 50 years, the 
size of transistors has decreased exponentially, now 
approaching the size of atoms. This advancement has 
allowed us to build smaller computer chips with more 
transistors. But when transistors become too small, 
they become effectively useless, as electrons can simply 
flow through the transistor through a process called 
quantum tunnelling.
	 Quantum computing uses the principles 
of quantum mechanics to circumvent this issue. A 
branch of physics, quantum mechanics studies the 
nature of atoms and subatomic particles, which exhibit 
properties such as wave-particle duality that cannot be 
explained by classical Newtonian physics. Quantum 
computers use the concept of superposition to store 
data in qubits (“CUE-bits”). Unlike traditional bits, 
qubits behave like spinning coins. They can be repre-
sented as two-dimensional complex vectors, denoted 
by |Φ> = a |0> + b |1> with |0> and |1> as base vectors 
and a and b as complex scalars such that |a|²+|b|²=1. 
While being ‘spun’ in isolation in the computer’s 
memory, qubits can exist in an infinite number of spin 
directions at the same time and its value cannot be 
determined. A system of 6 classical bits can be in only 
one of 2⁶ possible combinations. In a system of 6 qu-
bits, these 2⁶ possible states exist at the same time. The 
state space of a quantum computer, which represents 
all of its possible states, is denoted by the tensor 
product (⊗) of the individual qubits. The number of 
possible states increases exponentially; a system of 20 
qubits can be in 2^20, or 1,048,576 states simultane-
ously. When the computer measures the value of the 
qubit, however, the qubit collapses into either ‘heads’ 
or ‘tails’- 0 or 1- and the system collapses into one of 
its possible states. 

	 In multi-qubit systems, the quantum theory 
of entanglement dictates that entangled qubits will 
behave in perfect correlation even if separated by long 
distances. In measuring the properties of one entan-
gled qubit, the properties of the other entangled qubits 
can be deduced as well. Qubits can be manipulated us-
ing quantum gates, which can both change the super-
position of and entangle qubits. After passing through 
a series of quantum gates, qubits can be measured and 
the value of the system determined.
	 Since the steps of a quantum computer can-
not be checked, can its result be verified by a classical 
computer? With problems such as the factoring of a 
large number, the result of a quantum computation 
can be checked simply by passing it through a classical 
computer. Solutions to other problems, however, are 
more difficult to verify. More importantly, how can we 
know if a quantum computer has done anything quan-
tum at all? For years, quantum computing scientists 
had struggled with this challenge, known as quantum 
verification. Several relaxations of the problem showed 
that verification was possible with two quantum 
computers; one model allowed a classical computer 
to work with a smaller quantum computer to verify 
a general quantum computer, while another gave the 
verifying classical computer access to two quantum 
computers solving the same problem. 
	 No one was able to solve the problem using the 
original model until 2017, when a graduate student 
at UC Berkeley named Urmila Mahadev developed 
a verification protocol based on post-quantum cryp-
tography requiring just one quantum computer. In 
her model, the classical computer uses two-to-one 
trapdoor claw-free functions to control the computa-
tions of the quantum computer. The trapdoor allows 
the system, given y, to output x0 and x1 such that f(x₀) 
= f(x₁) = y, while claw-free refers to the quality of the 
function that, without a cryptographic key, makes it 
difficult to find a claw (x₀, x₁) such that f(x₀) = f(x₁). 
The classical computer in Mahadev’s model first builds 
a cryptographic key for the function, then asks the 
quantum computer to create a superposition of all 
possible inputs for the function. The quantum com-
puter then must apply the function to the superpo-
sition, creating two entangled superpositions: one of 
the inputs and one of the outputs. When the quantum 
computer measures the output state, the system will 
collapse into one possible output and a superposition,
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		 creating two entangled superpositions: one of 
the inputs and one of the outputs. When the quantum 
computer measures the output state, the system will 
collapse into one possible output and a superposition 
of its two corresponding inputs. Since the classical 
computer has the key to find the claw, it can find the 
two components of the superposition. For the quan-
tum computer, though, this task proves much more 
difficult. Measuring the superposition of inputs will 
collapse the values, making it impossible to find the 
claw; this leaves the quantum computer with no way 
to find the original inputs but creating a secret state, 
then entangling it with the input superposition to de-
termine what it should do next. In doing so, the quan-
tum computer is assured have gone through quantum 

	 In classical computing, the runtime of an algo-
rithm increases exponentially with the number of bits 
inputted. For all their computational power, problems 
such as finding prime factors of a 2048 bit number or 
large-scale optimization (think “travelling salesman” 
- a popular math problem in which a travelling sales-
man’s route through multiple towns must be optimized 
such that his path is as short as possible) would take a 
classical computer billions of years to solve. Quantum 
algorithms can decrease computing time by exponen-
tial factors because of their ability to calculate multiple 
outcomes at once. Grover’s algorithm, which searches 
unorganized lists and databases, speeds up the process 
by a quadratic factor. For a classical computer, the com-
plexity of searching through a database is N, the num-
ber of elements in the database. Using Grover’s algo-
rithm, the complexity (and therefore computing time) 
decreases to √N. The algorithm does so using ampli-
tude amplification, a process in which the amplitude of 
the qubit associated with a specific item is first flipped, 
then amplified. In searching through the database, the 
item will be returned with much higher probability. 

	 For now, quantum computers certainly 
cannot replace classical computers, and the myth 
of “quantum supremacy” is just a myth. Quantum 
researchers have found that many quantum algo-
rithms, especially those not involving entanglement 
or entangling only a certain number of qubits, can 
be simulated using mathematical techniques on a 
classical computer. In fact, when a team at Google 
challenged classical techniques using a form of 
computation called instantaneous quantum poly-
nomial (IQP) circuits, they found that to account 
for error correction in the circuit and to match 
the computing power of a classical system, they 
would need more gates and hundreds more qubits. 
Designing quantum algorithms can also be chal-
lenging, as quantum computers cannot measure the 
superpositions of qubits, only 0s and 1s. 

This issue can be resolved only by combining series 
of quantum gates such that the final position of the 
qubits will closely relate to a measurable value. To 
expand the capacities of quantum chips, scientists 
are researching ways to not only entangle more qu-
bits, but manage the way qubits interact with each 
other and with quantum gates
	 Because of their ability to simulate quan-
tum systems, quantum computing scientists hope 
that future systems may be able to assist in medical 
and chemical research by mimicking the process of 
chemical bonding and the folding of large proteins. 
The efficiency of quantum computers could also 
allow for developments in machine learning, which 
requires computers to sort through datasets. A 
commercial quantum computer used for financial 
modeling is already on the market, and three quan-
tum computers are available for public use through 
the cloud. A world where classical and quantum 
computers work side by side is already here.
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Three Proofs That There Are Infinitely Many Prime Numbers
By Rohan Buluswar

	 The existence of infinitely many primes is 
often one of the first proofs introduced in a number 
theory course, a theorem with one of the most an-
cient rigorous proofs that we know of, and a great 
example of how to use proof by contradiction. Here 
are three proofs of the theorem:

	 Euclid’s Proof: 

Euclid was a Greek mathematician, born ca. 300 BCE 
in Alexandria, Egypt. While he was most famous for 
his developments in the field of geometry, he also 
devised this clever little proof that there are infinite 
prime numbers. This is the first known proof of in-
finite primes.

Proof: 

Suppose there is a finite number of primes, and let 
the set of those primes be P.

P = {p₁, p₂, p₃, p₄, p₅, p₆...p_n}

Then we multiply all of our prime numbers together 
and add 1, getting another number, A:

(p₁ * p₂ * p₃ * p₄ * p₅ * p₆ … * p_n) + 1 = A

Either A is a prime number or it is not a prime num-
ber. If A is a prime number, then we are done. If A 
is not a prime number, then it must be divisible by 
another prime number. However, A cannot be divisi-
ble by any prime number already listed, because there 
would be a remainder of 1. In other words, if A is not 
a prime number then it must be divisible by anoth-
er new prime number pa. Either way, given a finite 
number of primes, we can create a new prime. So if 
this process was repeated over and over, the result is 
infinite primes.

  Filip Saidak’s Proof:

Dr. Filip Saidak is a professor of mathematics at Uni-
versity of North Carolina at Greensboro.

Here is Filip Saidak’s proof: 
	 (continued at the top of the page)

	 Let n be an arbitrary positive integer greater 
than 1. Since n and n + 1 are consecutive integers, 
they must be coprime. Hence the number N2 = n(n 
+ 1) must have at least two different prime factors. 
Similarly, since the integers n(n+1) and n(n+1)+1 
are consecutive, and therefore coprime, the number 
N₃= n(n + 1)[n(n + 1) + 1] must have at least three 
different prime factors. This process can be contin-
ued indefinitely, so the number of primes must be 
infinite.
His argument that n(n+1) has two distinct prime 
factors relies on the fact that n and n+1 are coprime. 
All numbers have at least one prime factor. And 
since n and n+1 are coprime, and thus their GCF is 
one, their prime factors must be different. So when 
you multiply them you get a product with at least 
two distinct prime factors. When you repeat that 
process over and over, you keep getting numbers 
with more and more distinct prime factors. And 
since you can repeat that process over and over, there 
must be infinite prime numbers.

	 Kummer’s Restatement 
	 of Euclid’s Proof

Ernst Eduard Kummer was a German mathemati-
cian who was born on January 29, 1810.

Proof: 

Let there be a finite list of all primes: 
p₁, p₂, p₃, p₄, p₅, p₆...p_n 

Let N = (p₁ * p₂ * p₃ * p₄ * p₅ * p₆ … * p_n) + 1

Thus N-1 is a product of all of those prime numbers. 
All integers must have at least one prime factor, let 
one prime factor of N be pi. Since all of the prime 
numbers are a factor of N-1, pi must 
also be a factor of N-1. If pi is a factor of both N and 
N-1, then it must be a factor of N - (N-1), which 
is equal to 1. So pi must be a factor of one, which 
is impossible because 1 has no prime factors. Thus 
given our original premise we have reached a contra-
diction, and so our original assumption that there is 
a finite list of prime numbers is false: there must be 
infinite primes!
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Algebraic Inequalities 
By Ryan Rosenthal

	 Spherical Geometry by Danielle Paulson, continued from 
page 9.

	 An algebraic innequality is simply an equation where the relationship between the two or more sides 
isn’t equality. The sides can either be less than, greater than, or less than or greater than and equal to each other 
(signified by these symbols respectively: <,>,≤, and ≥). Some exapmles of innequalities are 4 < 5 and 3 ≤ x ≤ 
8. The first of these symbolizes the fact that 4 is less than 5. The second of these symbolizes a range in which x 
is contained; x represents a single value between 3 and 8. Solving an innequality is very similar to solving an 
equation, no matter how many expressions the innequality contains: Whatever you do to one side must be done 
to all others. The only difference is, whenever you multiply or divide an innequality by a negative, you have 
to reverse all of the signs. For example, if you divide -2x < 6 by -2, it becomes x > -3, not x < -3. A compound 
innequality is the combination of two or more innequalities joined by “and” or “or.” If they are joined by an and, 
both conditions must be met. If they are joined by an or, only one condition may be met. For example, x > -1 
and x < 4 states that x is between -1 and 4. x < -1 or x > 4 states that x is either less than -1 or greater than 4. An 
“and” compound innequality provides the same conditions as an innequality in three pieces: x > -1 and x < 4 is 
the same as -1 < x < 4. Solving a quadratic innequality is a little more complex. It begins like any other quadratic 
equation, by simply factoring out the equation. For an example, lets use x^2 + 2x + 8 > 0. By factoring, we find 
that (x + 4)(x - 2) > 0. Therefore, our roots are -4 and 2. We can draw a number line, and place open circles on 
-4 and 2 to signify those as our key values. Next, we pick any number less than -4, for example, -8. By plugging 
-8 back into the expression, we get 40. Since 40 > 0, we know that -8 is a potential value for x. Thus, everything 
less than -4 is a potential value for x. We can do the same thing for the range from -4 to 2 and for numbers 
greater than 2. We will find that the numbers are negative and positive respectively. So, our final answer is x < -4 
or x > 2. This will work for any number of intervals, with and degree of innequality (cubic, quartic, etc.). In the 
end, the positivity and negativity of the ranges on the number line will always alternate; once we find one, we 
know the rest.

	 When you add up the pairs of lunar areas, you get the surface area of the sphere with T counted 
three times and its antipodal duplicate counted three times as well. So, we have:

2LA + 2LB + 2LC = 4πr2 + 4T
→

T = 1/2(LA + LB + LC - 2πr2)
→

T = 1/2(A(2r2) + B(2r2) + C(2r2) - 2πr2)
→

T = r2(A + B + C - π)

... which is Girard's Theorem!
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Math Book Recommendations!

Citations
The Brachistochrone Problem:
“Historical Activities for Calculus - Module 3: Optimization – Galileo and the Brachistochrone Problem.” Iterative Methods for Solving 
Ax = b - Gauss-Seidel Method | Mathematical Association of America, www.maa.org/press/periodicals/convergence/historical-activi-
ties-for-calculus-module-3-optimization-galileo-and-the-brachistochrone-problem.
“Mathonline.” Piecewise Smooth Curves in the Complex Plane - Mathonline, mathonline.wikidot.com/the-cycloid.

Brouwer's Fixed Point Theorem:
https://www.maths.ed.ac.uk/~v1ranick/jordan/tverberg.pdf
http://math.stmarys-ca.edu/wp-content/uploads/2017/07/Colin-Buxton.pdf
http://math.mit.edu/~fox/MAT307-lecture03.pdf
https://lmb.univ-fcomte.fr/IMG/pdf/A-_Prochazka_19-3-13.pdf

Quantum Computing:
https://quantumcomputingreport.com/our-take/how-to-explain-quantum-to-your-classical-friends/some-important-problems-can-nev-
er-be-solved-using-classical-computing/
https://www.codeproject.com/Articles/1182179/Quantum-Computing-for-Everyone-Part-I-Classical-vs
https://uwaterloo.ca/institute-for-quantum-computing/quantum-computing-101
https://www.youtube.com/watch?v=OWJCfOvochA
https://www.quantamagazine.org/quantum-computers-struggle-against-classical-algorithms-20180201/

Intro to the Fourier Transform
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
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College Geometry, by Nathan Altshiller Court (in re-print through Dover Publications)
“This is my favorite geometry book, a compendium of advanced Euclidean geometry discoveries that begins right at the 
boundaries of what we cover at Horace Mann in our geometry classes, and then travels through ridiculously surprising 
problems and properties, often with proofs whose elegance, cleverness, and aura of inevitability, will take your breath away.  
My first time through, I literally laughed out loud every few pages as I read through yet another golden geometric nugget.  
Admittedly, Altshiller-Court's style is old-fashioned, jargony, stilted and at time frustratingly brief, but once you get accli-
mated, you start to see that he's written a math book that brings to light what is most beautiful in the subject--and therefore 
what is beautiful about math itself.”
		  Submitted by Mr. Worrall

In order of increasing difficulty:
Flatland by Abbott, Taxicab Geometry by Krause, and anything from the MAA Proofs Without Words Series
Chaotic Elections by Saari (what I am reading now!)
		  Submitted by Mr. Garcia

Pristine Landscapes in Elementary Mathematics by Titu Andreescu, Cristinel Mortici and Marian Tetiva
“Each chapter (there is a total of 14 chapters) introduces an interesting, accessable topic (such as geometric series, the 
pigeonhole principle or digital sums) and then challenges the reader with a problem set (solutions are in the book.) My 
personal favorite chapter is the dot product chapter - the problem set includes many geometry problems, that can be solved 
in beautiful ways using either synthetic geometry or the dot product. It’s a lot of fun to see all the completely different ways 
the problems can be solved. Another great thing about the book is that it assumese very little prior knowledge, but gets to 
advanced topics very quickly; for example, there is a chapter dedicated to the greatest common divisor. It may seem basic at 
the beginning of the chapter, but then moves on to much more difficult, less widely known theorems and very challenging 
problems on the problem set.”
		  Submitted by Dora Woodruff (11)

Fermat's Enigma, and Prime Numbers and the Riemann Hypothesis.
		  Submitted by Zachary Brooks (11)



Challenge Problems!
Collected by Danielle Paulson, Dora Woodruff and Mandy Liu

1. After a meeting, everyone shook hands with everybody else. There were 66 handshakes in total. How 		
many people attended the meeting?

2. A unit square is divided into rectangles. The WL ratio is the ratio of a rectangle’s width to its length. Prove that 
the sum of all the WL ratios of these rectangles is greater than or equal to 1.

3. 11 girls and n boys went mushroom picking. At the end of the day, they collected n^2+9n-2 mushrooms, and 
each person found the same number of mushrooms. Were there more boys or girls?

4. Given an isosceles right triangle (with legs of length one), how do you construct the shortest line segment that 
divides the triangle into two sections of equal area? What is the length of that segment?

5. Prove that cos(sin(x)) is greater than sin(cos(x)).

6. In triangle ABC, M is the midpoint of AB, E is the centroid of AMC and O is the circumcenter of ABC. Prove 
that OE is perpendicular to MC if and only if AB=AC. 

7. How many four digit numbers n are there such that multiplying n by four and adding three reverses the digits of 
n? (For example, 17 is a two digit number such that 17 multiplied by 4 plus 3 is 71, which is the number you get by 

reversing the digits of 17.)

8. How many n digit numbers are there whose digits, when read left to right, do not ever decrease? (Find a formula 
in terms of n. 125569 is an example of such a number, but 125469 is not.)

9. a, b, c, d, e and f are real numbers. Prove that at least one of ac + bd, ec + fd, ge + hf, ga + hb, ae + bf and cg + hd 
is nonnegative. 

10. Four couples go to a party. How many ways are can each person shake hands with exactly one other person? 
How many ways can the people do this if they do not shake hands with their partner? 

11. H is the orthocenter of triangle ABC. Let O be the circle with diameter AH, and let M be the midpoint of BC. 
Choose two points P, Q on O such that P, Q and M are collinear. Prove that the orthocenter of triangle APQ is on 

the circumcircle of ABC. 
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Write for the next issue of Prime! Contact 
dora_woodruff@horacemann.org if you're      

interested in contributing.


