

2013 Bond Program Series 1, Bid Package #8

Athens High School and Troy High School MEP Upgrades

PROJECT MANUAL

Issued: September 29, 2015

SECTION 00010 PROJECT MANUAL TABLE OF CONTENTS

INTRODUCTOR	Y INFORMATION	ISSUE DATE
00001	Project Manual Cover (Cover Sheet)	September 29, 2015
00010	Table of Contents	September 29, 2015
00015	Listing of Documents	September 29, 2015
00030	Information and Identities	September 29, 2015
BIDDING REQU	IREMENTS	
00100	Advertisement to Bid	September 29, 2015
00200	Instructions to Bidders	September 29, 2015
00210	Description of Work/Special Provisions	September 29, 2015
00220	Work Scopes	September 29, 2015
	061000 – General Trades 075000 –Roofing	
	230000 – Mechanical	
	260000 – Electrical	
00230	Schedule and Phasing	September 29, 2015
00400	Bid Proposal Form	September 29, 2015
004100	Familial Relationship Enclosure Form/ Iran Economic Sanctions Act Certification	September 29, 2015
CONTRACTING	REQUIREMENTS	ISSUE DATE
00500	Agreement Form (Contract)	September 29, 2015
00810	On-Site Project Safety and Loss Control Program	September 29, 2015
00840	Hazardous Materials	September 29, 2015
00870	Labor Relations	September 29, 2015
00880	Regulatory Requirements	September 29, 2015
DIVISION 1 GE	NERAL REQUIREMENTS	
01140	Use of Premises	September 29, 2015
01250	Changes in the Work	September 29, 2015
01290	Payment Procedures	September 29, 2015
01310	Meetings	September 29, 2015
01320	Communications	September 29, 2015
01330	Submittals	September 29, 2015
01360	Coordination (General)	September 29, 2015
01370	Coordination Drawings	September 29, 2015
01400	Quality Requirements Testing and Inspection Services	September 29, 2015
01450 01500	Interim Life Safety Plan	September 29, 2015
01520	Temporary Construction	September 29, 2015 September 29, 2015
01530	Field Engineering and Layout	September 29, 2015
01540	Cutting and Patching	September 29, 2015
01550	Clean-up and Final Cleaning	September 29, 2015
01600	Forms	September 29, 2015
01630	Product Substitutions	September 29, 2015
01700	Contract Close-out	September 29, 2015
01720	Project Record Documents	September 29, 2015
01730	Operations and Maintenance Data	September 29, 2015
01740	Warrantees and Guarantees	September 29, 2015

01750 Systems Demonstration, Training and Start-up

September 29, 2015

OTHER DOCUMENTS ISSUED FOR BID PACKAGE NUMBER

- Division 0 Conditions of The Contract and Division 1 General Requirements are found in the Project Manual, included herein
- Project Manual issued by Barton Malow Company dated September 29, 2015
- TMP Associates Technical Specifications dated September 22, 2015
- TMP Associates Drawings dated September 22, 2015

SECTION 00015 Listing of Drawings

REFER TO PROJECT MANUAL BOOK 2: TECHNICAL SPECIFICATIONS ISSUED BY TMP ARCHITECTURE, ON PAGE LD-1 THRU LD-2.

SECTION 00030 PROJECT MANUAL INFORMATION AND IDENTITIES

This Project Manual has been prepared by CM and contains the Bidding and Contract Requirements for Troy School District - 2013 Bond Program - Series 1, Bid Package 8 Troy High School and Athens High School MEP Upgrades project in Troy, MI

PROJECT: Troy School District 2013 Bond Program

Series 1, Bid Package 8

Troy High School MEP Upgrades/Athens High School MEP

Upgrades

CONSTRUCTION MANAGER: Barton Malow Company (Direct all Questions to CM)

1140 Rankin Drive

Troy, MI 48083

Christa Amalio Phone: 586.295.1412

Email: Christa.Amalio@bartonmalow.com

OWNER: Troy School District

4400 Livernois Troy, MI 48098

ARCHITECT: TMP Architecture

> 1191 W. Square Lake Road Bloomfield Hills, MI 48302 Phone: (248) 338-4561

ROOFING CONSULTANT NTH Consultants, Ltd.

> 41780 Six Mile Road Northville, MI 48168 Phone (248) 324-5262

SECTION 00100 Advertisement to Bid

- Barton Malow Company requests Bid Proposals on behalf of Troy School District for the construction of the Series 1, Bid Package 8 Troy High School and Athens High School MEP Upgrades Remodeling. Bid Proposals will be received:
 - 1.1. By delivery or mail by 10:00AM local time on March 5, 2015.
 - 1.2. To the attention of:

Todd Hensley

Troy School District

4400 Livernois Rd.

Trov, MI 48098

2. Proposals must be sealed with Bidder's name on the outside of the envelope and designated as follows:

Sealed Proposal

Series 1, Bid Package 8
Troy High School and Athens High School MEP Upgrades

Bid Category: 061000 – General Trades 075000 – Roofing 230000 – Mechanical 260000 – Electrical

Contractor Name, Address, Phone Number

3. Proposals shall be based on the requirements set forth in the Bidding Documents:

Bid Category:

061000 – General Trades 075000 – Roofing 230000 – Mechanical 260000 – Electrical

- 4. Accepted Bidders will be required, as a condition precedent to award of Contract, to furnish, satisfactory Performance Bond and Payment Bond and Certificates of Insurance as required in the Project Manual
- 5. Unless otherwise specifically set forth, this Project is subject to state sales and/or use taxes and Bidder is required to include such taxes in its Bid Proposal.
- 6. Barton Malow Company has been contracted by the Owner in the capacity of CM for the Project, and shall act as representative of the Owner to the extent required/allowed under its Owner contract. Hereafter Barton Malow Company shall be referred to as the "CM".
- 7. Bid Proposals will be publicly opened by Troy School District, evaluated by CM, Owner and the Architect, with recommended awards subsequently made by Barton Malow Company. *The Owner shall not open, consider, or accept a Bid Proposal that is received after the date and time specified for bid submission in this Advertisement for Bids.*
- 8. Bidding Documents will be available for examination and distribution on or after September 29, 2015. Examination may be made at: CM's Office (1400 Rankin Drive Troy, MI 48083).

ISSUE DATE: September 29, 2015

- 9. Pre-bid meeting /walk-through will be held on Tuesday, October 6th at 1:00pm at Athens High School LGI room. Contractors can contact Christa.Amalio@bartonmalow.com for further information regarding the pre-bid.
- 10. Electronic documents are free of charge and are made available by emailing: Christa.Amalio@bartonmalow.com.
- 11. Bid Proposals shall be on forms furnished by CM. Bidders will be required to submit with their Bid Proposals a Bid Security by a qualified surety authorized to do business in the state where the Project is located. Bidders shall not withdraw Bid Proposals for a period of 90Days after date for receipt of Bid Proposals.
- 12. The successful Bidder(s) will be required to enter into an agreement with **Troy School District** on the Agreement Form identified in the Project Manual.
- 13. All Bid Proposals shall be accompanied by the following two forms found in Section 00410: Familial Disclosure Form (in accordance with MCL 380.1267) and an Iran Economic Sanctions Act Form (in compliance with Michigan Public Act No. 517 of 2012. Bid Proposals that do not include these two sworn and notarized forms shall not be accepted.

Barton Malow Company Christa Amalio Project Manager

SECTION 00200 INSTRUCTION TO BIDDERS

1. DEFINITIONS

- 1.1. Capitalized terms used in this Project Manual shall have the meanings set forth below. If a capitalized term is used herein but not defined in this Section, 00200, Part 1, it shall have the meaning set forth in the Contract Documents.
- 1.2. "Addenda" means the written and graphic instruments issued by the Architect and/or CM prior to the execution of the Agreement that modify or interpret the Bidding Documents by additions, deletions, clarifications, or corrections.
- 1.3. "**Agreement**" means the document defined in the Project Manual, including all other documents incorporated by reference in the Agreement.
- 1.4. "An Alternate Bid" (or "Alternate") is an amount stated in the Bid Proposal to be added to or deducted from the amount of the Base Bid if the corresponding change in the Work, as described in the Bidding Documents, is accepted.
- 1.5. "Architect" means the person or entity listed in section 00030 of the Project Manual and may include professional engineers if so designated.
- 1.6. "Base Bid" is the sum stated in the Bid Proposal for which the Bidder offers to perform the Work described in the Bidding Documents as the base, to which Work may be added to or deducted from for sums stated in Alternate Bids.
- 1.7. A "Bidder" is a person or legal entity that submits a Bid Proposal in conformance with the Bidding Documents. After award of the Agreement, the Bidder will be referred to as Contractor All Contractors on this project are considered prime/principal contractors.
- 1.8. "Bid Categories" are units of Work performed by a Contractor and its Subordinate Parties which form part of the total Project. The term "Bid Category" should not be confused with the term "Technical Section". Technical Sections of the Specification establish quality and performance criteria, and the Bid Categories designate work scope and assignment.
- 1.9. **"Bidding Documents"** means the Bidding Requirements, the Contract Documents, and the Reference Documents collectively.
- 1.10. A "Bid Package" means a series of Bid Categories that are released for bidding in the same set of Bidding Documents.
- 1.11. "Bidding Requirements" include the Advertisement to Bid, Instructions to Bidders, Information Available to Bidders, and Bid forms and supplements.
- 1.12. "Bid Proposal" is a complete and properly signed proposal to do the Work of an individual Bid Category(ies) for the sums stipulated therein, submitted in accordance with the Bidding Documents.
- 1.13. The "Contract Documents" consist of all Contracting Requirements set forth in the Project Manual, including, but not limited to, the Contract Forms (the Agreement, Performance/Payment Bonds, and Certificates), the Conditions of the Contract (General, Supplementary or Special), the General Requirements of the Project Manual, the Technical Specifications, Drawings, and all other documents incorporated into the Agreement by reference, all Addenda issued prior to and all modifications issued after execution of the Agreement.
- 1.14. "Contractor" means the entity to which the Owner issues a contract for performance of the Work.
- 1.15. "Day" means calendar day, unless otherwise defined in the particular Contract Document.
- 1.16. "Hazard Communications Program" means Contractor's own hazard communications program that will govern project safety for its Work. The Hazard Communications Program must be submitted to CM by each successful Bidder before commencing Work and be no less stringent than Section 00810 On Site Safety and Loss Control Program.

- 1.17. "Hazardous Materials" means asbestos; asbestos containing material; lead (including lead-based paint); PCB; molds; any other chemical, material, or substance subject to regulation as a hazardous material, hazardous substance, toxic substance, or otherwise, under applicable federal, state, or local law; and any other chemical, material, or substance that may have adverse effects on human health or the environment.
- 1.18. "Lowest Responsive, Responsible Bidder" means a Bidder who's Bid Proposal conforms in all material aspects to the terms, conditions, specifications and requirements of the solicitations and who has demonstrated the ability to properly perform the Work.
- 1.19. "MBE/WBE/SBE" means Minority Owned Business Enterprise/Women Owned Business Enterprise/ Small Business Enterprise as these terms are defined in the applicable ordinances and laws governing the Project.
- 1.20. "**Project Safety Program**" means the Contractor's site safety program that will govern project safety for its Work. The Project Safety Program must be submitted to CM by each successful Bidder before commencing Work and be no less stringent than Section 00810 On Site Safety and Loss Control Program.
- 1.21. "Reference Documents" are drawings that do not form a part of the Contract Documents and are included in the Bidding Documents as a courtesy only. The Bidder is not entitled to rely upon the accuracy of the Resource Drawings and they are not warranted to be correct or reliable by the Owner or CM. The Bidder is expected to have conducted its own investigation into the reliability or accuracy of any Reference Documents, and no adjustment to the Base Bid shall be made if such request arises or results from the Bidder's failure to conduct such investigation.
- 1.22. "Subordinate Parties" means all of Contractor's employees, workers, laborers, agents, consultants, suppliers or subcontractors, at any tier, who perform, assist with, or otherwise are involved in any of the Work.
- 1.23. A "Unit Price" is an amount stated in the Bid Proposal as a price per unit of measurement for materials or services as described in the Bidding Documents or in the proposed Contract Documents.
- 1.24. The "**Work**" includes all work and responsibilities performed or to be performed by Contractor under the Subcontract.

2. PART 2 - BIDDERS REPRESENTATIONS

2.1.1. The Owner reserves the right to request qualification forms or additional information from any Bidder before issuing documents, receiving Bid Proposals or awarding an Agreement. The Owner may, at their sole discretion, accept or reject Bidders as qualified. The right to waive any informalities or irregularities in qualification materials is reserved by the Owner.

2.2. BIDDER BY MAKING ITS BID REPRESENTS THAT:

- 2.2.1. Bidder has carefully read, reviewed and understands the Bidding Documents and its Bid Proposal is made in accordance therewith.
- 2.2.2. Bidder's Bid Proposal is based upon the materials, systems, equipment, terms and conditions required by the Bidding Documents without exception.
- 2.2.3. Bidder certifies that it:
 - 2.2.3.1. has examined the Project site;
 - 2.2.3.2. has carefully reviewed the Bidding Documents
 - 2.2.3.3. has compared its examination of the Project site with the Bidding Documents;
 - 2.2.3.4. is satisfied as to the condition of the Project site, any surface or subsurface obstruction, the actual levels, and all excavating, filling in, removal and demolition, measurements and quantities involved in the Work:
 - 2.2.3.5. is familiar with weather conditions of the Project area;
 - 2.2.3.6. has taken account of all of these factors in preparing and presenting its Bid Proposal.

2.2.4. Bidder further certifies that it

- 2.2.4.1. has fully acquainted itself with the character and extent of the Owner's, CM's and other Contractor 's operations in the area of the Work
- 2.2.4.2. has taken account of coordination of operations of others in its construction plans set forth in the Bid Proposal.
- 2.2.5. No change orders will be issued to the Contractor for or on account of costs or expenses occasioned by its failure to comply with the provisions of this paragraph, or by reason of error or oversight on the part of the Contractor, or on account of interferences by the Owner's, CM's or other contractor's activities.
- 2.2.6. The Bidder, by submitting its Bid Proposal, represents that it has carefully reviewed the project schedule, along with the related requirements of the Project's Schedule and Phasing, and acknowledges that these are acceptable and have been taken into account in preparing its Bid Proposal.

3. BIDDING DOCUMENTS

3.1. COPIES

- 3.1.1. Bidders shall use complete sets of Bidding Documents in preparing Bid Proposals. Neither the Owner, CM nor the Architect shall be responsible for errors, omissions or misinterpretations resulting from the Bidder's use of partial sets of Bidding Documents.
- 3.1.2. Copies of the Bidding Documents are being made available for the purpose of obtaining Bid Proposals for the Work only. Bidders shall not use the Bidding Documents for any other purpose. Neither the Owner, CM nor the Architect warrants the completeness and/or adequacy of the Bidding Documents.

3.2. INTERPRETATION OR CORRECTION OF BIDDING DOCUMENTS

3.2.1. Bidder shall promptly notify the Barton Malow Company of all ambiguities, inconsistencies, or errors that it may discover upon examination of the Bidding Documents or upon examination of the Project site and local conditions. Bidders requesting clarification or interpretation of the Bidding Documents shall make a written request, which shall reach Barton Malow Company at least 5 days prior to the date for receipt of Bid Proposals. Direct all questions to:

Contact Name: Christa Amalio

Address: 1140 Rankin

City, State, Zip: Troy, MI, 48098

Phone: 586.295.1412

Email: Christa.Amalio@bartonmalow.com

3.2.2. Any interpretation, correction, or change of the Bidding Documents will be made by Addendum and/or Bid Clarification. Interpretations, corrections, or changes of the Bidding Documents made in any other manner will not be binding, and Bidders shall not rely upon such interpretations, corrections and changes. Advertisement to Bid

3.3. ADDENDA and/or BID CLARIFICATIONS

- 3.3.1. Addenda and/or Bid Clarifications will be distributed to all who are known by CM to have received a complete set of Bidding Documents. Copies of Addenda and/or Bid Clarifications will be made available for inspection wherever Bidding Documents are on file for that purpose.
- 3.3.2. No Addenda or Bid Clarifications will be issued later than 3 days prior to the date for receipt of Bids except an Addendum or Bid Clarification withdrawing or postponing the request for Bid Proposals.

3.4. ALTERNATES

- 3.4.1. Each Bidder must bid on all Alternates listed in the Bid Proposal that are applicable to its Bid Category. Alternates will be fully considered in awarding the Agreement.
- 3.4.2. The Owner shall be allowed a period of 90 Days after date of receipt of the Bid Proposals to exercise the right to accept or reject any or all Alternates submitted on the Bid Proposal.
- 3.4.3. Successful Bidders shall perform all Work required for complete execution of accepted Alternates, and the Bid Proposal shall include all overhead and profit for the Work required.

3.5. VOLUNTARY ALTERNATES

3.5.1. All Bid Proposals must be based upon the Bidding Documents. In addition to a Base Bid Proposal, the submission of Voluntary Alternates is acceptable and encouraged. If a Voluntary Alternate is submitted for consideration, it shall be expressed on the Bid Form as an add or deduct amount from the Base Bid. The [Owner or Owner and CM] reserve the right to unilaterally accept or reject Voluntary Alternates and to determine if the Voluntary Alternates will be considered in the awarding of the Agreement.

3.6. UNIT PRICES

- 3.6.1. Each Bidder must bid on all Unit Prices listed in the Bid Proposal that are applicable to its Bid Category. Unit Prices will be fully considered in awarding the Agreement.
- 3.6.2. Successful Bidders shall perform all Work required for complete execution of accepted Unit Prices, and such Unit Prices shall include all overhead and profit for the Work required.

3.7. NO DISCRIMINATION

- 3.7.1. All Bidders shall ensure that employees and applicants for employment are not discriminated against because of their race, color, religion, sex, national origin, age, marital status, sexual orientation, or disability and in conformance with local, state and federal laws, regulations and ordinances.
- 3.7.2. In regard to any Agreement entered into pursuant to this Bid Package, minority and women owned business enterprises will be afforded full opportunity to submit Bid Proposals and will not be discriminated against on the grounds of race, color, religion, sex, national origin, age, marital status, sexual orientation, disability or any other status protected by applicable law.

4. BIDDING PROCEDURE

4.1. FORM AND STYLE OF BIDS

4.1.1. Bid Proposals shall be submitted in accordance with the Bid Proposal Form.

4.2. BID SECURITY

- 4.2.1. Bid security in the form of a bid bond issued by a qualified surety, certified check or cashier's check in the amount of five percent (5%) of the Base Bid amount will be required at the time of submission of the Bid Proposal. Bid bonds shall be duly executed by the Bidder, as principal and by a surety that is properly licensed and authorized to do business in the state in which the Work is to be performed. All sureties providing bonds for this Project must be listed in the latest version of the Department of Treasury's Circular 570, entitled "Companies Holding Certificates of Authority as Acceptable Sureties on Federal Bonds and as Acceptable Reinsuring Companies", with the bond amount less than or equal to the underwriting limitation, and/or have an A.M. best rating of A- or better.
- 4.2.2. Bid bond shall pledge that the Bidder, with the understanding that if its Bid Proposal is accepted, will enter into the Agreement with the Troy School District for any of the Bid Category(ies) accepted from its Bid Proposal and will, if required, furnish performance and payment bonds covering the faithful performance of the Agreement and the payment of all obligations arising there under. The attorney-in-fact, who signs the surety bond must submit along with the bond, a certified and effectively dated copy of his/her power of attorney.

- 4.2.3. Bid bond form AIA Document A310 unmodified, is approved for use on this Project.
- 4.2.4. The bid security obligees shall be Troy School District and the amount of the bid security shall become their property in the event that the Bidder fails, within fifteen (15) days of notice of award or receipt of the Agreement form, to execute the Agreement, and deliver the performance and payment bonds as described in the Project Manual, section 00500. In such case, the bid security shall be forfeited to the Troy School District as liquidated damages, not as a penalty.
- 4.2.5. The Owner will have the right to retain the bid security(ies) of Bidders to whom an award is being considered until either (a) the Agreement has been executed and bonds, if required, have been furnished, or (b) the specified time has elapsed so that Bid Proposals may be withdrawn, or (c) all Bid Proposals have been rejected.
- 4.2.6. Bid security will be returned to the successful Bidders after the Agreement has been executed, and acceptance of required performance and payment bonds. The bid security of Bidders that are not under consideration for award of the Agreement will be returned to those Bidders.

4.3. SUBMISSION OF BIDS

- 4.3.1. All copies of the Bid Proposal, the bid security and any other documents required to be submitted with the Bid Proposal shall be enclosed in a sealed opaque envelope. The envelope shall be labeled as specified as noted in Section 00100.
- 4.3.2. Bid Proposals shall be deposited at the designated location prior to the time and date for receipt of Bid Proposals indicated in the Advertisement to Bid, or any extension thereof made by Addendum or Bid Clarification. Bid Proposals received after the date and time for receipt of bids may be returned unopened.

4.4. MODIFICATION OR WITHDRAWAL OF BID PROPOSAL

- 4.4.1. A Bid Proposal may not be modified, withdrawn or canceled by the Bidder after the stipulated time period and date designated for the receipt of Bid Proposals, and each Bidder so agrees in submitting its Bid.
- 4.4.2. Prior to the time and date designated for receipt of Bid Proposals, any Bid Proposal submitted may be modified or withdrawn by notice to the party receiving Bid Proposals at the place designated for their receipt. Such notice shall be in writing over the signature of the Bidder.
- 4.4.3. Withdrawn Bid Proposals may be resubmitted up to the time designated for the receipt of bids provided that they are then fully in conformance with these Instructions to Bidders.
- 4.4.4. Bid security as stated above shall be in an amount for the Base Bid as modified or resubmitted.

5. CONSIDERATION OF BIDS

5.1. OPENING OF BIDS

- 5.1.1. Bid Proposals received on time will be opened publicly.
- 5.1.2. Bid Proposals shall be held open and irrevocable for ninety (90)Days after the date for receipt of bids.

5.2. REJECTION OF BIDS

5.2.1. The Troy School District reserves the right to reject any or all Bid Proposals in accordance with all applicable laws.

5.3. ACCEPTANCE OF BID (AWARD)

5.3.1. It is the intent of the Troy School District to award the Agreement to the Lowest Responsive and Responsible Bidder in accordance with the Bidding Documents. The Troy School District shall have the right to waive any informality or irregularity in any Bid Proposal received and to accept Bid Proposals which, in its judgment, are in its own best interest.

- 5.3.2. The Troy School District shall have the right to accept Alternates in any order or combination and to determine the low Bidder on the basis of the sum of the Base Bid, Voluntary Alternates and Alternates accepted.
- 5.4. To the extent that these Instructions to Bidders and applicable public bidding laws, rules, regulations or ordinances conflict with each other, the provisions of the applicable bidding laws, rules, regulations or ordinances shall govern.
- 5.5. The Owner expects all supplies, materials equipment or products proposed by a Bidder to meet or exceed the Specifications set forth in the Bidding Documents. Further, it is the Owner's intent that the Bidding Documents permit competition. Accordingly, the use of any patent, proprietary name or manufacturer's name is for demonstrative purposes only and is not intended to curtail competition. Whenever any supplies, material, equipment or products requested in the Bidding Documents are specified by patent, proprietary name or by the name of the manufacturer, unless stated differently, such specification shall be considered as if followed by the words "or comparable equivalent," whether or not such words appear. The Owner, in its sole and absolute discretion, shall have the right to determine if the proposed equivalent products/brands submitted by Bidder meet the Specifications contained in the Bidding Documents and possess equivalent and/or better qualities. It shall be the Bidder's responsibility to notify the Owner in writing if any Specifications or suggested comparable equivalent products/brands require clarification by the Owner prior to the Due Date for Bid Proposals.

6. POST BID INFORMATION

6.1. POST BID INFORMATION

- 6.1.1. After the Bids are received, tabulated, and evaluated, the apparent low Bidders when so requested shall meet with CM at a post-bid meeting for the purposes of determining completeness of scope and any contract overlaps or omissions. If requested, the Bidder shall submit additional information as requested by CM. The Bidder will provide the following information at the post-bid meeting:
 - 6.1.1.1. Designation of the Work to be performed by the Bidder with its own forces including manpower for the Contractor and that of its Subordinate Parties.
 - 6.1.1.2. Detailed cost breakdown of the Bidder's Bid Proposal including labor, equipment and material unit prices.
 - 6.1.1.3. A list of names of the Subordinate Parties proposed for the principal portions of the Work.
 - 6.1.1.4. The proprietary names and suppliers of principal items or systems of materials and equipment proposed for the Work.
 - 6.1.1.5. The names and backgrounds of the Bidder's key staff members including foremen and assistants. Bidder shall be requested to establish the reliability and responsibility of the persons or entities proposed to furnish and perform the Work described in the Bidding Documents.
 - 6.1.1.6. Commitment to construction schedules, identification of items requiring long lead deliveries and manpower information in accordance with Section 00230 of the Project Manual.
 - 6.1.1.7. Signed safety program compliance, as described in the Contract Documents
- 6.1.2. Prior to award of the Agreement, CM will notify the Bidder if either the Owner, the Architect, or CM, after due investigation, has reasonable objection to any proposed Subordinate Party. If the Owner, Architect or CM has reasonable objection to any proposed Subordinate Party, the Bidder may, at its option: (1) withdraw its Bid Proposal; or (2) submit an acceptable substitute Subordinate Party with an adjustment in its bid amount to cover the difference in cost occasioned by such substitution. The Troy School District, may, at its discretion, accept the adjusted bid amount or it may disqualify the Bidder. In the event of either withdrawal or

- disqualification under this Subparagraph, bid security will not be forfeited, notwithstanding the terms in the Instructions to Bidders.
- 6.1.3. Upon the Award of the Agreement, the Contractor shall submit to CM a complete list of all items, products, and layouts for which shop drawings, brochures, or samples are required; name of each Subordinate Party; and date of planned submission.
- 6.1.4. The Bidder will be required to establish to the satisfaction of CM, Owner and Architect, the reliability and responsibility of the Subordinate Parties proposed to furnish and perform the Work described in the Bidding Documents.

SECTION 00210 DESCRIPTION OF THE WORK/SPECIAL PROVISIONS

1. GENERAL

1.1. RELATED DOCUMENTS

- 1.1.1. All Bidders shall review all of the Bidding Documents, all Bid Category Work descriptions and all Contract Documents, immediately advise CM of any adverse factors, conflicts or ambiguities that might affect the execution of Work of this Bid Package. Each Bidder is responsible to review all Bid Category descriptions and Contract Documents and coordinate the Work accordingly. Each Bidder shall incorporate into its Bid Proposal the cost of coordination of the Work with the requirements of all related Contract Documents, as shown, specified, or required.
- 1.1.2. Each Bidder shall thoroughly examine all of the Bidding Documents for the Work of all trades so as to familiarize itself both with the Work required under its Bid Category(ies) and with Work required under all other Bid Categories.
- 1.1.3. The Bidder shall perform all Work reasonably inferable from the Bidding Documents to produce the intended results. Bidders are required to visit and examine the Project site and may arrange the visit through CM.
- 1.1.4. A complete set of bid documents are available at CM's office

1.2. PROJECT DESCRIPTION

- 1.2.1. The scope of work includes mechanical and electrical upgrades, ceilings, and toilet room renovations at Troy High and Athens High School. Specific Bid Category/Work Scope descriptions are found in Section 00220.
- 1.2.2. NOTE: a list of owner pre-purchased equipment will be provided in the addendum

1.3. SUMMARY OF THE BID CATEGORIES/WORK SCOPES

1.3.1. The following is a listing of Bid Categories for this project All work relative to the Bid Package is identified on plans and specifications as prepared by the Architect. Each Bid Category description identifies the scope of Work to be performed by the Bidder as designated by CM.

BID CATEGORIES

061000 – General Trades 075000 - Roofing 230000 – Mechanical 260000 – Electrical

1.4. SPECIAL PROVISIONS

- 1.4.1. The following special provisions form a part of each Bid Category Work Scope and apply to each Contractor's Scope of Work found in Section 00220.
- 1.4.2. The Bid Category/Work Scopes should in no way be construed as being all inclusive. The Work Scope is issued as a guide to aid in the assignment of Work. If conflict regarding assignment of Work exists between the drawing notes and these descriptions, the Description of the Work and Bid Category. The Contractor shall carefully review and compare the Drawings and Specifications with the Work Scopes, and if a conflict exists, the Contractor shall immediately notify CM in writing. The Bid Category numbers and the specification section numbers are not, in all cases, identical.
- 1.4.3. Bidders are required to bid the entire Bid Category. Bids will only be accepted for individual Bid Categories. A Bidder may bid more than one Bid Category. Combined bids covering several Bid Categories will not be accepted, unless separate bid amounts are listed for each Bid

- Category making up the combined bid amount. Review the "Instructions to Bidders" in Section 00200 for specific Bid Proposal instructions.
- 1.4.4. Each Bidder shall review the schedule enclosed in the Bidding Documents, and be prepared to review at the post-bid meetings a schedule for the engineering, fabrication, delivery and installation of its Work. This information will be considered in the award recommendation.
- 1.4.5. All Contractors are to coordinate all Work with the work of other trades for proper function and sequence (see Section 01360). Contractor must furnish approved copies of shop drawings, mock-ups, and technical data to other contractors designated by the CM for the purposes of coordination of this Work. Contractor must provide to all other trades all information (drawings, diagrams, templates, embedments) and other related Work necessary for the proper coordination of the Work of all trades. Each phase of the Work shall be coordinated, and the coordination plan approved by CM prior to proceeding. Contractor shall keep informed as to Work of all trades engaged in the Project, and shall execute Work in such a manner as not to delay or interfere with the progress of other trades involved. Contractor is required to schedule its Work so that no other party is delayed in execution of its work. Contractor is required to employ competent supervision on the Project throughout the entire period of construction to ensure proper coordination.
- Contractor will furnish before any Work is started, evidence of ISO Certification or documented 1.4.6. procedures for process control, including drawings, submittals, inspection/surveillance and training. In lieu of defined procedures, Contractor will follow CM's documented procedures for process control.
- 1.4.7. When it is necessary to modify or tie into existing utility services. Contractor shall notify CM in writing a minimum of 48 hours prior to the planned disruption. All disruptions shall be scheduled with CM and shall be kept to a minimum time. Tie-ins and shutdowns of existing utilities may have to be performed during off hours. Contractors are to include any required premium time in the Base Bid.
- 1.4.8. If Owner will occupy the premises or a portion of the premises during the construction, Contractor shall cooperate with CM and Owner in all construction operations to minimize conflict, and to facilitate Owner occupancy.
- Information pertaining to the existing building has been obtained through photographs and 1.4.9. investigations and is indicated on the Resource Drawings. This information is not warranted to be complete or accurate. Contractor shall verify all dimensions in the field prior to ordering materials or construction and any costs or expenses arising out of its failure to do so shall be borne solely by Contractor.
- 1.4.10. The Contractor shall examine the existing site conditions and carefully compare them to the Drawings. All measurements must be verified from actual observation at the Project site. The Contractor is responsible for all Work fitting in place in approved, satisfactory and workmanlike manner in every particular. If the Contractor encounters unexpected existing site or building conditions, it shall cease operations immediately to minimize damage and shall immediately notify CM in writing. Contractor shall bear all costs, expenses or damages arising or resulting from its failure to comply with this paragraph.
- 1.4.11. Hoisting of material or equipment above occupied areas will NOT be permitted unless the existing structure has been properly verified by a licensed professional Engineer to be able to bear the load of the material or equipment being hoisted if accidentally released. It is the responsibility of the Contractor performing such hoisting to properly and adequately reinforce existing structure.
- Space for electrical and mechanical lines is limited for the Project. Therefore, it is imperative that Contractor coordinate its Work with the Work of all other trades to ensure containment of electrical and mechanical lines in space provided. Priority of space will be decided in discretion of CM, with no additional compensation, where unresolved conflict exists. If Work is not

- properly coordinated, Contractor shall remove and relocate Work without additional compensation.
- 1.4.13. The Contractor shall maintain all project record documents for all concealed Work to mark actual construction. The Contractor shall turned over to CM all project record documents upon completion of Work by the Contractor, in a format to be determined by CM. The Contractor shall make all project record documents available to the Owner, CM and/or the Architect for inspection and review. The Contractor's failure to maintain such documents adequately shall entitle the Owner and/or CM to withhold payment until such documents are current and up to date.
- 1.4.14. The Contractor shall submit a daily report to CM on a daily basis on the form provided to Contractor by CM.
- 1.4.15. All Contractors shall attend all meetings as required by CM.

1.5. OWNER EQUIPMENT COORDINATION

- 1.5.1. The Owner Furnished and Contractor Installed (OF/CI) equipment as listed in the Individual Contractor's Work scopes found in Section 00220 shows the Contractor responsible to schedule delivery, receive the equipment and accessories F.O.B. jobsite, inspect, protect, store, handle and move into position, provide all coordination with applicable trades for rough-in requirements and final connections, marshal the appropriate trades as a composite installation crew, and assist in initial startup.
- 1.5.2. Refer to the Drawings to determine quantities.

SECTION 00230 SCHEDULE AND PHASING

1. GENERAL

1.1. MILESTONE SCHEDULE

1.1.1. The following are the milestone schedule dates for the listed Work and will become a part of the Contract Documents. The master construction schedule will be developed after award of the Agreement with Contractor input.

MILESTONE ACTIVITY	SCHEDULED START	SCHEDULED COMPLETION
Roof Demo	June 1, 2016	June 15, 2016
Troy Chiller	December 2015	April 2016
Troy Pool	June 2016	August 2016
Athens Phase 1	May 2016	September 2016
Unit Start-up	August 2016	October 1, 2016
Athens Phase 2	May 2017	September 2017
Unit Start-up	August 2017	October 1, 2017

- 1.1.2. It is expressly agreed that time is of the essence for the completion of Work under the Agreement and Contractor agrees to perform the Work within the allotted time and in the manner specified. Contractor shall be liable for any and all damages and expenses suffered by the Owner or CM arising or resulting from the failure of Contractor to perform the Work in accordance with the construction schedule.
- 1.1.3. Reference Phasing Plan located in the folder structure. Phasing Plan BP8.

1.2. CONSTRUCTION SCHEDULE DEVELOPMENT PROCESS

- 1.2.1. Contractor agrees to commence Work in the field within five (5) Days after being notified to do so by the CM. Contractor shall diligently perform and fully complete all Work to the satisfaction of CM and Owner.
- 1.2.2. Work shall begin at such points as CM may designate and shall be carried to completion with the utmost speed.
- 1.3.2. Contractor shall submit to CM within fifteen (15) Days of award of the Agreement all necessary scheduling information, in form and substance satisfactory to CM of all activities contained in the Contractor's scope of Work, including activity descriptions and durations in working days, for shop drawings, fabrication, delivery and installation of products, materials and equipment. This schedule shall identify precedent relationships between Contractor's activities and those of other contractors, the dollar value, necessary manpower loadings, and precedent activities for other contractors. The activities on the schedule must be at a level of detail approved by CM and should agree with the terminology and building sequencing established by CM. CM will compile all Contractors' schedules and develop a project master construction schedule. Once the individual contractors schedules are agreed upon by CM, this project master construction schedule will become the project plan for construction.
- 1.3.3. Special requirements and/or sequencing issues should be brought to the attention of CM. It is intended the milestones remain in effect and all Bidders agree to accept the milestone dates. CM reserves the right to revise the project master construction schedule as deemed necessary. CM reserves the right to revise the project master construction schedule as deemed necessary.

- 1.3.4. CM shall periodically update the project master construction schedule and display it at the Project site. Contractor shall familiarize itself with the project master construction schedule and how it will affect or modify its operations, including coordination with the activities of other contractors. Reasonable changes in sequencing, durations and phasing are to be expected with each master schedule update. These changes will be made by Contractor at no additional cost. Reasonable changes in sequencing, durations, and phasing are to be expected with each master schedule update. These changes will be made by Contractor at no additional cost.
- 1.3.5. If it is apparent Contractor is unable to perform its Work in the sequence indicated or the time allotted, Contractor must notify CM within five (5) Days after initial publication of the project master construction schedule. Contractor's schedule of activities may be re-sequenced, and the schedule may be adjusted, provided all Work is completed within the stated milestone dates and provided CM and affected contractors are notified of the change within five (5) calendar days of receipt of the schedule and the change does not otherwise negatively impact the other scheduled work; otherwise, the project master construction schedule shall be deemed accepted by all parties and becomes a contractual requirement for each Contractor.
- 1.3.6. If Contractor delays progress for any reason other than those delays specifically excused under the Contract Documents, Contractor will take all necessary steps to expedite its Work to maintain milestone target dates at no expense or additional cost to Owner or CM.
- 1.3.7. If Contractor is behind schedule and is so notified by CM, Contractor shall be required to accelerate the Work at its own expense. Contractor shall furnish to CM a short interval schedule of its Work showing location, number of men and crew required to get back on the agreed upon master construction schedule. If Contractor fails to maintain and meet the short interval schedule, Owner through CM reserves the right to take whatever steps it deems necessary in its sole discretion to recover the schedule at the Contractor's expense. The Contractor shall employ such means as overtime work, multiple work shifts, and additional equipment, all without additional compensation, and shall continue to do so until the progress of the Work, in the opinion of CM, is in conformance with the master project construction schedule.
- 1.3.8. Contractor agrees that it shall have no claim against the Owner, Architect, or CM for an increase in the contract price nor for a payment or allowance of any kind for damage, loss, or expense arising or resulting from delays, regardless of whether the delay is the basis for an extension of time. This provision includes claims for damage, loss, or expense arising or resulting from interruptions to, or necessary suspension of, Contractor's Work to enable other contractors to perform their work.

SECTION 00400 BID PROPOSAL FORM (Submit in Triplicate - Fill in all Blanks)

		DATE:	
ТО:	Troy School District 4400 Livernois Troy, MI 48098	PROJECT:	Troy School District 2013 Bond Program Series 1, Bid Package #8 Troy High School and Athens High School MEP Upgrades
ATTN:	Todd Hensley Purchasing Supervisor		CM :Barton Malow Company
			Architect: TMP Architecture
Name of	f Bidding Co.:		
Contact	Name:		
Email A	ddress:		
Business	s Address:		
Phone N	lumber:		
Bid Proj Categor	posal for y(ies):		

Bidder, in compliance with the Advertisement to Bid for construction contemplated for Bid Package No. 8 Troy High School and Athens High School MEP Upgrades having carefully examined the Bidding Documents and the site of the proposed Project and the conditions affecting the proposed Work in the Bid Category(ies) including the condition of the Project site, any surface or subsurface obstruction, the actual levels, all excavating, filling in, removal and demolition, measurements and quantities involved in the Work, the availability of labor, materials and equipment, and the weather conditions that may possibly may be experienced in the Project vicinity, proposes to furnish all labor, materials, tools, equipment, machinery, equipment rental, transportation, superintendence, and services as are necessary to perform all Work in the Bid Category(ies) stated in accordance with the Contract Documents for the Base Bid and Alternate amounts stated below.

If identified as one of the apparent lowest bidder(s) for a Bid Category Bidder agrees to meet immediately with CM and shall submit post bid information as described in Section 00200 Instructions to Bidders.

Bidder, if awarded a contract, agrees to: (1) execute the Agreement within fifteen (15) days of receiving notice of the award; (2) provide performance/payment bonds and insurance certificates in full compliance with the Contract Documents, (3) submit the Project Safety Program as described in Section 00200 Instructions to Bidders; (4) commence Work upon execution of the Agreement or at such other time as directed in the notice of award, and (5) to complete its Work in accordance with the Contract Documents and within the milestone activity dates and durations set forth in the Bidding Documents and subsequent construction project master schedule established by CM. In the event Bidder defaults in complying with any portion of this paragraph, Bidder specifically agrees that the entire bid security

amount shall become the property of Owner as liquidated damages constituting the reasonable estimate of the damages that Owner would incur for delays and additional expenses in the event of such default, and not as a penalty.

BASE BID: Bidder agrees to perform all Work for Bid Category(ies) as described in the Contract Documents, for the Base Bid(s) stated below. The Base Bid(s) shall include the cost of Performance and Payment Bonds. For each Bid Category to be bid, include the Base Bid, written and in figures, the cost of the Performance Bond and Payment Bond which is included in the Base Bid, written and in figures, and the Bid Category and description.

(Show amounts in both words and figures. In case of discrepancy, amount shown in words will govern).

BID	CATEGORY	WRITTEN DESCRIPTION/AMOUNT(S)	BID AMOUNT IN FIGURES
1.	Bid Category 061000 General Trades		\$
		DOLLARS	
2.	Bid Category 075000 Roofing		\$
		DOLLARS	
3.	Bid Category 230000 Mechanical		\$
		DOLLARS	
4.	Bid Category 260000 Electrical		\$
		DOLLARS	
CO	MBINED BID AMOUNT	WRITTEN DESCRIPTION AMOUNT(S)	BID AMOUNT IN FIGURES
		form all Work necessary to complete the Work in Bio e with the Contract Documents, for the lump sum of:	
Base	e Bid (including bond)		\$
		DOLLARS	

Amount included for bond		\$
	DOLLARS	
to this project. The contract may be awarde	rs are required to provide their company's hourly labor d based on this information. Failure to quote the foll form and may be disqualified by Troy School District.	owing hourly labor
JOB TITLE		HOURLY RATE
		\$
		\$
		\$
		\$
INDIVIDUAL BUILDING PRICES:		
the total base bid. Separate contracts will no individual prices will result in an incomplete	ed to determine the low bidder. The contract will be a of the written for individual buildings. Failure to quote bid proposal form and may be disqualified by Troy S	the following School District
	DOLLARS \$	
Athens High School:	DOLLARS \$	
the event the Alternate is accepted, Bidder ag the Alternate in full accordance with the Cont indicated: (Show amount(s) in both words an will govern. Enter a dollar amount in each, ev	to Base Bid(s) are required to be offered by the respectives to perform all Work necessary to complete the Work ract Documents, for the following add or deduct from the figures for Alternates. In case of discrepancy, amount if the amount is \$0.00. Terminology such as "No Foly", shall not be used. If the Alternate does not apply to	ork as modified by the Base Bid as nt shown in words Bid", "Not
Alternate 1: Bid Category 061000 General Tr	ades: Quote add in price to:	
1. Remove ceilings in Kitchen E112 specifications.	and Receiving E115 and provide ceilings as indicated	in drawings and
2. Demo shaft walls and ducts in Ro and specifications.	oms E217 and E218 and install new shaft walls as indi-	cated in drawings
Add	(\$)
Deduct	(\$)

	ngs as indicated in drawings and specifications (except that work	
Add	(\$)
Deduct)
complete, including all exhaust duc located in Mechanical Equipment F	Mechanical: Quote add in price to remove existing Kitchen E115 etwork, roof exhaust fan and fire protection and remove existing in F300 complete including controls and make-up air ductwork in oake-up air unit and ductwork, as indicated in drawings and specific	make-up air unit rder to be replaced
Add	(\$)
Deduct)
	iping as indicated in drawings and specifications. (\$)
	Mechanical: Quote add in price to remove galvanized piping in resping as indicated in drawings and specifications.	Johns marcated in
	<u> </u>	
Deduct)
	Electrical: Quote add in price to remove lights in Kitchen E112 a as indicated in drawings and specifications.	nd Receiving E115
Add	(\$)
Deduct)
	Electrical: Quote add in price to remove lighting in Zone E, Zone indicated in drawings and specifications (except that work inclu	
Add	(\$)
Deduct)
Alternate 7: Bid Category 075000 I	Roofing: Include Firestone material as BASE BID. Provide deduc	ct for Carlisle.
Add	(\$)
Deduct)

Alternate 2: Bid Category 061000 General Trades: Quote add in price to remove ceilings in Zone E, Zone F and Zone

Alternate 8: Bid Category 260000 Electrical: Provide an a scope of work of this project on 2nd shift after school in provide a listing of work that your propose that can be do	the months of the December - summer work scl	
Add	(\$)
Deduct	(\$)
Alternate 9: Bid Category 230000 Mechanical: Provide an scope of work of this project on 2nd shift after school in provide a listing of work that your propose that can be do	the months of the December - summer work scl	
Add	(\$)
Deduct	(\$)
Alternate 10: Bid Category 230000 Mechanical: deduct Pr pipe and heating piping than what is called out in the spe		
Add)
Deduct	(\$)
Alternate 11: Bid Category 230000 Mechanical: Provide piping thickness in lieu of specified connectors less than		BASE BID
Add	(\$)
Deduct)
Alternate 12: Bid Category 230000 Mechanical: Chiller in insulation detail that will accomplish the same r and there		rated
Add	(\$)
Deduct	(\$)
Alternate 12: Bid Category 061000 General Trades & 230 furnish and install all associative piping and electrical and		
Add	(\$)
Deduct	(\$)

gymnasium for both Ti	roy High and Athens High			
Add			(\$)
Deduct			(\$)
	gory 061000 General Trades & 230000 Mechanical & 26 days in lieu of 45 days stated per contract. (QuickPay)	60000 Electri	cal: Provide deduct	to
Add			(\$)
Deduct			(\$)
Alternate 15: Bid Categ	gory 230000 Mechanical: Provide deduct to provide altequipment.	ernate access	to mezzanine to all	ow
Add			(\$)
Deduct			(\$)
BID CATEGORY 1.	WRITTEN DESCRIPTION OF VOLUNTARY ALTERNATE AMOUNT(S)	ADD	DEDUCT \$	_
For the amount of:		-		
	DOLLARS			
Bidder is required to su sheet(s) attached to this	bmit sufficient detailed information to fully describe eac Bid Proposal form.	ch voluntary	Alternate(s) on a sep	oarate
All applicable taxes and	d bond costs are included in the above Base Bid and all l	isted Alterna	tes and Unit Prices.	
one) accompanies this p	on of a bid bond from a qualified surety (), certified check proposal in the amount of five (5) percent of the Base Bio probable for a period of 90 Days after the day and time design Project Manual.	d amount(s).	Bidder agrees that	this Bid
As of the date of submit (EMR) for the state in v				

Alternate 13: Bid Category 260000 Electrical: Provide deduct for all lighting associated with gymnasium and aux

 Total Cases Lost Workday Cases Non-fatal Cases Without Lost Employee Hours Worked Las Fatalities in the last year (if year) 	t Year
Has Bidder been cited by state or federal OSHA for any s	erious or willful violation? If yes, please describe:
Bidder understands that the Owner reserves the right to reirregularities therein.	eject any or all Bid Proposals and to waive any informalities or
Bidder acknowledges receipt of the following Addenda (i	dentify no. and date of each):
Bidder acknowledges receipt of the pre-bid conference m	inutes dated
If awarded a contract, Bidder's surety will be	
Check	
☐ I have included a fully executed and notarized copy this Project Manual with my Bid Proposal.	of the familial disclosure form set forth in Section 00410 of
in good faith and without collusion with any other person required to be licensed in the state where the work is performed requirements of the state in which work is to be performed	
An individual doing business as	
A partnership	
A limited liability company, organized in	(enter state)
	(enter state)
Joint venture formed between	and
(Signature from authorized representatives of eac	h partner are required)
An Agent with a Current Power of Attorney must	• ,

Signature(s):	Title:	
	Title:	
Legal Name of Firm:		
Business Address:		
_		
Telephone Number:	()	
(All interlinear ma	narks, alterations or erasures shall be initialed by the signer of the	Bid Proposal)

SECTION 00410 FAMILIAL RELATIONSHIP DISCLOSURE FORM

SWORN AND NOTARIZED FAMILIAL DISCLOSURE STATEMENT

All Vendor/Contractor(s) submitting proposals must provide familial disclosure and attach this information to the proposal. The proposal will be accompanied by a sworn and notarized statement disclosing any familial relationship that exists between the owner or key employee of the vendor submitting a proposal and any member of the Troy School Board or the Troy School Superintendent. The District will not accept a proposal that does not include this sworn and notarized disclosure statement.

The members of Troy School Board are: Nancy Philippart, Todd Miletti, Paula Fleming, Ida Edmunds, Wendy

Underwood, Gary Hauff and Karl Schmidt. The Troy Schools Superintendent is Dr. Barbara Fowler. \square The following are the familial relationship(s): Related to: Relationship Owner/Employee Name Attach additional pages if necessary to disclose familial relationships. There is no familial relationship that exists between the owner or key employee of the Vendor/Contractor(s) submitting a proposal and any member of the Troy School Board, or the Troy Schools Superintendent. INDIVIDUAL/FIRM NAME BY (SIGNATURE) PRINTED NAME AND TITLE Subscribed and sworn before me, this Seal: day of , 20 , a Notary Public in and for _____ County, ____ (Signature) NOTARY PUBLIC My Commission expires _____

CERTIFICATION OF COMPLIANCE - IRAN ECONOMIC SANCTIONS ACT

Michigan Public Act No. 517 of 2012

The undersigned, the owner, or authorized officer of the below-named Company, pursuant to the compliance certification requirement provided in Troy School District's Request For Proposal, the "RFP", hereby certifies, represents, and warrants that the Company and its officers, directors and employees, is not an "Iran Linked Business" within the meaning of the Iran Economic Sanctions Act, Michigan Public Act No. 517 of 2012 (the "Act"), and that in the event the Company is awarded a contract by Troy School District as a result of the aforementioned RFP, the Company is not and will not become an "Iran Linked Business" at any time during the course of performing any services under the contract.

The Company further acknowledges that any person who is found to have submitted a false certification is responsible for a civil penalty of not more than \$250,000.00 or two (2) times the amount of the contract or proposed contract for which the false certification was made, whichever is greater, the cost of Troy School District's investigation, and reasonable attorney fees, in addition to the fine. Moreover, any person who submitted a false certification shall be ineligible to bid on a request for proposal for three (3) years from the date the it is determined that the person has submitted the false certification.

	Contractor:
	Print Name of Contractor
	By:
	Its:
Subscribed and sworn before me, this	Seal:
day of, 20, a Notary Po	ublic
in and for County,	
(Signature) NOTARY PUBLIC	
My Commission expires	
END OF CE	CTION 00410

SECTION 00500 AGREEMENT

1 AGREEMENT FORM

1.01 The form of Agreement that will be used for Work under this Bid Package shall be AIA Document 132 Standard Form of Agreement between Owner and Contractor, CMa 2009 Edition. The above Agreement Form is included immediately behind this section.

2. GENERAL CONDITIONS OF THE CONTRACT

2.1. AIA 232 Document General Conditions of the Contract for Construction, 2009 Edition is bound within this Project Manual and is a part of the Contract Documents.

3. INSURANCE

3.1. The description box on the ACORD certificate must be endorsed as follows:

For Troy School District 2013 Bond Projects: Barton Malow Company, Troy School District, are added as additional insureds on the Insured's commercial general liability policy, excess liability policy, automobile liability policy, and contractor's pollution liability policy, with respect to liabilities arising out of the operations or "work" performed by or on behalf of the Insured and in accordance with all Contractor requirements for such coverage. Coverage for the additional insureds is primary and noncontributory with any other insurance available to the additional insureds, whether such other insurance is available on a primary or excess basis. Waivers of subrogation apply in accordance with Contractor requirements.

- 3.2. A sample of the Certificate of Insurance (ACORD) form at the end of this Section.
- 3.3. CM Contractor Insurance Requirements for Agency Work, PRO 15.14, shall govern this Project. A copy of these Insurance Requirements is included in this Section.

4. BOND REQUIREMENTS

4.1. PERFORMANCE BONDS AND PAYMENT BONDS

- 4.1.1. Troy School District will, require Contractor to furnish a Performance Bond and a Payment Bond, in amounts equal to the Agreement price, by a qualified surety naming both the Owner and CM as Obligees. All sureties providing bonds on this Project must be listed in the Department of Treasury's Circular 570, entitled "Companies Holding Certificates of Authority as Acceptable Sureties on Federal Bonds and as Acceptable Reinsuring Companies" with the bond amounts less than or equal to the underwriting limitation indicated in the Circular, and/or must have an A.M. Best rating of A VII or better. Bonds shall be duly executed by the Contractor, as principal, and by a surety that is licensed in the state in which the Work is to be performed
- 4.1.2. The Contractor shall deliver the required bonds to CM prior to execution of the Agreement. If the Work is to be commenced prior thereto in response to a letter of intent, the Bidder, at a minimum, shall submit evidence to the satisfaction of CM that such bonds will be furnished prior to commencement of on site Work. In no event may the Contractor commence on-site Work without the required bonds properly issued and delivered.
- 4.1.3. Performance Bond and Payment Bond unmodified form AIA Document or A312 (1984 Edition) must be used for this Project.
- 4.1.4. The Bidder's proposed surety must be acceptable to the Owner and CM. If, at any time, after acceptance of the Contractor's bonds, the surety fails to meet the stated criteria Contractor must, as a precondition to continuing Work and receiving further payments, replace the bonds with bonds from a surety that meets the stated criteria.
- 4.1.5. The Performance and Payment Bond penal sums (i.e., the Agreement price) must be listed as a separate line item in the schedule of values.

4.1.6. In the event of a Change Order, the penal sum of any required Performance and Payment Bonds shall be adjusted to equal the adjusted Contract Price. CM or Owner shall have the right to request submission of bond riders, issued by the original qualified surety, evidencing that such adjustments to the penal sum of the bonds have been accomplished. Notwithstanding the foregoing, in the next pay application after the Agreement price has been increased by twenty-five percent (25%) or more, as a condition precedent to payment, Contractor shall deliver a bond rider issued by the original qualified surety evidencing that the appropriate adjustment in penal sums has been accomplished.

SECTION 00810 ON-SITE PROJECT SAFETY AND LOSS CONTROL PROGRAM

SUBCONTRACTOR'S SAFETY REQUIREMENTS

- 1.01 Generally the Subcontractor
 - 1.01.1 is responsible for its own Safety Program for Work on this Project that is at least as stringent as the requirements set forth in this section of the Project Manual.
 - 1.01.2 shall provide a safe workplace and shall otherwise take all precautions for the safety of Subordinate Parties and persons and property in or near the premises where Work is being performed.
 - 1.01.3 shall comply with all applicable federal, state and local laws, rules and regulations, including, but not limited to, applicable provisions of the Occupational Safety and Health Act ("OSHA") and/or the governing state law.
 - 1.01.4 shall comply with all requirements stated in the Site Specific Safety Instructions (SSSI) form or elsewhere in the Contract Documents.
 - 1.01.5 shall ensure that its employees understand and comply with applicable safety and health programs, rules, and regulations.
 - 1.01.6 will assign an individual to act as Safety Representative who will have the responsibility of resolving safety matters, and act as a liaison among Subcontractor, CM and the Owner. The Safety Representative must be a person who is capable of identifying existing and predictable hazards in surroundings that are unsanitary, hazardous or dangerous to employees, and has the authority to take prompt corrective measures to eliminate them. The Safety Representative must meet the standards for a Competent Person under applicable law when required (scaffolding, confined spaces, etc.). The Safety Representative must be on site full time. The Safety Representative or an alternate must attend periodic safety meetings as directed by CM. The safety representative must have completed the OSHA 30 hour Construction Training Course.
 - 1.01.7 shall ensure that its site supervisors and/or Safety Representative attend a pre-construction meeting where planning for safe execution of the project will be addressed.
 - is fully responsible for all Hazardous Materials it creates or releases in connection with, or 1.01.8 brings to, the Project. Subcontractor shall immediately report to CM any Hazardous Materials that it discovers or which are released at the Project.
 - Minimum training for on-site employees shall include basic safety orientation, task-specific 1.01.9 safety instruction, weekly Tool Box Talks, and other periodic safety meetings. Subcontractor shall document all such training.
 - 1.01.10 shall self-inspect its areas of control to assure compliance with the safety requirements.
 - 1.01.11 All on-site employees of either Subcontractor or its Subordinate Parties are required to report any unsafe act or condition and any work-related injuries or illness immediately to a supervisor. If the act or condition can be safely and easily corrected, the employee or supervisor should make the correction.
 - 1.01.12 shall notify CM immediately of all injuries requiring clinical attention and all property damage potentially in excess of \$1,000.
 - 1.01.13 shall have emergency procedures to deal with the immediate removal and treatment, if necessary, of any employee who may be injured or become ill. Subcontractor] shall keep on the Project site a first-aid kit supplied according to current regulations, and shall have on-site a person trained to administer first aid.
 - 1.01.14 shall inform CM of the arrival of any federal or state inspector or compliance officer prior to touring the site. Any reports, citations, or other documents related to the inspection shall be provided promptly to Barton Malow.

- 1.01.15 shall have a written Substance Abuse Policy. The use or possession of illegal drugs or the use of alcohol while performing Work on the Project are strictly prohibited and will lead to immediate removal from the Project.
- 1.01.16 shall be responsible for payment of all safety-related citations, fines and/or claims arising out of or relating to its Work levied against the Owner, Architect, CM, or their employees or affiliates.
- 1.01.17 CM has the right to require that Subcontractor H submit monthly its hours worked and incident rates for the Project.

1.02 Additional CM Requirements

- Work crews shall conduct a Job Hazard Analysis (JHA,) discussion (i.e. Huddle) to plan for safe performance before beginning any work task. Subcontractor is required to prepare a written record of each JHA.
- 1.02.2 All workers, management, and visitors shall wear approved hard hats while on site, outside the trailers. Cowboy-style hard hats are prohibited. Hardhats must not be removed to use welding shields. Welding shields must attach to hardhats or be hand held.
- Sleeved shirts (minimum of four inches), long pants, and durable work boots are required 1.02.3 minimum clothing.
- 1.02.4 Personal cell phones are not to be used on construction sites except to report an emergency or on approved break time. Use of business cell phones must not interfere with jobsite safety.
- 1.02.5 Personal radios or music players are not permitted.
- All persons working at elevations of six feet or greater must have 100% continuous fall 1.02.6 protection. Engineering controls are preferred, but personal fall arrest systems are also permissible. An exception is permitted for safe use of ladders up to 24 feet long.
- 1.02.7 Subcontractor is responsible to repair or restore any barricade that it modifies or removes.
- 1.02.8 Class II III (household) stepladders are prohibited; metal ladders are strongly discouraged.
- 1.02.9 All scaffolds must be inspected daily and before each use for safety compliance. Scaffold inspection tags must be used. Scaffolds shall never be left in an unsafe condition and must be removed/disabled immediately if not to be used again.
- 1.02.10 All persons operating cranes must be certified as crane operators by the National Commission on the Certification of Crane Operators (NCCCO), Crane Institute Certification (CIC) or Operating Engineers Certification Program (OCEP). Daily written crane inspection reports must be prepared by the operator and kept with the crane, available for inspection.
- 1.02.11 Riding the headache ball is prohibited.
- 1.02.12 All dozers, loaders, tractors and end loader backhoes must have functioning backup alarms.
- 1.02.13 Keep equipment at least 15 feet from energized power lines.
- 1.02.14 Electrical, pneumatic, and other energy systems that could be accidentally energized or started up while work is in process must be locked out (not merely tagged out).
- 1.02.15 Only fire retardant materials may be used to build shanties or other temporary enclosures inside of buildings finished or under construction. Shanties shall be continually policed by their occupants to prevent the accumulation of waste or other combustibles.
- 1.02.16 Engineering controls must be used to restrain silica dust per applicable law. Dry cutting without engineering controls is prohibited.
- 1.02.17 The Contractor is required to design and implement a Stretch and Flex program for their employees. The purpose of the program is to gently condition the muscles and tendons for the workers before they engage in their duties in order to avoid injury. All contractors of any tier shall ensure that all employees participate in stretching exercises at the beginning of the work

- day. It is recommended that you consult with your insurance carrier, licensed physician or other medical personnel to develop suitable stretches for your work crew.
- 1.02.18 The Contractor is required to implement a glove program. All workers performing construction work must wear appropriate protective work gloves. When not performing work gloves must be kept available for immediate use. Cut resistant work gloves are required for any operation with sharp material or cut potential.

2 Subcontractor's SAFETY SUBMITTALS

2.01 Subcontractors shall provide copies of the following written safety submittals to CM at the times indicated:

Submittal	Timing
Contractor Safety Certificate, Barton Malow form SAF 6.3.3.3	Before on-site work begins
Site-specific Safety Program, including substance abuse policy, hazard	Before on-site work begins
communication program, and Material Safety Data Sheets (MSDS)	
Tool Box Talk Reports	Weekly
Incident Reports (OSHA form 301or equivalent)	Within 24 hours of incident
Hours worked and incident rates	Monthly
Stretch and Flex program	Before on-site work begins

- 2.02 Barton Malow's receipt of the Safety Program or other submittals from Subcontractor does not constitute approval of the Program or submittal or permission to deviate from the requirements of the Contract Documents and applicable law.
- 2.03 Subcontractor will allow inspection of, and CM may request copies of, any and all safety-related documents and records in its possession relating to the Project.

3 CM RIGHTS

- 3.01 Safety Hazard Notifications may be issued to the Subcontractor when an unsafe act or condition is reported or observed. CM shall not be required to supervise the abatement or associated reprimand of unsafe acts or conditions within a Subcontractor's scope of work as this is solely the responsibility of Subcontractor. Nevertheless, CM has the right, but not the obligation, to require Subcontractor to cease or abate any unsafe practice or activity it notices, at Subcontractor's sole expense.
- 3.02 Contractor/Subcontractor's failure to comply with the contract safety requirements will be considered a default of the Agreement, and may result in remedial action including, but not limited to, withholding of payment of any sums due or termination.
- 3.03 CM's failure to require the submission of any form, documentation, or any other act required under this Section, 00810, of the Project Manual shall not relieve the Subcontractor from any of its safety obligations.
- 3.04 Nothing in this Section or in this Agreement makes CM responsible or liable for protecting Subcontractor's employees and other Subordinate Parties or assuring or providing for their safety or preventing accidents or property damage.
- 3.05 All requirements referenced in this Section 00810 are binding on Subcontractor and all of its Subordinate Parties, even where such requirements may exceed the standards of applicable law.

SECTION 00840 HAZARDOUS MATERIALS

1. DEFINITION OF HAZARDOUS MATERIALS

1.1. A "Hazardous Material", as used in this Project Manual means asbestos; asbestos containing material; lead (including lead-based paint); PCB; molds; any other chemical, material, or substance subject to regulation as a hazardous material, hazardous substance, toxic substance, or otherwise, under applicable federal, state, or local law; and any other chemical, material, or substance that may have adverse effects on human health or the environment.

2. AWARENESS OF HAZARDOUS MATERIALS

- 2.1. Each Contractor shall be constantly aware of the possible discovery of Hazardous Materials. Should Contractor encounter any Hazardous Material or suspected Hazardous Material, the Contractor shall immediately stop Work in the area affected and report the condition to CM.
- 2.2. If the Contractor encounters any Hazardous Material or suspected Hazardous Material, the Contractor agrees to immediately initiate the required procedures of the Environmental Protection Agency (EPA), and/or state or local agencies having jurisdiction to protect any and all persons exposed to the affected areas or adjacent areas affected thereby
- 2.3. Contractor is fully responsible for all Hazardous Materials it creates or releases in connection with, or brings to, the Project
- 2.4. Each Contractor shall be responsible to bind ALL of its personnel and its Subordinate Parties to the provisions in the contract documents related to hazardous materials and to instruct each employee of its own duty to report any and all suspected Hazardous Materials and to comply with all applicable laws.
- 2.5. ABSOLUTELY NO MATERIAL SHALL BE BROUGHT ON OR TO THE PROJECT SITE THAT DOES NOT HAVE A MANUFACTURER'S LABEL STATING CONTENTS.
- 2.6. The Contractor shall comply with all applicable federal and state laws, rules, ordinances and regulations regarding transportation, storage, spills, releases and disposal of Hazardous Materials.
- 2.7. No asbestos or asbestos-containing material will be brought to the jobsite or incorporated into the Work by Contractor or its Subordinate Parties.

SECTION 00870 LABOR RELATIONS

1. PREVAILING WAGES

- 1.1. In any Agreement entered into pursuant to this advertisement, the Contractor shall comply with the provisions of the PREVAILING WAGE LAW.
 - 1.1.1. The Contractor will pay the latest prevailing wages and fringe benefits for all Work as required by State of Michigan/Public Act 166 dated 1965 as amended. The prevailing wage and fringe benefit rates are included immediately behind this Section
- 1.2. Additionally, **Contractor** is required to comply with all other provisions of the governing prevailing wage law, and shall ensure its Subordinate Parties' compliance therewith.
- 1.3. Allegations that individuals working on this Project are not receiving compensation required by law are considered seriously by the Owner and CM. In order to expedite the resolution of prevailing wage complaints related to this Project, the Owner and CM have determined that the Michigan Fair Contracting Center ("MFCC") is the organization best equipped to expedite the investigation of these matters. Any person or entity (the "Complainant") who reasonably believes that a particular contractor, subcontractor, supplier or other person or entity providing labor, materials, goods or services on this Project (each, an "Employer") is not paying prevailing wages as required by applicable law may ask the MFCC to determine whether proper rates are being paid either by completing and submitting to MFCC a request for assistance (the "RFA") or by contacting MFCC by telephone at (734) 462-2330 or (877) 611-6322. The RFA can be downloaded electronically at http://mifcc.org/Brochures/KnowYourRights.pdf and delivered to MFCC by facsimile to (734) 462-2318 or by mail to P.O. Box 530492, Livonia, Michigan 48153-0492.
- 1.4. Each and every Employer who is subject to an audit by MFCC pursuant to any RFA shall cooperate and comply fully with all requests, requirements and inquiries of MFCC. If, after investigation, MFCC determines that a Complainant's allegations are meritorious and the Complainant, MFCC and the Employer are unable to resolve the dispute following MFCC's determination, then, under the direction and with the assistance of MFCC, the Complainant shall file a Prevailing Wage Complaint (the "PWC") with the State of Michigan Department of Labor and Economic Growth Wage and Hour Division (the "Wage and Hour Division"). The PWC can be downloaded electronically at http://mifcc.org/Brochures/PrevailingWageComplaint.pdf and delivered by facsimile to (517) 322-6352 or by mail to 7150 Harris Drive, P.O. Box 30476, Lansing, Michigan 48909-7076.
 - 1.4.1. Upon commencement of the audit from MFCC, the Owner and/or CM reserves the right to hold all payments, pending the conclusion of the audit. If the Wage and Hour Division determines that the Employer has violated any applicable prevailing wage law, then the Owner and/or Construction Manager shall automatically be entitled to and will (a) withhold from such Employer any and all payments due and owing until the Employer remedies any and all violations cited by the Wage and Hour Division, and (b) backcharge the Employer for all costs actually incurred in MFCC's audit of the Employer.
 - 1.4.2. The Owner and/or CM shall keep a hard copy of these requirements posted at the Project site at all times.
- 1.5. The Contractor shall be financially responsible for the payment of prevailing wages by all Subordinate Parties that are subject to the prevailing wage law for Work on the Project.
- 1.6. If there is a dispute between any Contractor and the unions, the Contractor will be required to meet with CM and the Union involved to try and resolve the issue.
- 1.7. Because Work on this Project is covered by the Michigan Prevailing Wage Act ("Act"), the Contractor and its subcontractors and other Subordinate Parties that are governed by the prevailing wage law shall pay all hours at the prevailing wage rates at the applicable hourly rate; no Work performed by or on behalf of the Contractor on this Project will be paid on a lump sum basis or a piece rate basis in violation of the Act.

- 1.8. The Contractor will pay its workers at wage and fringe benefit rates consistent with the Act regardless of whether the workers are classified as employees or independent contractors.
- 1.9. The Contractor shall not misclassify any work assignments, but shall in each and every case follow proper jurisdictional assignments in compliance with the Act.
- 1.10. The Contractor shall assure that any persons paid at apprentice rates under the Act are properly classified as apprentices by actual participation in a BAT certified program or as may otherwise be permitted by the Act

SECTION 00880 REGULATORY REQUIREMENTS

1. STANDARDS, CODES AND REGULATION

- 1.1. All Work is to comply with the rules and regulations of governing bodies having jurisdiction.
- 1.2. Standards, codes and regulations published by Manufacturer's associations, governmental agencies and other regulatory authorities form a part of these Specifications as minimum requirements. Such references include the latest issue and legal requirements in force.
- 1.3. Where differences occur between the Contract Documents and such standards, the strictest requirements shall take precedence.
- 1.4. Supply all materials and perform all Work in accordance with the Manufacturer's specifications and installation procedures, and in conformance with published Trade and Manufacturers' association standards, unless specifically noted otherwise in the Contract Documents.

2. PERMITS AND FEES

- 2.1. The Troy School District will obtain and pay for the General Building Permit.
- 2.2. Other than the general building permit, Contractor shall provide and pay for all other permits, assessments, governmental fees, bonds, connection charges, licenses and inspection fees and any other charges necessary for the proper execution and completion of the Contractor's Work.
- 2.3. Contractor is to provide, pay for and coordinate all other permits, fees, inspections, and city, county, state, federal and governing authority approvals required for the successful completion of the Work contained within its respective Bid Category and deliver required certificates of inspection and approvals to CM.
- 2.4. This Project is under but not limited to the jurisdiction of the
 - MICHIGAN DEPARTMENT OF LABOR FOR MECHANICAL AND ELECTRICAL
 - STATE OF MICHIGAN FIRE MARSHAL DIVISION
 - MICHIGAN DEPARTMENT OF PUBLIC AND (COUNTY) DEPARTMENT OF PUBLIC HEALTH
 - Site water and sewer utilities are under the jurisdiction of the COUNTY DRAIN/ROAD COMMISSION authorities

3. TAXES

3.1. This Project is subject to all applicable state Sales Tax and/or Use taxes, and Bidder must include such taxes in its Bid Proposal. All other taxes applicable to the project at the time of the bid are to be included in the bid amount and will be the responsibility of Bidder.

SECTION 01140 USE OF PREMISES

1 RULES AND ENFORCEMENT:

- 1.1. Contractor and its Subordinate Parties shall be subject to rules and regulations for the conduct of the Work as stated herein and as the Owner or CM may establish.
- 1.2. Willful disregard of the following will be grounds for requiring the offending person(s) to be removed from the Project, and may subject the Contractor to termination under the Agreement.

2 USE OF PREMISES AND DELIVERIES

2.1. ACCESS TO WORK:

- 2.1.1. Before starting the Work, Contractor shall ascertain from CM what entrances, routes or roadways shall be used for access to the Work, and use only those designated for movement of personnel, materials and vehicles to and from the Project site.
- 2.1.2. Close coordination is required of Contractor with the Owner, CM, other contractors, the city and others having an interest in the Project to assure that Work on the site, access to and from the site and the general conduct of operations is maintained in a safe and efficient manner, and that disruption and inconvenience to existing streets and property is minimized.
- 2.1.3. Contractor is responsible to review the site and be familiar with all existing conditions within and around the Owner's property including local conditions and requirements.

2.2. ENTRANCES AND DRIVES

- 2.2.1. Specific entrances for material deliveries, equipment deliveries and worker access to the Project site will be as designated/directed by CM.
- 2.2.2. Selected entrances to the Project site will remain open for use during normal working hours.
- 2.2.3. At no time are vehicles to be parked, whether attended or not, in the Owner's entrances or drives.
- 2.2.4. Any material delivery which will tie up the Owner's entrances or drives shall be pre-scheduled with the Owner through CM.
- 2.2.5. Owner's deliveries and operations will take precedence over scheduling of construction deliveries.

2.3. ACCESS TO BUILDINGS:

- 2.3.1. Maintain free access to all buildings and areas of the site for designated vehicles, service vehicles and fire fighting equipment, and at no time shall block off or close roadways or fire lanes without providing auxiliary roadways and means of entrance acceptable to the Owner and CM.
- 2.3.2. Maintain a clean and safe passageway for the Owner's operations and personnel in existing areas, and maintain clearances adjacent to and in connection with the Work performed. Fire hydrants must remain accessible at all times.
- 2.3.3. Give the Owner and the local fire department at least forty-eight (48) hours notice of any such changes of routes.

2.4. SITE PARKING:

- 2.4.1. There is on-site parking for Contractors and their Subordinate Parties' employees.
- 2.4.2. Contractor, Subordinate Parties and their personnel will be allowed to park in the Owner's parking area. Each Contractor is responsible for providing transportation to and from the site, if required.

- 2.5. LOADING OF STRUCTURE: Each Contractor on behalf of itself and its Subordinate Parties shall not load or permit any part of a structure to be loaded with a weight that will endanger its safety.
- 2.6. USE OF OWNER'S EQUIPMENT: Contractors and their Subordinate Parties will not be allowed to use any Owner tools or equipment during the course of the Project.

2.7. USE OF EXISTING ELEVATORS

- 2.7.1. Contractor may subject to the approval of CM and Owner, use the existing elevator(s) designated by the Owner within the contract boundaries for movement of personnel and materials to a construction area.
- 2.7.2. In those cases where an elevator is to be shared with Owner services, the Owner's employees and services take priority over construction activities.
- 2.7.3. Contractor is responsible for proper conduct with regard to the use of the elevator. Any damage to the elevator due to oversize load, excess weight or other conditions is the individual Contractor's responsibility.
- 2.7.4. Use of the elevator(s) at times other than normal working hours shall be coordinated with CM and Owner.

2.8. USE OF EXISTING FACILITIES

- 2.8.1. Limit the usage of the occupied areas of the facility to that which is absolutely necessary for the installation of the Work. Parts of the facility not in the construction area are "off limits" unless a specific work task is being performed as designated by CM.
- 2.8.2. Use of the Owner's cafeteria, parking, telephones, toilet facilities, tools, equipment, or any other item or facility belonging to the Owner is not allowed unless specifically authorized by Owner and CM.
- 2.8.3. Restrict all Work activities associated within an area undergoing renovation to the boundaries indicated by the Contract Documents. Any means of access or egress from the stipulated boundaries shall be coordinated with CM and the Owner.

3 WORK HOURS:

- 3.1. Normal working hours are; 7:00 AM to 3:30 PM, Monday through Friday.
- 3.2. Work operations shall comply with all applicable laws, ordinances, and regulations, and not create a public nuisance nor disturb the peace.
- 3.3. Compensation to CM for supervisory staff due to abnormal working hours will be at the requesting Contractor's expense.
- 3.4. Whenever Contractor intends to depart from normal work hours, it shall notify CM in writing at least forty-eight (48) hours in advance. Failure of Contractor to give such timely notice may result in CM directing the removal or uncovering of the Work performed during such abnormal hours at Contractor's expense. Special arrangements can be made for emergency work or shutdowns as may be required.
- 3.5. Required off-hours work:
 - 3.5.1. Contractors may be requested to work split shifts, weekends, off peak Owner loading periods, etc., to accommodate Owner's utility and service requirements, such as, but not limited to, medical gas systems, electrical power, HVAC systems, storm and sanitary lines.
 - 3.5.2. All Work shall be bid on a straight time basis. Should premium time be required by the Owner, the cost for premium time labor, which may be required, is the Contractor's responsibility and is to be included in the base bid.
- 4 USE OF EXPLOSIVES: Is NOT permitted.
- 5 DUST, DIRT, NOISE: Each Contractor shall effectively confine or eliminate dust, dirt and noise to the actual construction area and in compliance with all applicable laws, rules and regulations.

- 6 BEHAVIOR AND CONDUCT: The Owner and CM expect Contractors and their Subordinate Parties to exercise common sense and good judgment, and to conduct themselves in a manner which would be a credit to the Owner. Without limiting other applicable provisions of the Contract Documents, Contractor shall not engage in the following:
 - 6.1. Conduct that interferes with Work or work of others.
 - 6.2. Conduct that interferes with or is detrimental to safety, well-being of the owner, their operations and/or good reputation.
 - 6.3. Unauthorized use of confidential information.
 - 6.4. Discourtesy toward Owner's staff, visitors and the general public (including abusive, vulgar or other language.)
 - 6.5. Soliciting, canvassing, posting, or distributing literature or materials for any purpose while on the job site.
 - 6.6. Disregard of safety, sanitation, or security laws, rules and regulations.
 - 6.7. Stealing.
 - 6.8. Gambling.
 - 6.9. Possession and/or use of narcotics or intoxicants.
 - 6.10. Threats or abuse of others.
 - 6.11. Disorderly conduct or fighting.
 - 6.12. Playing of loud music.
 - 6.13. Falsification of information.
 - 6.14. Unauthorized travel of Contractor's employees outside the designated project Work areas.
 - 6.15. Discriminating behavior.
 - 6.16. Possession and/or use of weapons or firearms.
 - 6.17. Sexual or Ethnic harassment.
 - 6.18. Smoking: Contractors and their Subordinate Parties shall be responsible for adhering to the smoking policies and regulations of the Owner and the Owner's facilities.

7 TEMPORARY PARTITIONS:

7.1. Partition construction shall provide a fire-resistant classification approved by the authorities having jurisdiction. Openings in such partitions shall be protected by fire doors consistent with the rating of the partition. Any trade creating penetrations through the temporary partitions shall fire stop openings to match the rating of the wall.

8 PROTECTION OF FACILITIES

- 8.1. Each Contractor on behalf of itself and its Subordinate Parties shall be responsible for all damage to the Project including the existing buildings and grounds arising or resulting from its operations under the Agreement. Repair or replacement of damaged items shall be to the satisfaction of the Owner and CM.
- 8.2. Each Contractor shall provide and maintain proper shoring and bracing for existing underground and aboveground utilities, foundations, structure and systems encountered during its Work and shall
 - 8.2.1. protect the project, or any part thereof, and surrounding areas from collapse or movement, or any other type of damage until such time as they are to be removed, incorporated into the new Work or can be properly supported or backfilled upon completion of new Work.
 - 8.2.2. limit disruptions to a maximum of four (4) hours.

- 8.2.3. prior to beginning any Work that may affect underground facilities, contact MISS DIG and utility companies for the location of all existing underground services.
 - 8.2.3.1. Provide, documentation of such contact to CM.
 - 8.2.3.2. If necessary, Contractor shall pay for layout and locating of existing utilities.
- 8.3. Utilities and/or other services which are shown, or not shown but encountered, shall be protected by the Contractor from any damage arising or resulting from Work, unless or until they are abandoned. If the utilities or services are damaged from Contractor's Work, Contractor shall immediately repair any damage and restore the utilities and services to an equal or better condition than that which existed prior to the damage. Contractor will be responsible for all liabilities, expenses, lawsuits or claims arising or resulting from such damage and will defend hold harmless and indemnify Owner and CM from any claims or lawsuits or other expenses.
- 8.4. Each Contractor on behalf of itself and its Subordinate Parties shall be responsible for all damage to the Project and surrounding areas including the existing building and grounds arising out of or resulting from their performance of the Work. Repair or replacement of damaged items shall be to the satisfaction of the Owner and CM.
- 8.5. Preservation of existing trees and other vegetation on the site to the maximum extent possible is required.
 - 8.5.1. Each Contractor must plan its Work and instruct its Subordinate Parties to conduct their operations to avoid damage to trees and vegetation (provide barriers as required.)
 - 8.5.2. Indiscriminate driving about the site, disposing of waste, storage of materials upon or against trees or any other activity which is harmful to trees or vegetation will not be tolerated.
 - 8.5.3. Any case of damage to any tree shall be reported to CM immediately so that professional repairs can be made. The cost of such required repairs or treatment shall be charged to the responsible Contractor.

9 OWNER'S OPERATIONS & INTERRUPTION OF OCCUPANCY /SEQUENCING

- 9.1. The Owner shall have the option to curtail or delay any activity that affects its operations. Should a Contractor be asked to stop its Work, the Contractor shall do so immediately and proceed with other activities with no additional cost to the Owner or CM.
- 9.2. The Owner may occupy the premises during the entire period of construction to conduct operations.
- 9.3. Each Contractor is responsible to plan, coordinate and execute its Work in such a manner that there will be no disruption of or the least disruption to the Owner's operations. If an interruption of operations is unavoidable, then this Work will be scheduled with the Owner through CM.
- 9.4. Contractors is responsible to provide temporary utilities and systems to maintain services to the facility while Work is being performed.
- 9.5. No interruptions to Owner's power, lighting, signal, or alarm circuits will be permitted without the express written permission of the Owner through CM. Arrangements for interruptions shall be made with the Owner at least forty-eight (48) hours prior to the interruption and shall be made at such time and duration as authorized by them. Temporary feeders, transformer jumpers, connections, circuits, etc., shall be used as required to accomplish the above at no additional cost to the Owner and CM.

10 MATERIAL STORAGE

- 10.1. All Contractors are required to provide and pay for off-site storage facilities as required for their Work.
- 10.2. All Contractors will not be allowed on-site storage facilities. Material, equipment and tools, shall not be stored on-site in excess of five (5) working days prior to installation or use without CM's approval.
- 10.3. Storage of combustible materials within or adjacent to the building is prohibited.
- 10.4. All Contractors shall

- 10.4.1. Stock the job with sufficient materials to maintain progress and schedule and without interfering with the Work or storage of others.
- 10.4.2. Assume full responsibility for the protection and safekeeping of products under their control which are stored on the site.
- 10.4.3. Move any stored products under their control, which interfere with operations of the Owner or separate contractors as directed by CM.
- 10.4.4. Provide sufficient protection for its materials and equipment from damages by weather or construction work or other hazards.
- 10.4.5. Remove all debris and leave the area in a clean and orderly condition during progress of Work and upon completion of the Work.
- 10.4.6. Submit a receipt of shipment for all equipment stored on-site or off-site to CM. No materials or equipment shall be removed from the site without the permission of CM

SECTION 01250 CHANGES IN THE WORK

1 SUMMARY

- 1.01 This section describes the following requirements including:
 - 1.01.1 Types of Change Documentation
 - 1.01.1.1 PCO Potential Change Order
 - 1.01.1.2 CO Change Order
 - 1.01.2 Compensation of Overhead and Profit for Changes in the Work
 - 1.01.3 Itemization of Cost of Changed Work
- 1.02 This section is not intended to include RFI's, ASI's (Architects Supplemental Instructions), or other documents that clarify the work but have no substantive cost or schedule impact to the work.

2 TYPES OF CHANGE DOCUMENTATION

Changes to the work which may involve a change in the contract price or schedule will be accompanied by the Barton Malow form entitled "PCO- Quotation Only". In the event that the timing does not allow the For Quote Only process, then CM will issue its form entitled "PCO-Notice to Proceed."

- 2.1. PCO- NOTICE TO PROCEED AND FOR PCO- QUOTATION ONLY FORMS
 - 2.1.1. A PCO- Notice to Proceed is used when Work must be performed with swiftness and authorization to proceed by Change Order is inappropriate due to time restrictions. In order for a PCO- Notice to Proceed to be valid, it must be signed by CM. The terms for establishing the additional cost and processing of the PCO- Notice to Proceed into a Change Order shall be identified prior to its release by CM.
 - 2.1.2. If a change results in a change in cost, CM will issue a PCO with the supporting change documents.
 - 2.1.3. Contractor shall prepare a detailed cost quotation for the PCO. This quotation shall include an itemized takeoff of labor, equipment and material with a unit cost for each item together with backup and breakdown documentations satisfactory to CM. The PCO must be returned as directed
 - 2.1.4. Contractor shall sign and date the PCO and submit it with proper backup. The PCO will then be reviewed, evaluated, negotiated and then, when acceptable, processed
 - 2.1.5. The PCO- Quotation Only is a document used for processing Contractor's quotations and is **not** a Change Order. Therefore, completion of the PCO- Quotation Only does **not** release the Work to begin.
 - 2.1.6. PCO's will precede a Change Order. Contractors shall receive an approved PCO- Notice to Proceed or an executed Change Order before starting Work. Any changed Work performed by Contractor without a properly executed PCO- Notice to Proceed or a properly executed Change Order is at Contractor's sole risk and expense. BILLINGS AGAINST CHANGES WILL NOT BE ACCEPTED AFTER A PCO- NOTICE TO PROCEED OR FOR QUOTE ONLY IS ISSUED, BUT ONLY AFTER A CHANGE ORDER HAS BEEN PROCESSED AND SIGNED BY ALL PARTIES.

2.2. CHANGE ORDER

- **2.2.1.** Change Orders will be issued by CM. CM will first issue the Change Order to the Contractor for signature. The Change Order will then be returned to CM. Once all appropriate signatures are secured, an executed copy will be sent to the Contractor.
- 2.2.2. Once the Change Order has been processed and signed by all parties, the Contractor may invoice for payment on the completed portion of Work.
- 2.2.3. Agreement on a Change Order shall constitute a final settlement of all matters relating to the changed Work that is the subject of the Change Order.

3. COMPENSATION OF OVERHEAD AND PROFIT FOR CHANGES IN THE WORK

3.1. CONTRACTOR'S OVERHEAD AND PROFIT

- 3.1.1. For changes resulting in increase of cost:
 - 3.1.1.1. Overhead and profit for the Contractor shall not exceed the following when change Work is performed by
 - 3.1.1.1.1. Contractor itself: fifteen percent (15%).
 - 3.1.1.1.2. Contractor subordinate party: five percent (5%)
 - 3.1.1.2. Overhead and profit for the subordinate party shall not exceed the following when change Work is performed by
 - 3.1.1.2.1. Subordinate party itself: fifteen percent (15%)
 - 3.1.1.2.2. Contractor to the subordinate party: five percent (5%)
- 3.1.2. For changes resulting in reduction of cost
 - 3.1.2.1. Deductive costs shall include commensurate deductive credits for overhead and profit based on the percentages stated above.
- 3.1.3. Contractor's and Subordinate Party's overhead and profit shall include cost (at the Project Site, home office and otherwise) of supervision, telephone, travel, copying, administrative services, office, power, light, tools, jobsite vehicles, and all other general expenses including bond premiums. In no event shall these items be charged as cost of the Changed Work.

4. ITEMIZATION OF COST OF CHANGED WORK

4.1. EXTRA WORK TICKETS

- 4.1.1. If extra work is to be completed above and beyond the terms of the contract, as determined by (and approved in advance by) the CM, the Contractor is required to:
 - 4.1.1.1. Provide an Extra Work Order ticket to the CM within three (3) days of completing the work.
 - 4.1.1.1.1. Extra Work Order tickets will be rejected if they are not turned in to the CM within three (3) days of completing the work.
 - 4.1.1.1.2. Extra Work Order tickets are to be completed in triplicate and a copy is to be left with the CM.
 - 4.1.1.2.1. The CM will sign all copies of the Extra Work Order tickets and return two (2) to the Contractor in a prompt manner, keeping one for record.
 - 4.1.1.3. A copy of the signed ticket(s) must accompany the Request for Change Order(s) quote from the Contractor. A change order will not be processed and the Request for Change Order(s) will be rejected if there is no signature from the CM.

- 4.1.1.2. Provide the CM with a Request for Change Order for the extra work within ten (10) days of receiving the signed ticket.
 - 4.1.1.2.1. The Request for Change Order must be accompanied by a copy of the signed Extra Work Order ticket from the Contractor.
 - 4.1.1.2.2. The Request for Change Order will be rejected and no PCO or Change Order will not be processed if the quote is not received within ten (10) days of the date signed by the CM.

4.2. CORRELATION WITH CONTRACTOR'S SUBMITTALS

4.2.1. Contractors shall

- 4.2.1.1. Revise the Schedule of Values and Request for Payment forms to record each Change Order as a separate item of Work, and to record the adjusted contract price.
- 4.2.1.2. Revise the Construction Schedule to reflect each change in Contract Time approved by a Change Order.
- 4.2.1.3. Revise sub-schedules to show changes for other items of Work affected by the changes.
- 4.2.1.4. Enter and revise Record Documents to reflect changes

4.3. COST OF THE CHANGED WORK

4.3.1. The "Cost of the Changed Work" shall be approved by CM and shall mean the costs necessarily incurred by the Contractor in the proper performance of the Changed Work. Such rates shall not be higher than those customarily paid at the place of the Project. The Cost of the Changed Work shall only include those items set forth below.

WAGES OF LABOR	Wages of construction workers directly employed by Contractor to perform the construction of the changed Work at the site
PAYROLL MARKUP	The amount approved by CM and Owner which covers the costs paid by the Contractor for taxes, insurance, contributions, assessments, and benefits required by law or collective bargaining agreements and for personnel not covered by such agreements, customary benefits such as sick leave, medical and health benefits, holidays vacations and pensions, provided that such costs are based on the wages and salaries of labor performing the changed Work.
COST OF EQUIPMENT, MATERIALS, AND SUPPLIES	Costs of materials, equipment and supplies to be incorporated into the changed Work less all savings, discounts, rebates and credits accruing to the Contractor.
RENTAL CHARGES FOR EQUIPMENT NOT OWNED BY CONTRACTOR	Rental charges for equipment not owned by Contractor that is necessary for completion of the Changed Work. Rates and quantities rented must be approved in advance by CM.
TAXES	Sales or use taxes imposed by a governmental authority which are directly attributable to the changed Work and for which the Contractor is liable.
SUBORDINATE PARTY COSTS	Payments made to the Contractors for proper execution of Changed Work, subject to the limits set forth above for overhead and profit.

4.2.2. In no event shall the Cost of Changed Work include:

- 4.2.2.1. Salaries or wages of persons other than those directly performing the changed Work, including Contractor's personnel stationed at the principal office;
- 4.2.2.2. Expenses of the Contractor's principal office and offices other than the site office, except as provided above;
- 4.2.2.3. Overhead and general expenses of any nature, except as set forth above;
- 4.2.2.4. Capital expenses of Contractor, including interest on the Contractor's capital employed for the Changed Work;
- 4.2.2.5. Rental costs for machinery or equipment, except as allowed above, or tools of any kind, unless specifically identified and approved in advance in writing by CM;
- 4.2.2.6. Costs due to the negligence or failure to perform of the Contractor or its Subordinate Parties;
- 4.2.2.7. Costs designated above as being included in Overhead and Profit
- 4.2.2.8. Any cost not specifically described above, or otherwise approved in advance and in writing by CM and Owner.
- **4.2.2.9.** Any bond premiums of portion of increased bond costs directly attributable to the changed Work.

4.3. QUOTATION FORMAT

Based on the above, the following formula will be utilized by all of the Contractors.

	_	-		
Number of PCO				
Description of C				
Cost of Changed	Work			
Labor:	VV OI K			
Carpenter	(No. of Hrs. x Rate)	XXX.XX		
Labor	(No. of Hrs. x Rate)	XXX.XX		
Ironworker	(No. of Hrs. x Rate)	XXX.XX		
	Subtotal		XXX.XX	
	OH&P @ 15%		XXX.XX	
Equipment, Mater	rials Cumplies:			
Ace Hardwar				
Acme Produc				
Concrete Sup		XXX.XX		
r	r	XXX.XX		
	Subtotal		XXX.XX	
	OH&P @ 15 %		XXX.XX	
	Subtotal (1)			XXX.XX
C 4 C 4				
Contractor Costs ABC Welding	a vvv vv			
XYZ Resteel		XXX.XX		
A I Z Resteet		ΔΛΛ,ΛΛ		
	Subtotal		XXX.XX	
	OH&P @ 5 %		XXX.XX	
	_			
	Subtotal (2)			xxx.xx

Total Quotation (Subtotal 1 plus Subtotal 2)

XXX.XX

SECTION 01290 PAYMENT PROCEDURES

1. SUMMARY

- 1.1. This Section describes the following requirements including:
 - 1.1.1. Schedule of Values
 - 1.1.2. Application for Payment Process
 - 1.1.3. Reduction of Retention
 - 1.1.4. Payment for Materials Stored Off-site
 - 1.1.5. Waivers of Lien and Sworn Statements

2. PAYMENT PROCEDURES

2.1. SCHEDULE OF VALUES

- 2.1.1. Once the Agreement is awarded, each Contractor must submit a Schedule of Values for its entire Work to CM for approval. This Schedule of Values must be submitted either within fifteen (15) days of award or fifteen (15) days prior to the first payment application deadline (per the Application for Payment Schedule), whichever comes first. The Schedule of Values must include labor and material line items for each portion of the Work (larger portions of Work such as concrete, curtainwall, drywall, mechanical, and electrical shall be broken down by elevation, floor, and areas appropriate), the Contractor shall separate bond costs, and general conditions line items as appropriate.
- 2.1.2. The Schedule of Values will be submitted in a format as prescribed by, and to the level of detail specified by, CM.
 - 2.1.2.1. The sum of the parts of the Schedule of Values shall equal the contract price.
 - 2.1.2.2. The minimum level of breakdown and order on the application for payment will be:
 - 2.1.2.2.1. Bond costs, if applicable
 - 2.1.2.2.2. General conditions line item(s)
 - 2.1.2.2.3. Division 1 cost breakdown as required
 - 2.1.2.2.4. Costs associated with preparation of closeout paperwork and documentation
 - 2.1.2.2.5. Major portions of the Work shall be broken down into labor and material line items for specific areas of the facility
 - 2.1.2.2.6. A listing of approved and executed Change Orders to the Contract, if any, in sequential order.
 - 2.1.2.3. Schedule of Values items shall have a direct and understandable relation to the Project master construction schedule.
 - 2.1.2.4. Overhead and profit shall be listed as a separate line item on the schedule of values.
- 2.1.3. The Schedule of Values, unless objected to by CM, Owner or Architect, shall be the basis for the Contractor's application for payments.
- 2.1.4. CM shall have the right to require the Contractor to alter the value or add/delete categories listed on the Schedule of Values at any time for the following reasons:
 - 2.1.4.1. The Schedule of Values appears to be incorrect or unbalanced.

- 2.1.4.2. A revision of the Schedule of Values is required due to the Contractor revising the sequence of construction or assembly of building components that in turn invalidates the Schedule of Values.
- 2.1.4.3. Change Orders are issued to the Contractor and shall be incorporated into the Schedule of Values as a separate line item at the bottom of the Schedule of Values.
- 2.1.5. The Contractor is required to correlate the documentation for payment of stored materials requested in the application for payment against the agreed upon breakdown of the Schedule of Values as described in Payment for Stored Materials. CM reserves the right to not process the application for payment if this correlation has not been submitted in conjunction with the application.

2.2. APPLICATION FOR PAYMENT PROCESS

2.2.1. Step 1: JOB-SITE INSPECTION - DRAFT PAYMENT REQUEST

- 2.2.1.1. The Contractor shall
 - 2.2.1.1.1. have a representative walk the Project site with CM's representative on or before the tenth (10^{th}) of the month,
 - 2.2.1.1.2. invoice for Work from the tenth (10th) of last month to the tenth (10th) of the present month.
 - 2.2.1.1.3. submit during the review, the itemized rough draft of the Application and Certificate for Payment (AIA Documents G702 and G703 Continuation Sheet) identifying the Work completed, if any, during the current calendar month; shall review same with CM and obtain a preliminary approved copy of the draft for official submission
 - 2.2.1.1.4. Contractor's pay application shall only reflect Work completed through the date of submission. In no event will payments be authorized for forecasted Work.
- NOTE: No payment shall be issued to a Contractor for materials stored off-site unless supported by proper documentation as required by CM (upon advance notification of such requests only) as described in Part 3 Payment for Stored Materials.

2.2.2. Step 2: PAYMENT REQUEST PREPARATION/SUBMISSION

- 2.2.2.1. With the information agreed upon in Step 1, the Contractor will prepare a formal application for payment request.
- 2.2.2.2. Three (3) originals of the request and three (3) originals of the sworn statements must be submitted to CM's Site office on or before the fifteenth (15th) of the month.
- 2.2.2.3. Late or incomplete application packets will not be accepted.
- 2.2.2.4. The payment request will be made on an Application and Certificate for Payment form (AIA documents G702 and G703).
- 2.2.2.5. Before submitting these documents to CM, each request for payment must be signed by a duly authorized agent of the Contractor and notarized.
- 2.2.2.6. The Contractor <u>must</u> include with <u>each</u> request for progress payment a waiver of lien for all previous payments, Contractor's sworn statement and any necessary backup data as described in Part 4, Waivers of Lien and Sworn Statements.
- 2.2.2.7. In addition, at submission of the final pay application Contractor shall provide unconditional final waivers of lien for all Subordinate Parties, as well as all close out documentation and all additional back up data described in Part 4, Waivers of Lien and Sworn Statements.

2.2.2.8. In requests for payment which follow the execution of a Change Order in excess of twenty-five percent (25%) of the Agreement price, Contractor <u>must</u> present a bond rider evidencing that the penal sum of any required payment and performance bonds have been increased to one hundred percent (100%) of the adjusted Agreement price, or such other percentage as set forth in Section 00200 of the Project Manual, Instructions to Bidders. Submission of the required back-up data is a condition precedent to payment.

2.2.3. Step 3: CHECK DISTRIBUTION

- 2.2.3.1. CM will issue individual checks to each Contractor. The Contractor will receive the waiver of lien with the check and will be required to sign three (3) originals of the waiver upon receipt of the check each month (see Part 4).
- 2.2.3.2. The Contractor shall provide all supporting documentation substantiating the Contractor's right to payment as the Owner, CM and the Architect may require.

2.3. REDUCTION OF RETENTION

- 2.3.1. CM shall be entitled to withhold ten (10%) percent of each payment due to a Contractor until Substantial Completion of the Contractor's Work.
- 2.3.2. The Contractor, when requesting a reduction of retention, shall submit to CM, an AIA G707, Consent of Surety to Reduction In or Partial Release of Retention form in Section 01600 Forms.
- 2.3.3. Within thirty (30) days after Certificate of Substantial Completion has been issued for all portions of its Work, the Contractor's retention may be reduced to a sum as CM/the Architect may determine is suitable to protect CM and the Owner for all incomplete Work and any unsettled claims.
- 2.3.4. Notwithstanding the foregoing, payment of retention shall be subject to all other conditions precedent that applies to payment as set forth in the Contract Documents.

3. PAYMENT FOR MATERIALS STORED OFF-SITE

3.1. PAYMENT FOR MATERIALS STORED OFF-SITE

- 3.1.1. The Contractor, if intending to use an off-site storage area or facility for stored materials, shall submit a written request to the CM and obtain approval prior to submitting the first application for payment as described in Part 2 Applications for Payment.
- 3.1.2. Payments will be made for materials properly stored off site.
 - 3.1.2.1. "Properly stored" shall mean in an insured warehouse with the Owner and CM being named as insureds, and all material identified as property of the Owner.
 - 3.1.2.2. The Contractor is responsible for all associated off site storage costs, transportation, insurance, including insurance coverage for stored material, while in transit, unless Contractor obtains written documentation that the material is covered during transit under a Builder's Risk Policy applicable to the Project.
 - 3.1.2.3. Contractor shall provide CM and the Owner verification in writing for all material so stored. Such materials shall be protected from diversion, destruction, theft, and damage to the satisfaction of CM, Owner and the Lender (if any), specifically marked for use on the Project, and segregated from other materials at the storage facility.
 - 3.1.2.4. The Contractor bears all risk of loss to materials and equipment stored off site.
- 3.1.3. Contractor is to provide supporting documentation in the form of invoices, insurance policies, and any other pertinent documentation as requested by CM or Owner for items the items stored offsite. Documentation shall include the following:

- 3.1.3.1. Detailed description of the material including quantities that will serve as a material description for the billing and as information to file a claim with an insurance company.
 - 3.1.3.1.1. Stored Materials Each item must be identified as to manufacturer, model number, and serial number, if applicable, or other identifiers should be listed for each item. Each listing must be accompanied by invoices, shipping tickets, consent of surety, and any other applicable supporting documentation.
 - 3.1.3.1.2. Stored Manufactured Building Materials Each item must be identified as to type, manufacturer's number or designation, and should also list the number of cartons and the contents therein storage. Each listing must also be accompanied by supporting documents including all invoices, shipping tickets and consent of surety.
 - 3.1.3.1.3. Stored Fabricated Materials A listing specifying the number of pieces, items, and marks as may be applicable to the particular type of items. Photographs should accompany the request.
- 3.1.3.2. Individual itemized costs of materials and the total cost value, which shall not exceed the Contractor's subcontractor or material supplier cost. The total cost value shall be supported by the Contractor's subcontractor or material supplier invoices for the stored material.
- 3.1.3.3. Estimated cost value for those materials that are fabricated by the Contractor's subcontractor or material supplier.
- 3.1.3.4. The location where the material is physically stored, including the warehouse address and storage location within the warehouse, such as bin number, aisle number or other designation. All material shall be segregated and marked.
- 3.1.3.5. Copies of the insurance policies that cover the stored materials and that name CM and the Owner as insureds. The limit of the insurance policy shall be equal to or greater than the replacement value of the stored materials.
- 3.1.4. When Applications for Payment include products stored off the Project Site or stored on the Project Site but not incorporated in the Project, for which no previous payment has been requested, a complete description of such product shall be attached to the application.
- 3.1.5. Contractor shall submit a certificate of title listing the Owner's ownership in the off-site stored materials equal to the amount paid effective at the time funds are delivered.
- 3.1.6. If the size, quantity, and/or type of material or product is such that a bonded warehouse is deemed unsuitable, then, with CM's approval, the Contractor may elect to prepay its subcontractor or supplier for certain material and products which are to remain on and be stored on that subcontractor/supplier's premises until needed by the Project. In such event, the Contractor shall enter into a security agreement with the subcontractor/supplier under which the Contractor shall be granted a security interest in and to all such material and products fabricated and/or to be supplied by the subcontractor/supplier for this Project and stored on the subcontractor/supplier's premises. This Security Agreement shall be a part of the financing statement, which shall be presented to a filing officer for filing pursuant to the Uniform Commercial Code. All expenses incurred in obtaining this security agreement shall be at Contractor's sole cost and expenses, and shall not accrue to the Owner, CM, Architect, nor the Project. A copy of each and every security agreement shall be filed with CM with the first Application for Payment which requests payment for such material or products.
- 3.1.7. All payment requests for off-site stored materials must be accompanied using the "Payment Request for Stored Materials" and a "Subcontractor Affidavit for Stored Materials." Payment requests for stored materials not complying with the foregoing requirements will not be approved. Contractors are to notify the CM in ample time to conduct verification procedures.

- 3.1.8. Contractors may not apply the cost of materials stored off-site towards a reduction in the retention amount.
- 3.1.9. Representatives of CM and Owner shall have the right to make inspections of the storage areas at any time.

4. WAIVERS OF LIEN AND SWORN STATEMENTS

4.1. WAIVERS OF LIEN

- 4.1.1. The Contractor's first Application for Payment will be based upon 100 percent of the value of Work installed. The first payment, amounting up to 90 percent of application, will be made to the Contractor without supporting documentation. Subsequent Applications for Payment must be accompanied by lien waivers from the Contractor, its Subordinate Parties or receipted invoices covering payment to the Contractor for previous calendar month period. Lien waivers must be unconditional and must show the amount paid.
- 4.1.2. An "Acknowledgment of Payment and Partial Unconditional Release" will be distributed with the check to each Contractor by CM for payment of the previous month's application. The Waiver of Lien is to be signed by an authorized representative of the Contractor. Under no circumstances will payment be released until the completed "Acknowledgment of Payment and Partial Unconditional Release" has been submitted and signed by the Contractor from the previous month.
- 4.1.3. Final payment will not be made until a "Final Release Subcontractor/Materialman has been submitted. This will also be distributed by the CM for Contractor signature and must be returned by the Contractor. The Final Release must be signed by an authorized representative of the Contractor and must be notarized.
- 4.1.4. Final unconditional waivers will be required for all of Contractor's Subordinate Parties listed on Contractor's sworn statement. These final waivers must be submitted along with the final release, before payment can be made.

4.2. **SWORN STATEMENTS**

- 4.2.1. The appropriate number of original "Sworn Statements" must be completed to the satisfaction of CM, signed and notarized by an authorized representative of the Contractor and submitted with the Contractor's Application for Payment, monthly to the CM.
- 4.2.2. The Contractor's Subcontractor's sworn statements, waivers and other supporting documentation will be required with each pay application.

SECTION 01310 MEETINGS

1. GENERAL

1.1. DESCRIPTION OF REQUIREMENTS

- 1.1.1. The CM shall schedule, chair, and administer all periodic meetings throughout the progress of the work for the purpose of coordinating and expediting the Work. Such meetings shall be held at the job site bringing together responsible representatives of active Contractors for the purpose of planning, assessing progress and discussing problems of mutual concern. Each Contractor, and its Subordinate Parties' representative attending the meetings shall be authorized to act on behalf of and make decisions/commitments for the entity each represents, the decisions made at the meetings and each Contractor who should be in attendance will be held responsible for information and directions given at the meeting.
- 1.1.2. The CM will prepare and distribute the minutes of all meetings, if CM determines minutes are required. If the attendees do not object in writing to any part of the meetings within ten (10) days of distribution of the minutes, the minutes shall be accepted as written.
- 1.1.3. The scope of meetings include, but are not limited to:
 - 1.1.3.1. Preconstruction Meeting
 - 1.1.3.2. Job Progress/Coordination Meetings
 - 1.1.3.3. Other Meetings

2. TYPES OF MEETINGS

2.1. PRECONSTRUCTION MEETING (KICK-OFF)

- 2.1.1. A Preconstruction (kick-off) meeting will be conducted with representatives of all the Contractors within fifteen (15) days after the Agreement is awarded at the jobsite or as designated by the CM. The agenda may include:
 - 2.1.1.1. Discussion on major subcontracts and suppliers
 - 2.1.1.2. Major and/or critical work sequencing regarding the project schedule
 - 2.1.1.3. Project coordination and designation of responsible personnel
 - 2.1.1.4. Procedures and processing of field instructions, requests for proposal, submittals, change orders, applications for payment, etc.
 - 2.1.1.5. Quality assurance/control issues
 - 2.1.1.6. Adequacy of distribution of contract documents
 - 2.1.1.7. Procedures for maintaining record documents
 - 2.1.1.8. Use of premises, office, work and storage areas and other CM requirements
 - 2.1.1.9. Construction facilities/temporary utilities
 - 2.1.1.10. Safety and security procedures
 - 2.1.1.11. Other administrative procedures
 - 2.1.1.12. Review of Owner expectations

2.2. JOB PROGRESS/COORDINATION MEETINGS

- 2.2.1. On-site project coordination/progress meetings will be held on a bi-weekly basis or as appropriate throughout the life of the Project. The [CM/Owner] will set the agenda for the Project progress meeting. At a minimum, each Contractor shall be prepared to discuss the following:
 - 2.2.1.1. Actual vs. scheduled progress for the prior two-week period

- 2.2.1.2. Planned construction activities for the next four weeks
- 2.2.1.3. Problems with, revisions to and corrective measures and procedures to regain the construction schedule, if required
- 2.2.1.4. Review of off-site fabrication, delivery schedules
- 2.2.1.5. Document clarification requests
- 2.2.1.6. Coordination items with other Contractors
- 2.2.1.7. Changes in the work affecting cost and/or time
- 2.2.1.8. Submittals and shop drawings
- 2.2.1.9. Field observations, problems, conflicts
- 2.2.1.10. Quality control issues and non-conformance resolutions
- 2.2.1.11. Safety issues

2.3. OTHER MEETINGS

- 2.3.1. QUALITY ASSURANCE MEETINGS CM may conduct quality assurance/quality control meetings as necessary during the progress of the Work. CM will set the agenda for the quality meeting. At a minimum, the Contractor shall be prepared to discuss the following:
 - 2.3.1.1. Testing and inspection procedures
 - 2.3.1.2. Tolerance requirements
 - 2.3.1.3. Quality samples
 - 2.3.1.4. Reporting of non-conformance items
 - 2.3.1.5. Corrective actions assigned
 - 2.3.1.6. Disposal of non-conforming items
 - 2.3.1.7. Job procedures
- 2.3.2. SAFETY MEETINGS Refer to Section 00810 Safety and Loss Control Program for more information.
- 2.3.3. INSPECTIONS TOURS Formal inspections/tours may be made of the Project progress by the Owner, Architect, local, state or federal officials, insurance representatives, or others as the occasion warrants and as scheduled by CM. If requested by CM, each Contractor shall be prepared to show and explain Work throughout the building to the inspecting parties, in addition to providing Work in compliance with these inspections.
- 2.3.4. CHANGE REQUEST MEETINGS Upon issuance of a major Proposal Request (a.k.a. bulletin), CM may conduct a meeting as necessary with all significant Contractors to review its contents and determine cost, delivery and schedule impacts. At a minimum, the Contractor shall be prepared to discuss the following:
 - 2.3.4.1. Impact of out-of-sequence work
 - 2.3.4.2. Identification of pertinent long-lead material and system impact
 - 2.3.4.3. Alternative recommendations
 - 2.3.4.4. Evaluation of approximate cost magnitude
 - 2.3.4.5. Evaluation of impact on completion
 - 2.3.4.6. Alternate sequencing
 - 2.3.4.7. Due date for Contractor pricing and scheduling impact

SECTION 01320 COMMUNICATIONS

1. SUMMARY

- 1.1. This Section describes the following requirements including:
 - 1.1.1. Meetings / Communications
 - 1.1.2. Contractor Correspondence
 - 1.1.3. Contractor's Daily Report
 - 1.1.4. Request for Information (RFI)

2. METHODS OF COMMUNICATION

- 2.1. MEETINGS (previous Section 01310 Meetings)
 - 2.1.1. The CM shall schedule, chair, and administer all periodic meetings throughout the progress of the work for the purpose of coordinating and expediting the Work. Such meetings shall be held at the job site office bringing together responsible representatives of active Contractors for the purpose of planning, assessing progress and discussing problems of mutual concern. Each Contractor, and its Subordinate Parties' representative attending the meetings shall be authorized to act on behalf of and make decisions/commitments for the entity each represents, the decisions made at the meetings and each Contractor who should be in attendance will be held responsible for information and directions given at the meeting.
 - 2.1.2. The CM will prepare and distribute the minutes of all meetings, if CM determines minutes are required. If the attendees do not object in writing to any part of the meetings within ten (10) days of distribution of the minutes, the minutes shall be accepted as written.
 - 2.1.3. The scope of meetings include, but are not limited to:
 - 2.1.3.1. Preconstruction Meeting
 - 2.1.3.2. Job Progress/Coordination Meetings
 - 2.1.3.3. Other Meetings
 - 2.1.3.3.1. Quality Assurance
 - 2.1.3.3.2. Safety
 - 2.1.3.3.3. Inspection Tours
 - 2.1.3.3.4. Change Request

2.2. CONTRACTOR CORRESPONDENCE

- 2.2.1. All field and/or construction correspondence and/or communications must be directed through CM,. All correspondence should list the following as appropriate:
 - 2.2.1.1. Project Name: BP8 Troy High School and Athens High School MEP Upgrades
 - 2.2.1.2. CM Job#: 140077
 - 2.2.1.3. Architect Job#: 13174C, 13173B
 - 2.2.1.4. Contractor Contact Information
 - 2.2.1.5. Subject: clearly indicate subject matter of correspondence

2.3. CONTRACTOR'S DAILY REPORT

2.3.1. Each Contractor will prepare and distribute daily to CM a comprehensive daily report to include pre-task planning and maintain it during the entire project period. The daily report shall be

- submitted to CM's superintendent by the end of the day for that day's Work. Each Contractor is responsible for specifically alerting CM to items which could result in claims or delays.
- 2.3.2. Each Contractor may provide its own daily report if it covers the same issues as addressed in CM's Contractor Daily Report / Pre-Task Plan form. The CM suggested report form will be provided to the Contractor and is in Section 01600 Forms.

2.4. REQUEST FOR INFORMATION (RFI)

- 2.4.1. The Request for Information (RFI) is in Section 01600 Forms.
- 2.4.2. In the event that a clarification is required due to a question raised by the Contractor pertaining to the Contract Documents, the Contractor shall submit a Request for Information (RFI) to the CM, which will be forwarded to the Architect. The RFI should be sufficiently detailed to accurately describe the problem and provide a possible solution.
- 2.4.3. The Architect will return the RFI to CM as expeditiously as possible with its reply. In some instances, the Architect may issue its reply to the RFI on other documents, in which case, the RFI will simply reference these documents.
- 2.4.4. The RFI will be returned to the Contractor by CM. The Contractor is responsible to give proper notice as set forth in the Contract Documents if a response will cause the Contractor to incur additional expense or expend additional time which could impact the schedule. If extra work or an additional cost may exist due to the clarification, CM may issue a PCO- Quotation Only or PCO-Notice to Proceed to the Contractor.

SECTION 01330 SUBMITTALS

1 SUMMARY

- 1.1. This Section describes the following requirements including:
 - 1.1.1. Scope
 - 1.1.2. Submittal Register
 - 1.1.3. Submittal Requirements
 - 1.1.4. Submittal Process and Responsibilities
 - 1.1.5. Re-submission Requirements

2 SCOPE

- 2.01 Where requirements of this Section vary from the requirements of the General Conditions, this Section's requirements shall take precedence.
- 2.02 CM will prepare and submit a submittal register/schedule including close-out documentation for Contractor's use in preparing submittals required for the Project. Contractor's shall complete the submittal schedule/register showing the dates for submission, lead times required and their expected delivery dates to maintain and follow the construction schedule. Dates for submission noted by Contractor must assume re-submittals will be required. Submittals received on the date scheduled will be processed as specified. CM/Owner/Architect will not be held responsible for delays due to receiving submittals after the date indicated in the Contractor's submittal schedule.
- 2.03 Submittals shall be submitted based on each technical specification section. Submittals containing information about more than one specification section will be returned for re-submittal.
- 2.04 Contractor is responsible to provide all submittals required under the Contract Documents, whether or not listed in the submittal register.
- 2.05 Furnish approved copies of shop drawings, diagrams, templates, catalog cuts, technical data, etc. to others for the purposes of coordination of this Work.
- 2.06 Coordination: Each Contractor shall coordinate preparation and processing of submittals with performance of construction activities. Transmit each submittal sufficiently in advance of performance of related construction activities to avoid delay.
 - 2.06.1 The Contractor, by providing the submittal assures the product or system submitted is available and deliverable in accordance with the schedule requirements.
 - 2.06.2 Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals and related activities that require sequential activity.
 - 2.06.3 Coordinate transmittal of different types of submittals for related elements of the Work so processing will not be delayed by the need to review submittals concurrently for coordination.
 - 2.06.4 CM reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
 - 2.06.5 Coordinate each submittal as required with all trades and with all public agencies involved.
 - 2.06.6 Secure all necessary approvals from public agencies and others; signify by stamp or other means that all required approvals have been obtained.
 - 2.06.7 Material Compliance Certificate:
 - 2.06.7.1 The following forms are available upon request from the CM:
 - 2.06.7.1.1 Material Compliance Certificate
 - 2.06.7.1.2 Approved Submittal List for Material Compliance Certificate Use

- 2.06.7.2 Contractors may choose to complete the *Material Compliance Certificate* form which will serve as the Contractor's official submittal document and must meet all general submittal requirements. Only approved submittals listed on the *Approved Submittal List for Material Compliance Certificate Use*, prepared by CM, will be reviewed in this format.
- 2.06.7.3 Items available to utilize the Material Compliance Certificate can include a submittal that establishes a level of quality by complying with the manufacturer and manufacturer's designated identifier as called for in the Contract Documents. The Contractor is committed to using this exact specified component. This Certificate is contractually binding.
- 2.06.7.4 This form can be used for multiple submittal items. The Architect/Engineer will review and approve the Material Compliance Certificate in the same manner as a standard submittal.
- 2.06.7.5 In the event additional information would be required after submission and/or approval of the Material Compliance Certificate, the Contractor must provide this information promptly through the standard revision process.

3. SUBMITTAL REQUIREMENTS

3.1. GENERAL

- 3.1.1. Each submittal shall show Contractor's review stamp, with handwritten signature, certifying review of the submittal, verification of field measurements and compliance with the Contract Documents.
- 3.1.2. Each submittal shall be accompanied with a Submittal Transmittal Form. The following information shall be furnished by the Contractor on the submittal transmittal form:
 - 3.1.2.1. Original Date of submission and Revision Date(s).
 - 3.1.2.2. Project name and Architect's and the CM's project number
 - 3.1.2.3. Names of:
 - 3.1.2.3.1. Contractor
 - 3.1.2.3.2. Second-Tier Contractor (if applicable)
 - 3.1.2.3.3. Supplier
 - 3.1.2.3.4. Manufacturer
 - 3.1.2.4. Identification of product or material
 - 3.1.2.5. Technical Section number, clearly identified. On multiple submittals, a separate transmittal should be completed for each specification section on items being submitted.
 - 3.1.2.6. Reference to construction drawings by drawing number
 - 3.1.2.7. The quantity of each Shop Drawing, Product Data or Sample submitted
 - 3.1.2.8. Notification of deviations from Contract Documents
 - 3.1.2.9. For Shop Drawings, show relationship to adjacent structure or materials
 - 3.1.2.10. For Shop Drawings, show field dimensions, clearly stated as such.
 - 3.1.2.11. Applicable standards such as ASTM or Federal Specifications.
 - 3.1.2.12. Other pertinent data
 - 3.1.2.13. Submittals not so transmitted will be returned un-reviewed. Re-submissions shall be so noted on the transmittal.

3.1.3. Unless noted otherwise on the submittal, all submissions will be considered to be "as specified."

3.2. REQUIRED QUANTITIES OF SUBMITTALS (ELECTRONIC REVIEW VERSION(

3.3.1. In general, all submittals, except color or physical samples, are to be posted electronically in PDF document form for CM and the Architect/Engineer to be electronically reviewed and approved .CM will use Prolog Web as a posting site for the facilitation of this review and approval process. The following number of originals and copies will be required for each type of submittal.

	Required submit quantities:		
Submittal Type:	Paper	Electronic ¹)FTP upload(Other
.1 Shop Drawings – Structural Steel and all MEP	3	1 ²	
.2 Shop Drawings – all other	2	1	
.3 Product Data – Structural Steel and all MEP	3	1	
.4 Product Data – all other	2	1	
.5 Samples			4 ³
.6 Certificates ⁴	1	1	
.7 Warranties / Guarantees ⁴	3	1	
.8 Test Reports ⁴	3	1	
.9 Close-Out Materials :4O&M Manuals and all Data	3	1	

NOTES:

3.3.2. All submittals will be reviewed electronically via Prolog Web, an electronic submittal transmittal is required. Reviewed versions will be posted back to Prolog Web. CM will notify Contractor of the posting and availability for Contractor to download the reviewed version. Paper copies will not be returned to the Contractor.

4 TYPES OF SUBMITTALS

4.1. SHOP DRAWINGS

- 4.1.1. Provide Shop Drawings as complete submittals (no partial sets) on original drawings or information prepared solely by the fabricator or supplier. In no instance shall the Contract Drawings be reproduced for Shop Drawing submittals.
- 4.1.2. Sheet sizes shall not exceed the size of the Contract Drawings or smaller than 8-1/2" X 11".
- 4.1.3. Each drawing shall have blank spaces large enough to accept three (3) 3" x 6" review stamps of the Contractor, the CM, and the Architect.

4.2. PRODUCT DATA

- 4.2.1. Modify Product Data sheets to delete information that is not applicable to the Project. Provide additional information if necessary to supplement standard information.
- 4.2.2. Product Data Sheets that are submitted with extraneous information not deleted and/or modified will be returned without review to the Contractor for re-submittal.

4.3. SAMPLES

¹ ALL electronic submittals shall be in PDF format

² Provide on compact disk as well as upload to the FTP site (INSERT IF NECESSARY)

³ Unless amount specified within the technical specifications is greater

⁴ Items #6-9 above are to be submitted together as part of the Close-Out Packet when requested by CM

- 4.3.1. Provide physical Samples to illustrate materials, equipment or workmanship, and to establish standards by which completed work may be judged as required by the technical section.
- 4.3.2. Provide Office Samples in sufficient size or as defined in the technical specifications and quantity to clearly illustrate full range of colors, textures, etc. available and the functional characteristics of the product or material.
- 4.3.3. Erect Field Samples or mock-ups as required by the technical sections and/or CM, at the Project site in a location designated by CM. Construct field samples complete, including Work of all trades required in finishing the Work. Provide Field Samples at the request of the Architect and/or CM where construction materials and/or methods deviate from the requirements of the intent of the Contract Documents or conventional construction practice.

4.4. CERTIFICATIONS

4.4.1. Certifications shall clearly identify the materials in reference and shall state that the material and the intended installation methods, where applicable, are in compliance with the Contract Documents for this project. Attach manufacturer's affidavits where applicable.

4.5. WARRANTEES/GUARANTEES

- 4.5.1. Provide warrantees and/or guarantees as required by the various technical sections and other Contract Documents on the Contractor's letterhead in accordance with the requirements of the documents.
- 4.5.2. Refer to Section 01700 for additional close-out information and requirements including the standard CM Contractor's Guarantee Form that must be signed, without modification, in order to receive final payment. A copy of this form is either found in Section 01600 or is available upon request.

4.6. OPERATING AND MAINTENANCE MANUALS

4.6.1. Provide operating and maintenance manuals/data as required by the various technical sections in accordance with the requirements of the documents.

5. SUBMITTAL PROCESS AND RESPONSIBILITIES

5.1. Contractor's RESPONSIBILITIES

- 5.1.1. After the CM's and Architect's review, within one (1) week of receipt, Contractor is to distribute copies of the reviewed submittal to any supplier/fabricators, second or lower tier Contractors or other Contractors that must coordinate with this work. Contractor must maintain one copy at the Project Site for reference use.
- 5.1.2. Do not begin Work which requires submittals until return of submittals with CM's and Architect's stamp and initials indicating review with direction to proceed from either CM or Architect...
- 5.1.3. Contractor's responsibility for errors and omissions in submittals is not relieved by CM's or Architect's review of submittals.
- 5.1.4. Contractor's responsibility for deviations in submittals from requirements of Contract Documents is not relieved by CM's or Architect's review of submittals unless CM and Architect give written acceptance of specific deviations.

5.2. CM'S RESPONSIBILITIES

- 5.2.1. CM's review is for general administrative purposes only and neither this review, nor any subsequent approval by CM of a submittal, shall relieve Contractor from its obligations to comply fully with the Contract Documents.
- 5.2.2. CM will make changes or notations directly on the submittals, identify such review with its review stamp, sign and forward acceptable submittals to the Architect.

5.2.3. After the Architect's review, CM will forward submittals to the Contractor and retain one copy.

5.3. ARCHITECT'S RESPONSIBILITIES

- 5.3.1. Architect will review submittals within fourteen (14) Days after receipt, checking only for conformance with the design compliance of the Project and compliance with information given in the Contract Documents. If the submission is large and/or requires detailed or lengthy review by the Architect, additional time may be required.
- 5.3.2. Architect will return to CM without review any submittals not bearing the Contractor's or CM's review stamp or not showing that it has been reviewed by the Contractor and CM.
- 5.3.3. Architect will make changes or notations directly on the submittal, identify such review with its review stamp, obtain and record Architect file copy and return the submittal to CM.

5.4. RE-SUBMISSION REQUIREMENTS

- 5.4.1. For Shop Drawings: Review returned CM and/or Architect drawings and resubmit as specified. All changes made must be identified through bubbling or other approved method.
- 5.4.2. For Product Data and Samples Resubmit new data and samples as required.

SECTION 01360 COORDINATION (GENERAL)

1 COORDINATION OF WORK/COOPERATION

1.01 All Contractors are required to review, discuss and coordinate their Work with the Work of other contractors, Owner and CM with regard to sequence, timing, built-in Work and equipment, layout, location, compatibility of materials and sizes and required clearances prior to beginning the work to avoid construction delays which impact the Owner's occupancy of the facility.

1.02 Each Contractor

- 1.02.1 Coordinate installation of different components to assure maximum accessibility for required maintenance, service and repair.
- 1.02.2 Make provisions to accommodate items scheduled for later installation.
- 1.02.3 Provide to all other trades all information (drawings, diagrams, templates, embedments, etc.) necessary for the coordination of the Work.
- 1.02.4 Layout and install its Work at such time and in such manner as not to delay or interfere with the carrying forward of the Work of others.
- 1.02.5 Verification and Acceptance of previous work
 - 1.02.5.1 As Work under each Agreement commences, the condition of preceding Work under other agreements shall be verified and accepted by each subsequent Contractor when appropriate.
 - 1.02.5.2 Report in a prompt manner any interferences, discrepancies or incompatibilities discovered to CM, whose decision as to the Contractor at fault and as to the manner in which the matter may be resolved, shall be binding and conclusive on Contractors involved. CM may direct layout/ location changes as required to make the entire work fit together. Reasonable changes of this nature will not entitle any Contractor to an increase in contract price.
 - 1.02.5.3 Verification may, at CM's discretion, include a joint review by the subsequent Contractor, previous contractor(s), and CM to note any corrective Work required, similar items affecting the Work and particularly items which prevent acceptance by the subsequent contractors.
 - 1.02.5.4 The verification review procedures and findings shall be submitted in writing by subsequent Contractors to the CM.
 - 1.02.5.5 Any corrective work necessary to satisfy requirements of the Contract Documents shall be performed promptly by the previous Contractor to prevent delay to the work under the subsequent Contracts.
 - 1.02.5.6 After corrective work is accomplished the subsequent Contractor shall furnish written acceptance of the work as noted above.
 - 1.02.5.7 CM's participation in a joint review under this paragraph shall in no event be deemed to constitute approval of any layout or other Work that fails to comply with the **Contract Documents**.
- 1.02.6 Observation of the Work by others shall not relieve Contractor from its responsibility for coordination, supervision, or scheduling and direction of the Work.
- 1.02.7 Failure of a Contractor to notify others and CM of a potential interference, incompatibility, or discrepancy and any failure to coordinate Work with that of others prior to installation and/or fabrication shall be at the Contractor's risk.

SECTION 01370 COORDINATION DRAWINGS

1. GENERAL REQUIREMENTS

- 1.1. Contractor if required by its Work scope, shall be responsible for developing coordination drawings and participating in coordination meetings as defined herein, and shall have included the cost for such Work in its Bid Proposal.
- 1.2. Coordination Drawings shall be utilized to establish installation sequence, resolve trade coordination issues prior to installation and to make the most efficient use of space allocated for systems such as mechanical/electrical/plumbing installations without sacrifice to systems performance. This is also required to determine inter-relationships and possible interference's between all of the trades' Work and the architectural or structural features.
- 1.3. Contractors are required to attend coordination meetings as required by CM. The representative(s) from each Contractor is required to be familiar with the Work and have the expertise and authority to answer questions and make decisions and changes to its systems at these meetings.
- 1.4. The coordination drawings may also be used by Contractor as part of its required shop drawing and as-built drawing submittals.
- 1.5. Each Bidder should anticipate that each floor may require several meetings. However, in the interest of time, multiple floors or areas may be reviewed in one meeting. Development of coordination drawings will be by area and floor with order of priority established by CM.

2. COORDINATION DRAWING PROCESS

- 2.1. CM, after the award of the Agreements, will obtain 1/4" scale, screened mylars of the Structural, Reflected Ceiling and Architectural floor plans of the Project. CM will provide these mylars to the Contractors involved. The Electrical [Contractor, following an HVAC coordination kick-off meeting, shall immediately begin Work and prepare 1/4" scale layout drawings of all ductwork and piping. These drawings shall also show registers, grilles, diffusers, and similar features. Contractor shall include locations of all valves, dampers and shall note any items requiring access for service and maintenance as well as access doors in inaccessible ceilings. Drawings shall also show the size, layout and routing of all metal and flex ductwork, re-heat coils, terminal units, filters, and major hangers and supports. Contractor shall provide notation for diffuser boot sizes and heights and any other special features. Contractor shall provide cross sections and additional details through areas where clearances are tight and further detail as appropriate and/or required. Where piping or ductwork has external insulation, Contractor shall note or show locations and thickness. Contractor shall indicate bottom elevation of duct, pipes and equipment and elevation changes, to be measured to the lowest point including insulation and hangers where applicable.
- 2.2. In areas where no HVAC work occurs, but where other mechanical and electrical installations are installed, the Electrical Contractor will issue or note on transparencies indicating "No HVAC Work Required".
- 2.3. Within fifteen (15) working days of issuance of the mylars, the Electrical Contractor shall have completed layout drawings and provide to CM sixteen (16) prints for the first scheduled area. At this time all Contractors shall attend a Coordination Kick-Off Meeting at which time the first distribution of HVAC prints is made and procedures and schedule are reviewed.
- 2.4. As layout drawings for HVAC Work for subsequent areas are completed, the Electrical Contractor shall provide sixteen (16) prints of the completed layout drawings to CM. CM will in turn distribute two (2) prints to each required Contractor to include Plumbing, Fire Protection and Electrical Work. Respective Contractors shall then layout their own routings on the 1/4" scale mylars previously provided. Drawings shall include other major items such as valves, access panels, switch panels, pull boxes also noting items requiring access for service and maintenance, etc. as well as access doors in inaccessible ceilings.
- 2.5. Information for specific trades is required but not limited to the following:

- 2.5.1. Plumbing Size, layout and routing of piping, valves, boxes, supports, etc., for <u>all</u> utilities regardless of material size. Show or note all pipe sizes and working clearances around valves, etc. For pitched piping, identify bottom elevations at key points and at least every column line. Note thickness and location of all external insulation. Bottom elevations shall be measured to the lowest point including hangers and insulation where applicable.
- 2.5.2. Sprinkler Piping Size, layout and routing of mains and branch piping, hanger and supports, valves, working clearances, and bottom of pipe and bottom of hanger support elevations. Sprinkler head locations shall be shown on ceiling plans. For pitched piping, identify bottom elevation at key points and at least at every column line.
- 2.5.3. Electrical Size, layout and routing and size of conduit and wire 2" or larger for normal and emergency power distribution systems, 1-1/2" or larger for communication systems telephone, nurse call, physiological monitoring, etc., include all systems specified, boxes larger than 4" x 4", hangers, supports, and electrical fixtures including lights, speakers, detectors, sensors, cable trays, raceways, etc. Size and clearance of ceiling and above ceiling mounted items shall be noted as a depth from finished ceiling to top of fixture or top of clear area required. Provide bottom elevations of conduits and equipment. Bottom elevation shall be measured from the lowest point, including hangers.
 - 2.5.3.1. Within four (4) feet of all panels, or areas where more than 4 conduits, regardless of size, are routed or grouped together, identify an easement or right-of-way for the groups of conduit.
 - 2.5.3.2. Also show all wall mounted items located within 12" of the ceiling plane.
- 2.6. All Contractors, including Electrical Contractor, within ten (10) working days of issuance of HVAC prints, shall be prepared to attend coordination meetings as required by CM. They shall come to meetings with their completed mylars and two prints. Contractors, at the meeting, will work to review and overlay the mylars to identify and resolve interference's and coordination problems. Following the meeting, Contractors shall revise their mylars, if necessary, based upon the agreed changes and be prepared to meet again within five (5) working days of the first coordination meeting as scheduled by CM
- 2.7. When the mylars have been fully revised with no exceptions taken by respective Contractors, including the Electrical Contractor, the Contractors shall sign them, indicating their awareness of and agreement with the indicated routings and layouts and their inter-relationship with the adjoining or continuous Work of all Project contracts. Thereafter, no unauthorized deviations from the information provided will be permitted, and if made without the knowledge or agreement of the Architect and CM, this unauthorized Work will be subject to removal and correction at no additional cost to the Owner or the CM.
- 2.8. Within five (5) Days of the signing of the coordination drawings, each Contractor shall provide CM with one (1) sepia mylar and sixteen (16) prints of the signed mylar. CM will in turn distribute two (2) prints each to the other contractors and retain one set of mylars and two sets of prints on file at the Project site.

3. EXECUTION

- 3.1. In the preparation of all coordination drawings, 1/2" scale details as well as cross and longitudinal sections are required to fully delineate all conditions. Particular attention shall be given to the locations, size and clearance dimensions of equipment items, shafts, corridors and similar features.
- 3.2. After completion of the final coordination drawings, minor changes in duct, pipe or conduit routings that do not affect the intended function may be made as required to avoid space conflicts, when mutually agreed to by all parties involved. However, items may not be re-sized or exposed items relocated without CM's written approval. No changes shall be made by Contractors in any wall or chase locations, ceiling heights, door swings or locations, windows or other openings, or other features affecting the function or aesthetic effect of the building. If conflicts or interference's cannot be satisfactorily resolved, Contractors shall notify CM who will, in turn, obtain a decision from the Architect.

- 3.3. Other Contractors responsible for supplementary composite drawings, as indicated herein, shall make similar distribution to that described in item 1.03 Paragraph E. All trades desiring additional prints of such drawings, beyond the basic distribution indicated above, shall arrange for and pay the cost of same.
- 3.4. Record copies of final drawings shall be retained by CM and each Contractor as working reference. All shop drawings, prior to their submittal to CM shall be compared with the final drawings and developed accordingly by the Contractor responsible. Any revision to the drawings which may become necessary during the progress of the Work shall be noted to and by all Contractors and shall be neatly and accurately recorded on the record copies. Each Contractor shall be responsible for the up-to-date maintenance of its own record copies of the final drawings, and any subsequent changes thereto shall be utilized by CM and each Contractor in the development of As-Built/Record drawings described in Section 01720 of the Project Manual.
- 3.5. The HVAC drawings need not be submitted as a whole, but they shall be submitted in all cases per CM's project master construction schedule and in ample time to avoid construction delays. The coordination drawings of all trades may lack complete data in certain instances pending receipt of shop drawings, but sufficient space shall be allotted for the affected items. When final information is received, such data shall be promptly inserted on the final drawings.
- 3.6. No extra compensation will be paid for relocating any duct, pipe, conduit, or other material that has been installed without proper coordination between all Contractors involved. If any improperly coordinated Work, or Work installed that is not in accordance with the approved coordination composites, necessitates additional Work by the other Contractors, the costs of all such additional Work shall be solely borne by the Contractor responsible.
- 3.7. All changes in the Scope of Work due to revisions formally issued and approved shall be shown on that trade's final drawings and thoroughly coordinated with the other trades.
- 3.8. All Work on the coordination composite drawings shall be performed by competent draftsmen and shall be clear and fully legible. CM shall be sole judge of the acceptability of the drawings. All drawings shall be drawn dimensionally and graphically correct.
- 3.9. In general and before the first meeting the following guidelines shall be followed:
 - 3.9.1. All trades shall coordinate with the Electrical Contractor for the size, height and clearance requirements for recessed or semi recessed light fixtures, recessed speakers/detectors, and other electrical ceiling devices.
 - 3.9.2. Sprinkler heads shall be centered in the center of lay-in ceiling tiles unless approved shop drawings note otherwise.
 - 3.9.3. All elevations shall be based on height above finished floor using established benchmarks.
 - 3.9.4. Standard suspended ceiling systems requires <u>3"</u> minimum clearance for materials and installation.
 - 3.9.5. Review of other drawings may be necessary for special structural and suspended equipment requirements.
 - 3.9.6. All trades to hang work as high as possible in above ceiling areas, allowing access to equipment for maintenance, repairs, connections, filters and removal without demolition of other Work.
- 3.10. Coordination drawings submitted during this process are not considered shop drawing submittals. The coordination drawings may be part of the required shop drawing submittal, but are made separate from the distribution specified in this section.

SECTION 01400 QUALITY REQUIREMENTS

1. DOCUMENT CONTROL PROCEDURE

1.1. Each Contractor is to provide CM its document control procedure to include drawing submittals and surveillance. In the absence of such a procedure, the Contractor will use the following procedure for document control.

"A log is maintained identifying the drawing revision status, issue date and distribution (internal and external). The transmittal issuing the changed documents will indicate what changes are made and indicate that the documents are approved for use. Contractor meetings include a review of approved drawings. The review is documented in the meeting minutes. Superintendent surveillance activities include monitoring Contractor drawing use."

2. QUALITY CONTROL

- 2.1. Each Contractor is responsible to provide the Owner with a completed quality product for its Work. Each Contractor shall be responsible for any costs associated with re-testing and re-performing the Work as a result of the Contractor's poor performance or workmanship or other failure to comply with the Contract Documents.
- 2.2. All Work shall be done by persons qualified in their respective trades, and the workmanship shall be first-class in every respect. Each Contractor is responsible for ensuring employees are appropriately trained. All materials and equipment furnished shall be the best of their respective kinds for the intended use and unless otherwise specified, same shall be new and of the latest design.
- 2.3. The Contractor shall provide CM, Owner and Architect access to the Work in preparation and progress wherever the Work is located at all reasonable times.

Note: CM and the Architect will have the authority to reject Work that does not conform to the Contract Documents or may require special inspection or testing, whether or not such Work is to be then fabricated, installed or completed. The Architect shall make all decisions with respect to questions concerning the quality or fitness of materials, equipment and workmanship.

2.4. Failure by a Contractor to conduct its operations, means and methods and coordinate proper sequencing of the Work may cause the Troy School District to withhold payment or any other means deemed necessary to correct non-conforming Work.

3. NOTIFICATIONS AND CORRECTIONS OF NON-CONFORMANCE

- 3.1. CM and the Architect may conduct observations/evaluations of the Contractor's Work. CM and/or Architect's reviews do not relieve the Contractor from compliance with the Contract Documents or necessary corrections for deficiencies thereof. Contractors whose Work does not meet the standards set by the Contract Documents will be notified by representatives of the CM using a Corrective Action Report. The Contractor, upon receipt of the Corrective Action Report, shall complete and return the form and provide the corrective actions necessary in a timely manner as outlined.
- 3.2. The Corrective Action Report (CAR) (CON 18.2) is in Section 01600 Forms.

4. CONTRACTOR PERFORMANCE EVALUATION

- 4.1. CM will be evaluating Contractor's performance and will provide feedback during the life of the Project, on Contractor's performance, for the purpose of improving CM's Contractor selection process for future project endeavors.
- 4.2. This Contractor Performance Evaluation form is generated by the CPS Database.

SECTION 01450 TESTING AND INSPECTION SERVICES

1. CONTRACTOR'S RESPONSIBILITIES

- 1.1. The testing firm will report directly to the Troy School District. Copies of test and inspection reports will be furnished to the appropriate Contractors. The laboratory and its representatives will be instructed to promptly call to the attention of the Contractor any instance of non-compliance with the requirements of the Contract Documents. Failure to so notify the Contractor shall not relieve the Contractor of any of its responsibilities for compliance or making good workmanship or materials which are not in compliance with the requirements of the Contract Documents.
- 1.2. Each Contractor shall cooperate with the testing firm and provide labor to assist and lifts, ladders or other means to permit full access for testing firm and to assist with sample preparations where applicable.
- 1.3. The Contractor is responsible to pay the cost of additional testing in the event that additional testing of the Contractor's materials, installation, and other Work is required by the independent testing laboratory because of test results not in compliance with the Contract Documents and/or additional testing required as a result of Contractor's negligence or poor workmanship.

2. CONTRACTOR RESPONSIBILITIES

2.1. CONTRACTOR SHALL:

- 2.1.1. Notify CM sufficiently in advance of operations (24-hours minimum) to allow for laboratory assignment of personnel and scheduling of tests.
 - 2.1.1.1. When tests or inspections cannot be performed after such notice, reimburse Troy School District for all expenses incurred arising out of or resulting from Contractor's negligence.
- 2.1.2. When the Contractor is providing the testing and prior to start of Work, submit testing laboratory name, address, and telephone number, and names of full time registered engineer and responsible officer. Submit copy of report of laboratory facilities inspection made by Materials Reference Laboratory of National Bureau of Standards (NBS) during most recent tour of inspection, with memorandum of remedies of any deficiencies reported by the inspection.

3. RE-TEST RESPONSIBILITY

- 3.1. Where the results of required inspections, tests, or similar services prove unsatisfactory and do not indicate compliance with the requirements of the Contract Documents, the re-tests shall be the responsibility of the Contractor regardless of whether the original test was the Contractor's responsibility.
- 3.2. Re-testing of Work revised or replaced by the Contractor is the Contractor's responsibility where required tests were performed on original Work. All costs and fees for re-testing shall be paid by the Contractor.
- 3.3. Schedule delays and costs which are the result of non-conforming work or remedy will be the responsibility of the offending Contractor.

SECTION 01500 INTERIM LIFE SAFETY PLAN

1. PURPOSE AND POLICY

- 1.1. **PURPOSE:** To provide interim life safety measures during a construction Project. To protect Owner personnel, visitors, [patients] and property from fire and injury during remodeling or construction. This policy is used wholly or in conjunction with the safety program in the Project Manual.
- 1.2. **POLICY:** During a construction Project it shall be the responsibility of the Director of Facilities (or designee) and CM (through trade Contractors) to maintain compliance with the Life Safety Code NFPA Section 101. Compliance will be through the implementation of the following:

2. NOTIFICATIONS

- 2.1. Contractor shall communication and coordinate through CM for all changes to Life Safety measures including changes to: egress, the fire suppression system, the fire alarm system or any other Life Safety related changes to the construction site. Contractor is required to simultaneously notify the appropriate Owner personnel / departments: Owner's PM, Security, Facilities, Safety, Local and/or sate fire, 911 emergency services, etc.
- 2.2. Advanced notification using the appropriate form shall be submitted not less than twenty-four (24) hours in advance of the work. Forms can be obtained through CM.

SHUTDOWN	FORM NAME	SUBMIT FORM IN	SUBMIT FORM TO:
REQUEST TYPE	[VERIFY WITH	ADVANCE OF	
	OWNER'S	PROPOSED WORK	
	REQUIREMENTS]	BY:	
CHANGE IN EGRESS:	Submit egress plan of	3 Weeks	CM; CM to schedule a
	existing exiting and		review meeting with the
	proposed change		Owner and Architect for
			final approval
Change in Fire	Sprinkler Shut-Down	1 Week	CM for initial review 5
Suppression	Request		days prior; upon
			approval from CM
			simultaneously submit
			to CM, Safety, Security,
			OTHERS
Change in Fire Alarm	Fire Alarm Shut-Down	1 Week	CM for initial review 5
	Request		days prior; upon
			approval from CM
			simultaneously submit
			to CM, Safety, Security,
			Owner's Insurance
			Agency, State and/or
			Local Fire Department,
			,VERIFY OTHERS
Mechanical Piping,	Utility Shut-Down	1 Week	CM for initial review 5
HVAC or Electrical	Request		days prior; upon
Shut-Down			approval from CM
			simultaneously submit
			to CM, Safety,
			Facilities, Security,
			OTHERS

3. INTERRUPTION OF EXIT - EGRESS CORRIDOR

3.1. Should construction of temporary structures for egress/exit be necessary:

- 3.1.1. Contractor will review with and obtain approval from CM any changes to the means of egress. This review and approval shall include the Owner and Architect to confirm appropriate travel distances to exits are maintained/established.
- 3.1.2. Contractor shall obtain approval from the appropriate agency for any planned temporary exiting structure prior to construction/implementation.
- 3.1.3. All Contractors shall be responsible for maintaining temporary egress/exits:
 - 3.1.3.1. Each Contractor is responsible to protect, kept free of restrictions or obstructions, and maintain in full use all entrances to and exits from existing buildings and the construction site at all times. The safety and well-being of all persons must be of prime concern.
 - 3.1.3.2. Contractor shall maintain and not disturb any temporary construction, including stairs, ramps, protected walkways, railings, lights and direction signage as required to maintain adequate exiting from the existing building.
- 3.2. Should an alternate egress route be necessary:
 - 3.2.1. Contractor shall submit the appropriate forms to CM so all affected departments will be notified. Contractor shall not begin any work associated with a change in egress until the Owner has verified its internal departments are notified and prepared for the change.
 - 3.2.2. Contractor shall install and maintain temporary exit signage and Contractor shall install and maintain temporary directional signage prior to starting Work associated with the change in egress..

4. INTERRUPTION OF THE SPRINKLER SYSTEM

- 4.1. Refer to the above matrix for advanced notification times and shut-down request distribution.
- 4.2. Priority will be given to localized interruption of these systems on first shift Monday through Friday when full staff is available when any shut down is necessary:
- 4.3. Contractor will provide an organized fire watch until the system is fully functional.

5. INTERRUPTION OF FIRE/SMOKE DETECTION AND ALARM SYSTEM

- 5.1. Refer to the above matrix for advanced notification times and shut-down request distribution.
- 5.2. Contractor shall maintain the operation of the total fire detection/alarm during the construction.
 - 5.2.1. It is acceptable for the Contractor to place a thin plastic cover over the detector head during high dust producing activities with Contractor's prompt removal upon completion of the work.
 - 5.2.2. At all other times the system will be returned to normal operating status.
- 5.3. Should the fire/smoke detectors and alarms systems be interrupted:
 - 5.3.1. Contractor will provide an organized fire watch until the system is fully functional.
 - 5.3.2. Temporary alarm pull stations will be established as a minimum should the interruption last more than twenty-four (24) hours.

6. CONSTRUCTION SITE MAINTENANCE

- **6.1.** For interior construction, Contractor shall:
 - 6.1.1. Refer to the above matrix for prior notifications.
 - 6.1.2. Maintain existing Fire/Smoke Barriers and compartments.
 - 6.1.3. Provide and maintain temporary partitions adjacent to functioning departments that are a UL rated 2-hour assembly and smoke/dust tight and non-combustible. Provide documentation of the UL rated assembly type to CM prior to constructing this Work.

- 6.1.4. Maintain temporary enclosures, fire-rated dust curtains, and all other necessary materials and equipment as required to prevent introduction of dust, dirt or debris into occupied portions of the building.
- 6.1.5. Coordinate locking of the construction area with CM and the Owner.
- 6.2. For exterior construction Contractor shall:
 - 6.2.1. Maintain site clearance for access to the external fire department connections.
- 7. REFERENCES
 - 7.1. All current Life Safety codes

SECTION 01520 TEMPORARY CONSTRUCTION

1 SUMMARY

- 1.01 This Section describes the following requirements including:
 - 1.01.1 Project Signage
 - 1.01.2 Snow Removal
 - 1.01.3 Security
 - 1.01.4 Temporary Field Office, Facilities and Parking
 - 1.01.5 Temporary Fencing
 - 1.01.6 Temporary Toilet Facilities
 - 1.01.7 Drinking Water/Temporary Water
 - 1.01.8 Roof Protection
 - 1.01.9 Scaffolding
 - 1.01.10 Water Control
 - 1.01.11 Temporary Material Hoist/Elevator
 - 1.01.12 Fire Precautions and Protection
 - 1.01.13 Noxious Odors and Fumes
 - 1.01.14 Temporary Stairs, Ladders, Ramps, Runways, and Barricades
 - 1.01.15 Temporary Electrical Power and Light
 - 1.01.16 Temporary Heating and Weather Protection
 - 1.01.17 Temporary Enclosures

2 CONSTRUCTION FACILITIES

2.01 PROJECT SIGNAGE

2.01.1 The CM shall provide a project sign. No other signs or advertising shall be displayed on the premises without the approval of the Architect, Owner, and CM. This does not exclude the posting of required trade notice and cautionary signage by Contractors.

2.02 SNOW REMOVAL

2.02.1 Contractors performing Work under exposed conditions shall remove snow and ice for the protection and execution of their Work. Keeping public traffic areas and circulation routes free of snow shall be the responsibility of the CM/DESIGNATED CONTRACTOR.

2.03 SECURITY

- 2.03.1 The services of a security guards will not be provided by CM.
- 2.03.2 Each Contractor, at its own cost and expense, may provide security guard, protective service or other means of site security as it deems necessary.
- 2.03.3 Contractors shall advise CM of any theft or damage which might delay the execution of the Work and furnish the Owner and CM with a copy of any theft report filed with local, county or state agencies.
- 2.03.4 Neither CM nor Owner assumes any responsibility for loss, theft or damage to the Contractor's materials or for damage to Work in place before the completion of the construction. In the instance of any such loss, theft or damage, the Contractor shall be responsible to renew, restore or

- remedy the Work, tools, equipment and construction in accordance with requirements of the Contract Documents without additional cost to CM.
- 2.03.5 CM is not responsible for damage, liability, theft, casualty or other hazard to the automobiles or other vehicles, nor to injury, including death, to occupants of automobiles or other vehicles on the Owner's property.
- 2.03.6 CM may establish additional security policies and procedures. All Contractors will be required to cooperate with CM in implementing these procedures.
- 2.03.7 Site-parked equipment, operable machinery and hazardous parts of the new construction subject to mischief and accidental operation shall be inaccessible, locked or otherwise made inoperable when left unattended.

2.04 TEMPORARY FIELD OFFICE, FACILITIES AND PARKING

- 2.04.1 The Owner may designate an area for construction trailers. Placement and scheduled duration shall be coordinated by CM. Each Contractor is responsible to verify that all field offices, trailers and storage sheds shall be in accordance with the local Fire Marshal having jurisdiction. Each Contractor shall arrange and pay for its own telephone hookup and use. Each Contractor shall arrange and pay for its own temporary electrical hook-up, water and toilets. The Contractor shall pay for all power used for the Contractor's temporary field office and temporary electrical service. Construction personnel will be allowed to use the existing Owner parking facilities. Designated Contractors will be allowed to have on-site construction trailers. Construction trailers shall be limited to 10' x 30' or smaller.
- 2.04.2 Contractors shall maintain the use of designated space for offices and sheds. This includes removal of weeds, debris, trash and clean-up of the area after removal of such temporary structures.
- 2.04.3 Temporary field offices and sheds shall not be used for living quarters. .
- 2.04.4 Offices and sheds shall be of suitable design, maintenance and appearance, and meet the approval of CM and all applicable local codes and ordinances.
- 2.04.5 All temporary offices and sheds including foundations, must be removed within ten (10) days of written notice from CM including restoration of grade. Structures not removed in a timely manner will be removed by CM at Contractor's expense.
- 2.04.6 If a temporary office is built in the building, it must be fire treated in accordance with Section 01510, Fire Precautions and Protection.

2.05 TEMPORARY FENCING

- 2.05.1 The DESIGNATED CONTRACTOR shall provide temporary fencing with gates for required access and remove same at the completion of the Project.
- 2.05.2 The Contractors shall repair or replace fencing damaged as a result of its operation. Contractors shall remove and replace fencing and gates required to provide access for oversized items.
- 2.05.3 Contractor's personnel are not allowed to work outside of the construction fence without permission of CM.

2.06 TEMPORARY TOILET FACILITIES

- 2.06.1 The CM shall provide and maintain temporary toilet facilities for the construction of the Project. The use of the Owner's existing permanent facilities is as described in Section 01140 Use of Premises.
- 2.06.2 During renovation activities, CM may obtain, through the Owner, permission to use designated toilet facilities within the contract boundaries for construction use. The use of the Owner's existing permanent facilities outside the construction boundaries is strictly not allowed.

2.07 DRINKING WATER/TEMPORARY WATER

- 2.07.1 The Owner will pay for water used on this. Each Contractor shall be responsible to provide containers, paper cups, ice, hoses, etc. for its needs.
- 2.07.2 Immediately after award of the Agreement, the Mechanical Contractor shall furnish, install, maintain and subsequently remove a temporary hookup to the Owner's potable water system where directed by CM for construction purposes. The Contractor shall provide all temporary piping and approved backflow prevention as necessary for distribution from the source. Distribution of temporary water will be paid for by Contractors requiring same. A minimum of two (2) hose bibs shall be provided by the Mechanical Contractor as directed by CM.

2.08 ROOF PROTECTION

- 2.08.1 Contractors and their Subordinate Parties, shall be responsible for damages to roofing, sheet metal and roof structure while performing Work. The Roofing Contractor will perform the repair Work at the expense of the Contractor responsible for the damage.
- All Contractors will protect adjacent existing roof surfaces while performing their Work. No 2.08.2 construction materials will be allowed to be placed on existing roof surfaces without prior approval of the Owner through CM.

2.09 SCAFFOLDING

Each Contractor is responsible for providing and maintaining any and all ladders, scaffolds and 2.09.1 other staging as required to complete its Work. All such ladders, scaffolds and staging equipment shall be erected, maintained and subsequently removed by each Contractor in accordance with all applicable safety laws, rules and regulations.

2.10 WATER CONTROL

- All pumping, bailing or well point equipment necessary to keep excavations and trenches free from the accumulation of water during the entire excavating and backfilling progress of the Work shall be the responsibility of the Contractor performing said excavations and trenches due to its scope of Work.
- 2.10.2 Each Contractor shall be responsible for keeping the building at grade and below free from water from the time the building backfill is completed until the building is watertight.
- Dispose of water in such a manner as will not endanger public health or cause damage or expense to public or private property. Abide by the requirements of any public agencies having jurisdiction.

TEMPORARY MATERIAL HOIST/ELEVATOR

- Each Contractor is responsible for its own hoisting and material/ equipment movement costs as required to complete the Work under its Agreement.
- 2.11.1 CM may operate and maintain a permanent elevator until such time as all material hoisting requirements have been met. Elevator requirements in excess of the capacity or size of this elevator shall be provided by each Contractor at its expense. This elevator shall not be used for the placement of concrete, the transporting of workers, or other means inconsistent with its use as directed by CM. The operating cost for all overtime use of the elevator shall be paid by the Contractor requiring such services.
- 2.11.2 The Elevator Contractor shall be obligated to extend warranty and guarantee periods on any permanent equipment used prior to Substantial Completion.
- Transportation of construction materials through the Owner's facility shall be accomplished in 2.11.3 accordance with the requirements described in Section 01140 Use of Premises in such a manner so as to:
 - 2.11.3.1 Not damage any of the existing facility.
 - 2.11.3.2 Not impair the Owner's use of the facility.

- 2.11.3.3 Not create any type of mess or additional cleaning requirements in Owner occupied areas.
- 2.11.4 The Owner's lifting equipment is not available for the unloading, conveying or installation of Contractor's materials.

3 FIRE PRECAUTIONS AND PROTECTION

- 3.01 All Contractors and their Subordinate Parties shall
 - 3.01.1 Assume full responsibility and take all necessary precautions to guard against and eliminate all possible fire hazards and to prevent damage to any construction work, building materials, equipment, temporary field offices, storage sheds, and all other property, both public and private.
 - 3.01.2 Conspicuously post the location of the nearest fire alarm pull box and the telephone number of the local fire department within the field offices and on the construction site adjacent to its Work
 - 3.01.3 Take precautions to prevent fire hazards in accordance with all fire protection and prevention laws and codes. No open fires shall be permitted.
 - 3.01.4 Shall not be permitted to perform welding, flame cutting, or other operations involving the use of flame, arcs, or sparking devices without submitting a Hot Work Permit to CM a minimum of 24 hours prior or without adequate protection and shielding. Hot Work Permits can be obtained through CM. All combustible and flammable material shall be removed from the immediate area of the hot work. Material shall be protected with a fire resistant tarpaulin to prevent sparks, flames, or hot metal from reaching materials.
 - 3.01.4.1 Only fire resistant tarpaulins shall be used on this Project.
 - 3.01.5 Provide the necessary personnel and fire fighting equipment to effectively control incipient fires resulting from the hot work.
 - 3.01.6 Provide its own fire extinguishers in the <u>immediate</u> area of the Work.
 - 3.01.7 Review the entire Project at least once a week to make certain it has adhered to the conditions and requirements set forth herein.
 - 3.01.8 Shall not bring into building at any one time more than a one day supply of flammable liquids such as oil, gasoline, paint or paint solvent
 - 3.01.8.1 All flammable liquids having a flash point of 110 degrees F or below, which must be brought into any building, shall be confined to Underwriter's Laboratories' labeled safety cans.
 - 3.01.8.2 The bulk supply of all flammable liquids shall be detached at least 75 feet from the building and from yard storage of building materials.
 - 3.01.8.3 Spigots on drums containing flammable liquids are prohibited on the project site. Drums are to be equipped with approved vent pumps.
 - 3.01.9 Not store or leave overnight within the confines of the permanent building any combustible materials.
 - 3.01.9.1 This includes all internal combustion engines using gas or fuel oil.
 - 3.01.9.2 Hoisting of flammable or combustible materials to the roof shall only be in quantities as needed for immediate use
 - 3.01.10 Agree that, in the event of fire, all its workers anywhere on site will assist in extinguishing the fire
 - 3.01.11 Coordinate with the Owner and CM the permanent fire protection water supply, fire extinguishing equipment, shut down and tie-ins between new and existing fire protection systems shall be installed at the earliest possible date.

- 3.01.11.1 As each sprinkler system is completed and placed in service, the control valve shall be sealed. Permission to break seals and close sprinkler valves shall be given only by CM with approval of the Owner.
- 3.01.12 Not place shanties of combustible construction inside of any structure.
 - 3.01.12.1 Such shanties shall be detached at least seventy-five (75) feet from the building or as directed by CM with approval of the Owner.
 - 3.01.12.2 Totally incombustible shanties may be, if approved in writing by CM, located inside of the structure
 - 3.01.12.3 Use of only Underwriter's Laboratory approved heaters and/or stoves is permitted in field offices or storage sheds and they shall have fire resistive material underneath and at the sides near partitions and walls. Pipe sleeves and covering shall be used where stove pipe runs through walls or roof

3.02 FIRE EXTINGUISHERS

- 3.02.1 Fire extinguishers shall be "all purpose", and not a water type, to meet the approval of the Fire Underwriter's Laboratory, and will be inspected at regular intervals and recharged if necessary.
- 3.02.2 In areas of flammable liquids, asphalt or electrical hazards, extinguishers of the 15 lb. carbon dioxide type or 20 lb. dry chemical type shall be provided
- 3.02.3 **CM** will provide and maintain in working order at all times during construction not less than a fire extinguisher for each 3000 sq feet with travel distance not to exceed 100 feet.
- 3.02.4 All other required extinguishers shall be provided by the Contractor creating such hazard

3.03 NOXIOUS ODORS AND FUMES

3.03.1 Combustion engine equipment, tar kettles and any other items causing noxious odors or fumes, including diesel powered equipment, will NOT be allowed in the building or near air intake louvers or building entrances and exits. If intake louver locations are in doubt, consult with CM.

4 TEMPORARY STAIRS, LADDERS, RAMPS, RUNWAYS, AND BARRICADES

- 4.01 Each Contractor is to provide and maintain all necessary temporary stairs, ladders, ramps, and runways to facilitate conveyance of workers, materials, tools, and equipment for proper execution of its Work. All protection and safety barricades, devices, covers, and all other necessary items shall be provided by each Contractor as it relates to the safe conduct of its Work and protection of people and property in its Work area in accordance with applicable law.
- 4.02 Any Contractor or Subordinate Party performing excavation Work shall be responsible to furnish, install and maintain temporary barricades and/or fencing of all open excavations until such time as the backfilling is complete. Flasher lights shall be provided on barricades and fencing by the Contractor as requested by CM and in accordance with applicable law. As a minimum, all barricades across roads and walks shall have lights on them in working condition.
- 4.03 Prior to the removal of all shoring and forms, the DESIGNATED CONTRACTOR shall be responsible for temporary protection at the building floor perimeters and openings. Immediately after the removal of all shoring and forms, the DESIGNATED CONTRACTOR shall furnish, install, and maintain all necessary temporary protections at the building floor perimeters and openings. Protection shall be OSHA 29 CFR Part 1926.502 (B) "Guardrail Systems" and shall include but not be limited to two line rails and toe boards. Each Contractor that disturbs any temporary protection for its Work is responsible to reinstall to its original condition the guardrail or barricade system for the protection of the workers and others until final construction of perimeter exterior wall and/or shaft openings is completed. All other protection and safety barricades, devices, covers, etc., including those at all roof areas, shall be provided by the DESIGNATED CONTRACTOR] Contractor as it relates to the safe conduct of its Work in accordance with all local, state and federal law, rules and regulations and the requirements of the Contract Documents and shall be in accordance with the most stringent requirements.

- 4.04 The DESIGNATED CONTRACTOR shall provide temporary guardrails at the building floor perimeters, interior shafts, all roof areas, or other openings, immediately after the erection of the steel or precast frame and with the installation of metal or decking. Protection shall be OSHA 29 CFR Part 1926.502 (B) "Guardrail Systems" and shall include but not be limited to two line rails and toe boards. This temporary protector shall be left in place after completion of the steel or precast frame for the use of all other Contractors. The DESIGNATED CONTRACTOR shall maintain and remove said guardrails and patch concrete. Each Contractor that disturbs any temporary protection for its Work is responsible to protect the area during its Work and to reinstall to its original condition the guardrail or barricade system for the protection of the workers and others until final construction of perimeter exterior wall and/or shaft openings is completed. All other protection and safety barricades, devices, covers, etc. shall be provided by this Contractor as it relates to the safe conduct of its Work in accordance with all local, state and federal regulations and the requirements of the Contract Documents, and shall be in accordance with the most stringent requirements.
- 4.4. Each Contractor and its Subordinate Parties shall provide and maintain in good repair barricades, overhead protection, guard rails, etc., as required by law or necessary for the protection of the public and personnel engaged in the Work from hazards incidental to performance of the Work. Contractor shall do everything necessary to protect the Owner's employees, the public and workers from injuries and to protect vehicles and other property from damage.

5. TEMPORARY ELECTRICAL POWER AND LIGHT

5.1. Electrical Energy Costs

5.1.1. The Owner will pay for electrical energy to operate temporary electrical power and lighting for the duration of the project at designated locations. Temporary power will be provided free of charge.

5.2. Power Source

- 5.2.1. The Electrical Contractor shall provide, install, and pay for labor, equipment and materials required to make connections to the Owner's power source and to provide temporary electrical power and light distribution. The Electrical Contractor shall coordinate the location of the electrical power and lighting as directed by CM.
- 5.2.2. The Electrical Contractor will provide for the CM's construction trailer a 120/208 volt (or 120/240 volt), 100 ampere single phase power source. The cost of hook up and removal of temporary electrical service to other contractor's trailer shall be each Contractor's responsibility.
- 5.2.3. Protection shall be provided for the power supply source complete with disconnect switch and other required electrical devices.

5.3. Rules and Regulations:

- 5.3.1. All temporary equipment and wiring for power, lighting and distribution requirements shall conform to OSHA/NFPA requirements and be in accordance with applicable provisions of governing laws, codes, and ordinances.
- 5.3.2. All temporary wiring and distribution equipment shall be maintained so as not to constitute a hazard to persons or property.

5.4. Temporary Power Distribution:

- 5.4.1. The Electrical Contractor will provide and maintain temporary power distribution as follows:
 - Construction power shall be 120/208 volts, 3 phase, 4 wire plus ground. Provide the following outlets together with feeders, grounding, protective devices and ground fault interrupting devices.
 - 5.4.1.1. Power centers on each floor of the new building, provide a minimum of two (2) power centers or not less than one (1) per 10,000 s.f. rated not less that 100 amperes at 120/208 volt, 3 phase. 4 wire plus ground. Within the remodeled areas, provide at least one (1) additional similarly rated power center. Locate the power centers such that each will serve approximately equal areas and as far as possible, each be in the center of the respective area served.

- 5.4.1.2. 120 volt duplex outlets Provide weatherproof, G.F.I. protected, 20 ampere grounded outlets at a minimum rate equal to 1 duplex outlet per 400 square feet. Outlets may be grouped in clusters of up to six duplex types with corresponding pro-rated increase in area served, provided that every portion of the construction and remodeled premises can be reached from the nearest outlet using a flexible cord no more that 50 feet in length.
- 5.4.2. As partitions are erected, locations of power distribution points shall be added or relocated.
- 5.4.3. Ground Fault Circuit Interrupter (GFCI) protection will be provided on all temporary power receptacles and, where possible, directly on the circuit breaker supplying temporary power as referenced in NEC 305-6(a).
- 5.4.4. The assured equipment grounding conductor program is only to be used on circuits greater than 20 amps as referenced in NEC 305-6(b).

5.5. Temporary Electrical Light Distribution:

- 5.5.1. The Electrical Contractor shall provide and maintain temporary electrical light distribution as follows:
 - 5.5.1.1. Lighting shall be achieved using 120 volt guarded incandescent fixtures, or other suitable fixture types, to Federal or State OSHA required minimum levels of illumination.
 - 5.5.1.2. 120 volt temporary lighting as required in interior work areas. In addition to these minimum requirements provide adequate security lighting at guarded entrances outside storage areas, parking areas, and in areas of Contractor's and Architect's field offices and sheds.
- 5.5.2. As partitions are erected or other interferences which hamper achieving the minimum levels of illumination, locations of lighting distribution points shall be added or relocated.
- 5.5.3. Task lighting in addition to OSHA required lighting shall be provided by each Contractor.

5.6. Temporary Power and Light for Special Conditions:

- 5.6.1. Special conditions for temporary electrical power and lighting required by others shall be provided as follows:
 - 5.6.1.1. Each Contractor requiring service of capacity or characteristics <u>other than specified</u> must make arrangements with the Electrical Contractor and pay for their own installation, removal, and service.
 - 5.6.1.2. Where 3 phase power is required, the Contractor must pick up service at the distribution panel located <u>outside the building addition.</u>
 - 5.6.1.3. The necessary grounded portable cords, lamps, light-stands, and fuses from the distribution outlets to points of use shall be provided by each Contractor to suit its own requirements.
 - 5.6.1.4. Temporary power cannot be used for welding operations.

5.7. <u>Servicing of Temporary Power and Lighting:</u>

- 5.7.1. The Electrical Contractor shall be responsible for the following:
 - 5.7.1.1. Servicing, repairing and rearrangement of service equipment, temporary power, temporary lighting, and re-lamping.
 - 5.7.1.2. Removal and disposal of temporary electrical power and lighting at completion of the Project or when so directed by CM and repair of damage caused by installation or removal.

5.8. <u>Permanent Electrical Power and Lighting:</u>

- 5.8.1. When permanent electrical power and lighting systems are in operating condition, they may be used for temporary power and lighting for construction purposes provided the Electrical Contractor:
 - 5.8.1.1. Obtains the approval of the Architect and/or Owner through CM.
 - 5.8.1.2. Assumes full responsibility for operation of the entire power and lighting systems.
 - 5.8.1.3. Verifies that warranty dates are established prior to usage of equipment and lamps.
 - 5.8.1.4. Pays costs for operation, maintenance, and restoration of the systems.
- 5.8.2. As permanent power and lighting becomes available, these systems will generally supplant the appropriate portions of the temporary installation.

6. TEMPORARY HEATING AND WEATHER PROTECTION

- 6.1. Temporary heating requirements during the course of construction shall be divided into two categories as follows:
 - 6.1.1. Cold weather protection.
 - 6.1.2. Temporary heating.

6.2. Cold Weather Protection:

- 6.2.1. Heating required during the construction period prior to enclosure of the building shall be classified as "cold weather protection."
- 6.2.2. Each Contractor shall provide temporary heating and protection, necessary to allow its Work to continue during cold weather to meet the project milestone dates prior to building enclosure, including:
 - 6.2.2.1. The heating of materials (such as water and aggregate) as well as space heating for protection of newly placed or built construction at required temperatures (but not lower than 50 degrees F) and for the time specified.
 - 6.2.2.2. Fire retardant tarpaulins and other materials used for temporary enclosures.
- 6.2.3. Each Contractor shall provide plan to allow Work to continue without regard to temperature.
- 6.2.4. Heat shall be provided by smokeless UL approved portable unit heaters, using fuel of types and kinds approved by Underwriter's Laboratories, Factory Mutual, and the Fire Marshal.
 - 6.2.4.1. The Contractor shall provide fuel, power, maintenance, and attendance required for operation of portable heaters.
 - 6.2.4.2. Interior or exterior surfaces damaged by the use of portable heating units shall be replaced with new materials at the responsible Contractor's expense.
- 6.2.5. It shall be the responsibility of each Contractor to protect its own Work.

6.3. <u>Temporary Heating:</u>

- 6.3.1. Daily construction heat required after the building is enclosed shall be classified as "temporary heating" and will be the responsibility of the Mechanical Contractor to install and maintain.
- 6.3.2. The building or buildings or any portions thereof shall be considered enclosed when in the opinion of CM:
 - 6.3.2.1. The exterior wall system and temporary interior wall enclosures are in place.
 - 6.3.2.2. Openings in exterior walls are covered to provide reasonable heat retention.
 - 6.3.2.3. The building is ready for interior drywall, masonry and plastering operations.
 - 6.3.2.4. The permanent roof is substantially installed.

The CM shall provide and maintain the temporary interior wall enclosures. If the exterior wall system is not complete in time to provide building enclosure of a portion of the new structure as scheduled, the CM shall provide and maintain temporary exterior wall enclosures of polyethylene and, in addition to exercising all other rights and remedies under the Contract Documents and law, CM shall be entitled to deduct the cost of such enclosures from the moneys due or to become due the Contractor(s) responsible for failure to meet said schedule.

- 6.3.3. In areas of the building or buildings where Work is being conducted, the temperature shall be maintained as specified in the various sections of the specifications, but not less than 50 degrees F for interior rough-in and not less than 60 degrees F during finishes installation. The temperature shall not be allowed to reach a level that will cause damage to any portion of the Work, including materials stored in the building, which may be subject to damage by low temperatures.
- 6.3.4. Until the permanent heating system, or suitable portion thereof, is in operating condition, provide sufficient and UL approved space heaters of suitable capacity to maintain required temperatures in areas where work is being conducted and materials are stored. Include all necessary maintenance, venting and attendance for this temporary heating to meet all applicable laws, rules and regulations.
- 6.3.5. When the permanent heating system, or a suitable portion thereof, is in operating condition, the system may be used for temporary heating, provided the Electrical Contractor:
 - 6.3.5.1. Obtains approval from CM in writing for its use and any special provisions required for its temporary operation.
 - 6.3.5.2. Assumes full responsibility for the entire heating system until final acceptance of the system by the Owner.
 - 6.3.5.3. Uses supply only, not return if temporary heating utilizes the building's ductwork system.
 - 6.3.5.4. Pays all costs for maintenance, attendance and restoration to "like new" condition of the system including final cleaning of equipment and ductwork and all necessary touch-up painting.
 - 6.3.5.5. Turns over satisfactory evidence to CM showing the extended warranties from manufacturers and proper maintenance procedures.
 - 6.3.5.6. Provides and maintains temporary filters, boxes and other parts used for the temporary condition and replaces same with the new permanent filters at time of occupancy consistent with the warranty provisions. The Electrical Contractor shall pay the cost of extending warranty and guarantee periods on any permanent equipment used prior to substantial completion.
- 6.3.6. Electrical power required for temporary heating will be furnished free of charge. The installation and service of the necessary temporary electrical feeders will also be the responsibility of the Electrical Contractor.

6.4. TEMPORARY ENCLOSURES

- 6.4.1. The Carpentry Contractor (or as specified in the Work Scopes) shall provide temporary (insulated) weather-tight closures of openings in exterior surfaces to provide acceptable working conditions and protection for materials, to allow for temporary heating, and to prevent entry of unauthorized persons. Provide doors with self-closing hardware and locks.
- 6.4.2. The Roofing Contractor (or as specified in the Work Scopes) shall provide temporary roofing as required to provide and maintain a watertight enclosure during construction.
- 6.4.3. The Drywall Contractor (or as specified in the Work Scopes) shall provide temporary partitions and ceilings as required to separate Work areas from Owner occupied areas, to prevent penetration of dust and moisture into Owner occupied areas and to prevent damage to Owner's facilities and equipment.

ISSUE DATE: September 29, 2015

SECTION 01530 FIELD ENGINEERING AND LAYOUT

1 LAYOUT OF THE WORK; Each Contractor shall

- 1.1. be responsible for the layout and engineering of its own Work from the established points and lines given by a registered surveyor employed by CM and to coordinate with all other trades.
- 1.2. be responsible for detailed and accurate layout of its own and its Subordinate Parties' Work to dimension from the principal lines.
- 1.3. make provisions to preserve all control points, such as monuments, stakes, bench marks or other datum points and shall replace at its own cost any of these which might be lost or displaced through its neglect.
- 1.4. examine the conditions under which the Work is to be installed, shall take field measurements and verify field conditions and shall carefully compare such field measurements and conditions and other information known to the Contractor with the Contract Documents before commencing activities. Any errors, inconsistencies, omissions, discrepancies or conditions detrimental to proper performance of the Work that are discovered shall be reported to CM at once. Contractors are not to proceed until the required corrections are accomplished.

2. Verification and Documentation

- 2.1. The exactness of grades, elevations, dimensions, or locations given on any Drawings issued by Architect or the work installed by other contractors, is not guaranteed by Owner or CM.
- 2.2. In all cases of interconnection of its Work with existing or other Work, it shall verify all dimensions relating to such existing or other Work. Any errors due to the Contractor's failure to verify all such grades, elevations, dimensions, or locations shall be promptly rectified by the Contractor without any additional cost to the Owner or CM..
- 2.3. As the Work progresses, the Contractor shall prepare lay out drawings showing the exact locations of Work under its Contract as a guide to all trades. Prior to any installation, the separate Contractors shall exchange layout drawings and coordinate the Work and be subject to verification by all subsequent Contractors.
- 2.4. Each Contractor shall be responsible to take such field measurements as may be required to determine the size of ordered material. In the event "guaranteed dimensions" are required, the Contractor shall promptly advise other Contractors through CM by use of drawings, templates or mock-ups of the required conditions.
- 2.5. All Work, and in particular, piping, ducts, conduit and similar items, shall be neatly and carefully laid out to provide the most useful space utilization and the most orderly appearance. Except as otherwise indicated or directed, piping and similar Work shall be installed as close to above ceiling floor slabs and walls as conditions reasonably permit, located to prevent interference with other Work or with the use of the spaces. Before Contractor installs a valve in an exposed location, it must make all efforts to install it in an accessible, concealed location. Contractors shall carefully plan the layout and review any questionable installations with CM.
- 2.6. The Owner or CM may utilize a registered land surveyor to verify alignment and layout of certain portions of the Work. If that Work is out of tolerance or incorrect, the installing Contractor will be responsible for prompt correction of the Work to comply with the Contract Documents, along with all expenses incurred by Owner or CM in such verification process, including, but not limited to, the cost for the surveying services, as well as the additional time expended by CM personnel at standard billing rates.

SECTION 01540 CUTTING AND PATCHING

1 INSPECTION

- 1.01 Before cutting, examine surfaces to be cut, including elements subject to damage or movement during cutting and patching work. Report any unsatisfactory or questionable conditions to CM in writing.
- 1.02 Before proceeding, meet at the site with CM and the parties involved in cutting and patching, including mechanical and electrical trades. Review areas of potential interference, conflict and possible effects on the Owner's existing operations. Coordinate procedures, temporary support, methods of dust and water protection, etc. and resolve potential conflicts before proceeding.
- 1.03 When working in and around existing buildings, if any hazardous material is encountered or is suspected to be present, immediately notify CM and stop work in this area as described in Section 00840 Hazardous Materials until further direction is given by CM or the Owner.

2 PREPARATION

- 2.01 Provide adequate temporary support to assure the structural value and integrity of the affected portion of the work. Where specified or required, submit temporary support methodologies for approval.
- 2.02 Provide devices and methods to protect adjacent areas or other portions of the Project from damage including dust protection, water protection, and exposure.
- 2.03 Maintain excavations free of water.

3 EXECUTION

3.01 The use of gasoline powered equipment, jackhammers or power actuated tools, explosives is prohibited on this Project.

3.02 Each Contractor shall:

- 3.02.1 On behalf of itself and its Subordinate Parties be responsible for the cutting of all holes and openings through existing walls, partitions, ceilings, floors and roofs as necessary for the installation of its Work. Holes and openings shall be neatly cut and of minimum size to allow the Work to be installed. Execute cutting and demolition by methods which will prevent damage to other Work, and will provide proper surfaces to receive installation of repairs.
- 3.02.2 Execute work in such a manner as to minimize disruptions to or interference with the Owner's normal operations or functioning in the existing buildings and provide all means necessary to provide safety and convenience of those employed in and about the premises.
- 3.02.3 Be responsible for patching of all holes and openings it makes. Fit work should be airtight to pipes, sleeves, ducts, conduit and other penetrations through surfaces. Patching is to match adjacent surfaces in materials and finish.
- 3.02.4Utilize only tradesmen skilled in the specific finish and material involved in making the patches. All patching is to be done in a neat and workmanlike manner to the satisfaction of CM. Defective Work shall be corrected at no cost to the Owner and CM.
- 3.02.5 Do all necessary cutting and fitting required to make a satisfactory connection where new Work connects with existing so as to leave the entire Work in finished and workmanlike condition. Furnish all labor and materials to this end, whether or not shown or specified. All measurements must be verified at the site.
- 3.02.6 Employ the original installer and fabricator, when possible, to perform cutting and patching for, weather-exposed or moisture-resistant elements, sight-exposed finished surfaces.
- 3.02.7 Execute fitting and adjustment or products to provide a finished installation to comply with the specified products, functions, tolerances and finishes.

- 3.02.8 Restore Work which has been cut or removed and shall install new products to provide completed Work in accordance with the Contract Documents. Each Contractor will be responsible to pay the appropriate contractor as designated by CM for restoring any portion of the Project that is disturbed, including but not limited to, slabs, walls, ceilings, fire rated partitions, spray-on fireproofing, and finishes, to their original state as a result of Contractor's action.
- 3.02.9 Refinish entire surfaces as the Contractor's Work scope requires to provide an even finish to match adjacent surfaces and finishes, for continuous surfaces, refinish to nearest intersection, for an assembly, refinish the entire unit.
- 3.02.10 Be held responsible for reckless cutting of holes in slabs, walls or other finishes, or for scraping off areas of fireproofing larger or greater than that which is necessary for installation of its Work
- 3.03 Removal and replacement of ceilings not scheduled to be replaced shall be the responsibility of the Contractor requiring access.

SECTION 01550 CLEAN-UP AND FINAL CLEANING

A. SUMMARY

Execute final cleaning at completion of the Work, as required by this Section. For Contractor's daily clean-up, dust control and rubbish removal operations during construction, refer to Section 01520 Temporary Construction Controls.

a. DISPOSAL REQUIREMENTS

- i. Conduct final cleaning and disposal operations to comply with codes, ordinances, regulations, and anti-pollution laws.
 - 1. Do not burn or bury rubbish and waste materials on Project site.
 - 2. Do not dispose of volatile wastes such as mineral spirits, oil or paint thinner in storm or sanitary drains.

2 PART 2 - SITE CLEAN-UP/RUBBISH REMOVAL PROCEDURE

2.1. REQUIREMENTS

2.1.1. <u>General</u>, Contractor shall:

- 2.1.1.1. Be responsible for daily, weekly and final clean-up of its Work and the work of its Subordinate Parties as defined herein.
- 2.1.1.2. Comply with applicable labor agreements and jurisdictional rules in the hiring of laborers to perform its clean up obligations under the Contract Documents.
- 2.1.1.3. Control of dust generated by its operations on a daily basis.
- 2.1.1.4. Maintain roadways clear of all debris at all times.
- 2.1.1.5. Only use cleaning materials which will not create hazards to health or property and which will not damage surfaces. Only those cleaning materials and methods recommended by the manufacturer of the surface material to be cleaned shall be used.
- 2.1.1.6. Only use sweeping compounds that do not leave residue on concrete floor surfaces and that will not affect installation of finish flooring materials

2.1.2. <u>Dumpsters:</u>

- 2.1.2.1. Unless stated otherwise in the Work Scopes, the CM will provide and maintain the job site dumpsters for unidentifiable debris for use as specified below.
- 2.1.2.2. Each Contractor and its Subordinate Parties shall be responsible for daily clean-up, removal and placement in dumpsters of all debris and waste resulting from its operations.
- 2.1.2.3. No overfilling of dumpsters will be allowed. All adjacent areas are to be kept clean. Excavation, demolition, masonry, drywall and hazardous waste materials are NOT to be placed in CM's dumpster.
- 2.1.2.4. Each Contractor will be responsible for removing its own excavation, demolition, masonry, drywall and Hazardous Materials from the site in strict accordance with applicable laws and regulations regarding disposal.
- 2.1.2.5. Contractor shall indemnify, defend and hold harmless the Owner and CM from claims, damages, suits, costs, or expenses of any kind (including attorney's fees and costs) arising out of, resulting from or in connection with Contractor's misuse of dumpsters.

2.1.3. Daily Clean Up, Each Contractor shall:

- 2.1.3.1. Be responsible, <u>DAILY</u> for the clean -up, transport and removal from the site of identifiable debris including but not limited to, bulky debris, packaging, containers, unused materials and equipment, (i.e., masonry and concrete materials, drywall, steel, crates, carton, demolition debris, other packaging, and combustible items).
- 2.1.3.2. Leave no piles of debris in the building overnight. The cost of any overtime premium required to remove debris immediately at the end of each workday shall be included in the Contractor's Work.
- 2.1.3.3. handle materials in a controlled manner so that dust and other contaminants, do not affect the Owner's or other Contractor operations and equipment
- 2.1.3.4. Be responsible to leave its Work and work area in a clean condition. This includes, but is not limited to, removal of all grease, dust, dirt, stains, labels, fingerprints and other foreign matter.

2.1.4. Weekly Clean Up: Each Contractor shall:

- 2.1.4.1. While on site, provide to CM one (1) person for each five tradesmen (or portion thereof) employed at the site, one day per week, for up to four (4) hours, for the exclusive purpose of performing overall project weekly clean-up of unidentifiable debris. The cost of this (these) person(s) shall be included in Contractor's Work.
- 2.1.4.2. Include sweeping, loading and disposal of miscellaneous debris such as mud tracked through the building, drinking cups, bottles, lunch wrappers and other unidentifiable debris. Trash and debris from this operation shall be placed in the dumpster(s)

2.1.5. Final Clean Up:

- 2.1.5.1. Final clean-up, will be done at a time designated by CM.
- 2.1.5.2. Normally, Final Clean Up will occur before punchlist inspection or prior Owner Occupancy turnover.
- 2.1.5.3. The Contractor's duties for Final Cleaning are:
 - 2.1.5.3.1. Prior to final completion or Owner occupancy, whichever occurs first, conduct an inspection of sight-exposed interior and exterior surfaces, and all Work areas, to verify that the entire Work is left in a broom clean condition and that all Final Cleaning as set forth above has been performed.
 - 2.1.5.3.2. Tunnels and closed off spaces shall be cleaned of packing boxes, wood frame members and other waste materials used in the construction.
 - 2.1.5.3.3. Temporary labels, stickers and similar items shall be removed from fixtures and equipment. Unless otherwise directed in the technical specifications, Contractors shall not remove permanent name plates, equipment model numbers, ratings, or other items intended to be permanently affixed to the fixture or equipment.
- 2.1.6. <u>Use of Owner's Facilities:</u> The Owner's facilities are not to be used by Contractor for the disposal of trash or debris from its Work.

2.1.7. Failure to perform Clean Up:

2.1.7.1. If any Contractor or its Subordinate Parties fails to maintain a satisfactory clean-up program, CM will issue written notice, to the responsible Contractor, that the necessary clean-up must be performed within twenty-four (24) hours after the notice is given. The establishment of a definite deadline for the removal of debris and rubbish will supersede the necessity for any formal notification that such work must be done.

- 2.1.7.2. If Contractor(s) fail to perform the clean-up, by the deadline, CM may perform clean-up on the Project and back charge the responsible Contractor(s) for the costs. If necessary in order to remove unidentifiable debris beyond what is removed during weekly clean up, CM will perform such clean-up and shall pro-rate the cost among the Contractors in its discretion, based on Contractor(s) type of work and manpower on site. Back charges may be deducted from the monthly invoices of the Contractor(s) and/or final payment.
- 2.1.8. <u>Hazardous Materials:</u> Contractors or Subordinate Parties shall dispose of Hazardous Materials in strict accordance with applicable federal, state, and local laws and regulations. Hazardous Materials may not be placed in dumpsters and/or containers not so designated for such placement.

SECTION 01600 FORMS

1 USE OF FORMS

- 1.01 Upon award of the Agreement, the various forms described and referenced in the Project Manual will be provided by CM and therefore are <u>not bound</u> in the Project Manual. Copies of forms are available for inspection at CM Office.
- 1.02 Following is a list of the key forms:
 - 00810 Safety and Loss Control Program
 - Trade Contractor Safety Certificate (SAF 6.3.3.3)
 - 01250 Changes in the Work
 - PCO- Notice to Proceed
 - PCO- Quotation Only
 - Change Order Form (CMS.9.1 or CMS.9.2)
 - 01290 Payment Procedures
 - Application and Certificate for Payment (CON.27.1) and Continuation Sheet (CON.27.2)
 - Consent of Surety to Reduction In or Partial Release of Retainage (CON.26.6)
 - Payment schedule (PSI.10.1)
 - Payment Request for Stored Materials Form (CON.26.5)
 - Acknowledgment of Payment and Partial Unconditional Release Form (CON.26.3)
 - Unconditional Final Release and Waiver Subcontractor/Materialman Form (CON.26.4)
 - Sworn Statement Form (CON.26.2)
 - 01320 Communications
 - Trade Contractors Daily/Pre-Task Plan (CON.14.4)
 - Request for Information Form (CON.25.2) (in company approved software, if necessary)
 - 01330 Submittals
 - BMC Submittal Transmittal Form (CON.9.6)
 - 01400 Quality Requirements
 - Corrective Action Report (CAR)/Notice of Non-Conformance (NCR) (CON.18.2)
 - 01700 Contract Close-out
 - Consent of Surety Company to Final Payment Form (CON.26. 7)
 - Consent of Surety to Reduction in or Partial Release of Retainage Form (CON.26.6)
 - Certificate of Contract Completion Form (CLO.7.5)
 - 01720 Project Record Documents
 - Closeout Submittal (CLO.7.2)
 - 01740 Warranties and Guarantees
 - Contractor's Guarantee (CLO.7.3)
 - 01750 Systems Demonstration, Training and Start-up

- Equipment/Systems Acceptance Form (CLO.2.1)
- Owner Training Register (CLO.2.2)

SECTION 01630 PRODUCT SUBSTITUTIONS

1. WORK INCLUDED

1.1. Furnish and install Products specified, under options and conditions for substitutions stated in this Section.

2. BIDDER'S OPTIONS

- 2.1. For products that are specified only by reference standard, select Product meeting that is standard by any manufacturer.
- 2.2. For Products specified by naming several Products or manufacturers, select any one of products and manufacturers named which complies with Specifications.
- 2.3. For Products specified by naming several Products or manufacturers and stating "or equivalent", or "or equal", or "or Architect approved equivalent", or similar wording, submit a request as for substitutions, for any Product or manufacturer which is not specifically named for review and approval by the Architect.
- 2.4. For Products specified by naming only one Product and manufacturer, there is no option and no substitution will be allowed.

3. SUBSTITUTION PROCESS

3.1. SUBSTITUTIONS

- 3.1.1. Base Bid shall be in accordance with the Contract Documents.
- 3.1.2. Substitutions for products may be made during the bidding period by submitting completed Substitution Request Form and substantiating product data/literature a minimum of ten (10) Days prior to Bid date to CM who will then forward to the Architect.
 - 3.1.2.1. Architect will consider requests from the Bidder for substitution of products in place of those specified as set forth in this section.
 - 3.1.2.2. Those submitted the specified calendar days prior to Bid Date will be included in an addendum if acceptable.
 - 3.1.2.3. After the end of the bidding period, requests will be considered only in case of Product unavailability or other conditions beyond the control of Contractor.
 - 3.1.2.4. Bid Proposals shall not be based on assumed acceptance of any item which has not been approved by addendum.
- 3.1.3. Bidders are required to submit a separate Substitution Request Form for each proposed substitution. Each substitution request should be accompanied by the following supporting documentation:
 - 3.1.3.1. A full explanation of the proposed substitution.
 - 3.1.3.2. Complete data substantiating compliance of the proposed substitution with the requirements stated in the Contract Documents.
 - 3.1.3.2.1. Product identification, including the manufacturer's name and address.
 - 3.1.3.2.2. Manufacturer's literature; identifying:
 - 3.1.3.2.2.1. Product description and technical information.
 - 3.1.3.2.2.2. Reference standards.
 - 3.1.3.2.2.3. Performance and test data.
 - 3.1.3.2.2.4. Installation instructions, operating procedures and other like information.
 - 3.1.3.2.3. Samples, as applicable.

- 3.1.3.2.4. Names and addresses of similar projects on which product has been used, and date of each installation.
- 3.1.3.3. Itemized comparison of the proposed substitution with the product specified, listing all significant variations.
- 3.1.3.4. Data relating to changes in delivery or construction schedule.
- 3.1.3.5. A list of all effects of the proposed substitution on separate contracts.
- 3.1.3.6. Accurate cost data comparing the proposed substitution with the product specified.
 - 3.1.3.6.1. Amount of any net change to Contract Sum.
- 3.1.3.7. Designation of required license fees or royalties.
- 3.1.3.8. Designation of availability of maintenance services and sources of replacement materials.
- 3.1.4. Substitutions will not be considered for acceptance when:
 - 3.1.4.1. They are indicated or implied on shop drawings or product data submittals without a formal request from Bidder.
 - 3.1.4.2. Acceptance will require substantial revision of Contract Documents.
 - 3.1.4.3. In judgment of Architect, do not include adequate information necessary for a complete evaluation.
 - 3.1.4.4. If requested after Contract Award directly by a subcontractor or supplier, except for special or unusual circumstances reviewed by the Contractor with CM.
- 3.1.5. Substitute products shall not be ordered or installed without written acceptance of Architect.
- 3.1.6. Architect will determine acceptability of proposed substitution.

3.2. BIDDER'S REPRESENTATION

- 3.2.1. In making formal request for substitution the Bidder represents that:
- 3.2.2. It has investigated the proposed product and has determined it is equivalent to or superior in all respects to the product specified.
- 3.2.3. It will provide same warranties or bonds for the proposed substitution as required for the product specified.
- 3.2.4. It will coordinate installation of the accepted substitution into the Work, and will make such changes as may be required for the Work to be complete in all respects.
- 3.2.5. It waives all claims for additional costs caused by or arising from the substitution which may subsequently become apparent.
- 3.2.6. Cost data is complete and includes related costs under its Agreement, but not:
 - 3.2.6.1. Costs under separate contracts.
 - 3.2.6.2. Architect's costs for redesign or revision of Contract Documents.
- 3.2.7. Cost data need not be submitted, if request is for inclusion in an addendum. Requests after the Agreement is awarded shall contain a complete cost comparison.
- 3.2.8. Any modifications necessary as a result of the use of an approved substitute shall be paid by the Contractor proposing the substitution.
- 3.2.9. Any additional engineering costs required to be performed by the Architect to approve, implement or coordinate the substitution above reasonable review services, shall be paid by the Contractor proposing the substitution.

3.2.10. Under no circumstances will the Architect be required to prove that a product proposed for substitution is or is not equal to the quality of the product specified.

3.3. ARCHITECT'S DUTIES

- 3.3.1. Review requests for substitutions with reasonable promptness.
- 3.3.2. Coordinate review/approval of "Architect Approved" substitutions with the Owner prior to notifying the CM.
- 3.3.3. Issue a written instruction of decision to accept the substitution.
- 3.3.4. Substitution requests that are not approved will be returned to the party submitting the request with an explanation for the rejection.

3.4. SUBSTITUTION REQUEST FORM

- 3.4.1. The form is attached to this Section.
- 3.4.2. SUBSTITUTIONS WILL BE CONSIDERED ONLY WHEN THE ATTACHED FORM IS COMPLETED AND INCLUDED WITH THE SUBMITTAL WITH ALL BACKUP DATA.

SUBSTITUTION REQUEST FORM

ΤΟ: Barton Malow Company					
We hereby submit for your consideration the following product instead of the specified item for the above Project:					
DRAWING NO.:		DRAWING NAME:			
SPEC. SECT.	SPEC. NAME	PARAGRAPH	SPECIFIED ITEM		
Proposed Substitution:					
Attached complete information on changes to Drawings and/or Specifications which proposed substitution will require for its proper installation.					
Submit with request all necessary samples and substantiating data to prove equal quality and performance to that which is specified. Clearly mark manufacturer's literature to indicate equality in performance.					
CERTIFICATION OF EQUAL PERFORMANCE AND ASSUMPTION OF LIABILITY FOR EQUAL PERFORMANCE					
The undersigned states that the function, appearance and quality are equivalent or superior to the specified item.					
Submitted by:					
Signature		Title			
Firm					
Address					
Telephone		Date			

Signature shall be by person having authority to legally bind his/her firm to the above terms. Failure to provide legally binding signature will result in retraction of approval.

For	use by Architect	For use by Owner			
	AcceptedAccepted as noted	Accepted Accepted as noted			
	Not accepted Received too late	Not accepted Received too late			
	Insufficient data received	Insufficient data received			
Ву:		By:			
	e:	Date:			
Fill	in blanks below (attach additional sheets as required	1):			
A.	A. Does the Substitution affect dimensions shown on Drawings?				
	Yes No If yes, clearly indicate changes:				
		-			
B.	Will the undersigned pay for changes to the building design, including engineering and detailing costs caused by the requested substitution?				
	Yes No If no, fully explain:				
C.	What affect does substitution have on other contracts or other trades?				
D.	What affect does substitution have on the delivery and construction schedule?				
E.	E. Manufacturer's warranties of the proposed and specified items are: Same Different If different, explain on an attachment.				
F.	. Reason for Request:				
G.	Itemized comparison of specified item(s) with the proposed substitution; list significant variations:				
Н.	Accurate cost data comparing proposed substitution with product specified:				
I.	This substitution will amount to a credit or an extra cost to the Owner of: Dollars				
	(\$)	_			

SECTION 01700 CONTRACT CLOSE-OUT

1. CLOSE-OUT PROCEDURE

1.1. The following procedure and forms will be used to sequentially progress through the contract close-out stage in a productive and timely manner.

1.1.1. PREPARATION FOR CONTRACT CLOSE-OUT

During the course of the Project, the Contractor will thoroughly review the Contract Documents as it relates to the requirements and obligations and gather and submit to CM the proper submittals, shop drawings, material certifications, waivers, certificates of insurance, bonds, and other contractual requirements impacting contract close-out.

1.1.2. INITIATING THE FINAL CLOSE-OUT PROCESS

When nearing 75% completion of the Work, the Contractor will review the status of the Close-Out process with CM. The Contractor's contractual responsibilities will be reviewed and outstanding close-out and other submittals identified.

1.1.3. OBTAINING THE CERTIFICATE OF SUBSTANTIAL COMPLETION

As the Contractor is nearing the completion of the Work and after concurrence with CM, it shall submit a written request for Substantial Completion, all required documentation as outlined, and a listing of all minor deficiencies yet to be completed.

The following documents are the minimum required at the time of request for Substantial Completion. Contractor shall also submit all additional documentation as required in the Contract Documents:

- 1.1.3.1. AIA G704 Certificate of Substantial Completion
- 1.1.3.2. As-built records
- 1.1.3.3. Operation and Maintenance Manuals
- 1.1.3.4. Keys, Maintenance Stock, and Spare Parts
- 1.1.3.5. Test and Start-up/Owner Training Sessions
- 1.1.3.6. Submission of Permits and Approvals (i.e. Fire Marshal, Department of Public Health Approvals, etc.)
- 1.1.3.7. Guarantee and Warranties
- 1.1.3.8. Punchlist (list of work to be completed or corrected)

Once CM has received all required documents they will be forwarded to the Architect and Owner. CM will review the Contractor's request for Substantial Completion; all above documentation, and list of deficiencies, add appropriate comments, and forward to the Architect and/or Owner for review. In conjunction with the Contractor, CM will establish a schedule for the completion of all listed items, which in no event shall exceed any time periods established in the Contract Documents for Final Completion.

When the Architect determine that the Work is substantially complete, the Certificate of Substantial Completion shall be issued to the Contractor.

1.1.4. CONTRACTOR COMPLETES PUNCHLIST WORK

Each Contractor shall submit a letter certifying all punchlist items are completed, in a manner acceptable to the Owner, CM and the Architect.

1.1.5. FINAL INSPECTION NOTICE

Each Contractor is to forward (written notice and accompanying documentation) to CM that Work is ready for final inspection and acceptance. CM will forward written notice to the Architect if CM is in agreement that Work is complete. The Architect will perform a final inspection and sign off on the punchlist form if Work is in fact completed. If punchlist work is not found complete, the Contractor shall take action to remedy any insufficiencies and then shall re-submit the written notice and accompanying documentation that Work is ready for final inspection and acceptance. If CM and/or Architect are required to perform more than 2 site visits to determine Substantial or Final Completion of Contractor's Work, the costs for such additional inspections shall be charged to Contractor.

The following documents are the minimum required to complete final payment. Contractor shall also submit all additional documentation as required in the Contract Documents:

- 1.1.5.1. Final Payment Request (on G702 & G703).
- 1.1.5.2. Guarantees/Warranties (including subs and suppliers).
- 1.1.5.3. Final Sworn Statements (including subs and suppliers).
- 1.1.5.4. Acknowledgment of Payment and Partial Unconditional Release
- 1.1.5.5. Final Release Subcontractor/Materialman
- 1.1.5.6. Certified Payroll Report (projects governed by prevailing wage laws)
- 1.1.5.7. Verification of Rate Classification and Payment (Federal projects)
- 1.1.5.8. Consent of Surety Company to Final Payment (AIA G707)
- 1.1.5.9. Consent of Surety to Reduction or Partial Release of Retainage (AIA G707A)
- 1.1.5.10. Certificate of Substantial Completion (on G704).
- 1.1.5.11. Completion and acceptance of all punchlist Work.
- Items 1.1.5.2 through 1.1.5.5 must always be submitted with the final request for payment.

1.1.6. REVIEW OF FINAL PAYMENT REQUEST

CM and the Architect will review the Contractor's final payment request and Close-Out file. If all administrative documents are attached or have been submitted (i.e. guarantee, warranty, waiver of lien, etc.), all Work is complete, and all other responsibilities are met, the Project Team will forward the Contractor's Application for Final Payment to the Owner and payment shall be processed according to the Owner's regular procedures.

2. FINAL COMPLETION

- 2.1. To attain final completion, the Contractor shall complete activities pertaining to Substantial Completion, and complete Work on punch list items. Only then shall it issue written request to CM to conduct a site visit to determine Final Completion.
- 2.2. When Contractor considers the Work is finally complete, it shall submit written certification that:
 - 2.2.5. Contract Documents have been reviewed.
 - 2.2.6. Work has been inspected for compliance with Contract Documents.
 - 2.2.7. Work has been completed in accordance with Contract Documents.
 - 2.2.8. Equipment and systems have been tested in the presence of the Owner's representative and are operational.
 - 2.2.9. Work is completed and ready for final observation.
- 2.3. CM and/or Architect will make an observation to verify the status of completion with reasonable promptness after receipt of such certification.
- 2.4. Should CM and/or Architect consider that the Work is incomplete or defective:

- 2.4.5. CM will promptly notify the Contractor in writing, listing the incomplete or defective Work.
- 2.4.6. Contractor shall take immediate steps to remedy the stated deficiencies, and send a second written certification to the CM that the Work is complete.
- 2.4.7. CM and/or Architect will re-inspect the Work.
- 2.5. When CM and/or Architect determines that the Work is acceptable under the Contract Documents, it shall request the Contractor to make close-out submittals.

3. CONTRACTOR'S CLOSE-OUT SUBMITTALS

- 3.1. Evidence of compliance with requirements of governing authorities (state, local or federal):
 - 3.1.5. Certificates of Inspection:
 - 3.1.5.1. Mechanical
 - 3.1.5.2. Electrical
 - 3.1.5.3. Others as required
- 3.2. Project Record Documents: Refer to requirements of Section 01720.
- 3.3. Operating and Maintenance Data, Instructions to Owner's Personnel: Refer to requirements of Section 01730.
- 3.4. Warranties and Bonds: Refer to requirements of Individual Sections and Individual Technical Specifications and Section 01740.
- 3.5. Spare Parts and Maintenance Materials: Refer to requirements of Individual Technical Specifications.
- 3.6. Evidence of Payment and Release of Liens: Refer to requirements of General and Supplementary Conditions and Section 01290.

SECTION 01720 PROJECT RECORD DOCUMENTS

1 SUMMARY

- 1.01 Each Contractor shall be responsible to maintain at the job site one copy of:
 - 1.01.1 Record Contract Drawings
 - 1.01.2 Record Project Manual
 - 1.01.3 Addenda
 - 1.01.4 Reviewed/Approved Shop Drawings
 - 1.01.5 Change Orders
 - 1.01.6 Other modifications to Contract
 - 1.01.7 Field test records
 - 1.01.8 Affidavits
- 1.02 Store documents apart from documents used for construction.
- 1.03 Maintain documents in clean, dry, legible condition.
- 1.04 Do not use project record documents for construction purposes.
- 1.05 Make documents available for inspection by the Owner, CM and the Architect.
- **1.06** Failure to maintain documents up-to-date will be cause for withholding payments to Contractor.
- 1.07 At the outset of the project, obtain from the Architect through the CM, at no charge to the Contractor, one complete set of Contract Documents including:
 - 1.07.1 Technical Specifications with all addenda.
 - 1.07.2 One complete set of prints of all Drawings.

2 RECORDING

- 2.01 Label each document "Project Record."
- 2.02 Keep record documents current.
- 2.03 Do not permanently conceal any work until required information has been recorded.
- 2.04 Contract Drawings:
 - 2.04.1 Contractor may at his option enter required information on a "working set" and then at completion of Project transfer the information to final submitted "Project Record" set.
 - 2.04.2 Contractor shall legibly mark to record actual construction:
 - 2.04.2.1 Depths of various elements of foundation in relation to survey data.
 - 2.04.2.2 Horizontal and vertical location of underground utilities and appurtenances referenced to permanent surface improvements.
 - 2.04.2.3 Location and depths of internal utilities and appurtenances concealed in construction referenced to visible and accessible features of structure.
 - 2.04.2.4 Field changes of dimension and detail.
 - 2.04.2.5 Changes made by PCO- Notice to Proceed.

- 2.04.2.6 Details not on original Contract Drawings.
- 2.05 Technical Specifications and Addenda:
 - 2.05.1 Contractor shall legibly mark up each section to record:
 - 2.05.1.1 Manufacturer, trade name, catalog number and Supplier of each product and item of equipment actually installed.
 - 2.05.1.2 Changes made by PCO- Notice to Proceed.
 - 2.05.1.3 Other items not originally specified.
- 2.06 Conversion of Schematic Layouts:
 - 2.06.1 Arrangement of conduits, circuits, piping, ducts and similar items are in most cases shown schematically on the Drawings.
 - 2.06.2 Contractor shall legibly mark to record actual construction:
 - 2.06.2.1 Dimensions accurate to within 1" of the center of items shown schematically.
 - 2.06.2.2 Identify each item, for example, "cast iron drain", "galvanized water", etc.
 - 2.06.2.3 Identify location of each item, for example, "under slab", "in ceiling plenum", "exposed", etc.
 - 2.06.3 The Owner, Architect or CM may waive requirements of schematic layout conversion, when in their opinion, it serves no beneficial purpose. Do not, however, rely on waivers being issued except as specifically issued by the CM in written form.

3 SUBMITTAL

- 3.01 At completion of Project deliver, 1 set of electronic sets of Record Documents, in a format acceptable to the Owner and the Architect, using the Final Document Submittal Form (in Section 01600 Forms), to CM prior to request for final payment.
- 3.02 Accompany submittal with transmittal letter, in duplicate, containing:
 - 3.02.1 Date
 - 3.02.2 Project title and number
 - 3.02.3 Contractor's name and address
 - 3.02.4 Title and number of each record document
 - 3.02.5 Certification that each document as submitted is complete and accurate.
 - 3.02.6 Signature of Contractor, or his authorized representative.

SECTION 01730 OPERATIONS AND MAINTENANCE DATA

1. SCOPE

- 1.1. Compile product data and related information appropriate for Owner's maintenance and operation of products furnished under Contract.
- 1.2. Prepare operating and maintenance data as specified in this Section and as referenced in other pertinent sections of the Technical Specifications.
- 1.3. Instruct Owner's personnel in maintenance of products and in operation of equipment and systems in accordance with the requirements in Section 01750 Systems Demonstration, Training and Start-up.

2. QUALITY ASSURANCE

- 2.1. Preparation of data shall be done by personnel:
 - 2.1.1. Trained and experienced in maintenance and operation of described products.
 - 2.1.2. Familiar with requirements of this Section.
 - 2.1.3. Skilled as technical writer to the extent required to communicate essential data.
 - 2.1.4. Skilled as draftsman competent to prepare required drawings.

3. FORM OF SUBMITTALS

- 3.1. Prepare data in the form of an instructional manual for use by Owner's personnel.
- 3.2. Format:
 - 3.2.1. Size: 8-1/2" x 11"
 - 3.2.2. Paper: white, for typed pages.
 - 3.2.3. Text: Manufacturer's printed data, or neatly typewritten.
 - 3.2.4. Drawings:
 - a. Provide reinforced punched binder tab, bind in with text.
 - b. Fold larger drawings to size of text pages.
 - 3.2.5. Provide fly-leaf for each separate product, or each piece of operating equipment.
 - c. Provide typed description of product, and major component parts of equipment.
 - d. Provide indexed tabs.
 - 3.2.6. Cover: Identify each volume with typed or printed title "OPERATING AND MAINTENANCE INSTRUCTIONS." list:
 - e. Title of Project
 - f. Identity of separate structures as applicable.
 - g. Identity of general subject matter covered in the manual.

3.3. Binders:

- 3.3.1. Commercial quality three-ring binders with durable and cleanable plastic covers.
- 3.3.2. Maximum ring size: 3"
- 3.3.3. When multiple binders are used, correlate the data into related consistent groupings.

4. CONTENT OF MANUAL

4.1. Neatly typewritten table of contents for each volume, arranged in systematic order.

- 4.1.1. Contractor, name of responsible principal, address and telephone number.
- 4.1.2. A list of each product required to be included, indexed to content of the volume.
- 4.1.3. List with each product, name, address and telephone number of:
 - a. Subcontractor or installer.
 - b. Maintenance contractor, as appropriate.
 - c. Identify area of responsibility of each.
 - d. Local source of supply for parts and replacement.
- 4.1.4. Identify each product by product name and other identifying symbols as set forth in Contract Documents.

4.2. Product Data:

- 4.2.1. Include only those sheets which are pertinent to the specific product.
- 4.2.2. Annotate each sheet to:
 - e. Clearly identify specific product or part installed.
 - f. Clearly identify data applicable to installation.
 - g. Delete references to inapplicable information.

4.3. Drawings:

- 4.3.1. Supplement product data with drawings as necessary to clearly illustrate:
 - b. Relations of component parts or equipment and systems.
 - c. Control and flow diagrams.
- 4.3.2. Coordinate drawings with information in Project Record Documents to assure correct illustration of completed installation.
- 4.3.3. Contractor may use Project Record Documents as maintenance drawings coordinate with CM.
- 4.4. Written text, as required to supplement product data for the particular installation:
 - 4.4.1. Organize in consistent format under separate headings for different procedures.
 - 4.4.2. Provide logical sequence of instructions for each procedure.
- 4.5. Copy of each warranty, bond and service contract issued.
 - 4.5.1. Provide information sheet for Owner's personnel, give:
 - a. Proper procedures in event of failure.
 - b. Instances which might affect validity of warranties or bonds.

5. MANUAL REVIEW AND PREPARATION SCHEDULE

- 5.1. Submit two copies of preliminary draft of proposed formats and outlines of contents to CM prior to start of preparation.
 - 5.1.1. Architect will review draft and return one copy with comments.
- 5.2. Submit 1 set of electronic copy of completed data in final form to the CM at least 2 months before the end of the project, for Owner review.
 - 5.2.1. Copy will be returned after final inspection or acceptance, with comments.
- 5.3. Submit copies of completed operation and maintenance manuals at least two (2) weeks before execution and have at hand for use in demonstrations and instructions.

5.4. Submit specified number of copies of approved data in final form to the CM ten (10) days after final inspection or acceptance.

6. PRODUCTS

- 6.1. MANUAL FOR MATERIALS AND FINISHES
 - 6.1.1. Submit 1 electronic copy of complete manual in final form.
 - 6.1.2. Content, for architectural products, applied materials and finishes:
 - 6.1.2.1. Manufacturer's data, giving full information on products.
 - 6.1.2.1.1. Catalog number, size, and composition.
 - 6.1.2.1.2. Color and texture designations.
 - 6.1.2.1.3. Information required for reordering special-manufactured products.
 - 6.1.2.2. Instructions for care, maintenance and preventative maintenance.
 - 6.1.2.2.1. Manufacturer's recommendation for types of cleaning agents and methods.
 - 6.1.2.2.2. Cautions against cleaning agents and methods which are detrimental to product.
 - 6.1.2.2.3. Recommended schedule for cleaning and maintenance.
 - 6.1.3. Content, for moisture-protection and weather-exposed products:
 - 6.1.3.1. Manufacturer's data, giving full information on products.
 - 6.1.3.1.1. Applicable standards.
 - 6.1.3.1.2. Chemical composition.
 - 6.1.3.1.3. Details of installation.
 - 6.1.3.2. Instructions for inspection, maintenance and repair.
 - 6.1.4. Additional requirements for maintenance data: Reference sections of Technical Specifications.
- 6.2. MANUAL FOR EQUIPMENT AND SYSTEMS
 - 6.2.1. Submit 1 electronic copy of complete manual in final form.
 - 6.2.2. Content, for each unit of equipment and system, as appropriate:
 - 6.2.2.1. Description of unit and component parts.
 - 6.2.2.1.1. Function, normal operating characteristics, and limiting conditions.
 - 6.2.2.1.2. Performance curves, engineering data and tests.
 - 6.2.2.1.3. Complete nomenclature and commercial number of replaceable parts.
 - 6.2.2.2. Operating procedures:
 - 6.2.2.2.1. Start-up, break-in, routine and normal operating instructions.
 - 6.2.2.2.2. Regulation, control, stopping, shutdown and emergency instructions.
 - 6.2.2.2.3. Summer and winter operating instructions.
 - 6.2.2.2.4. Special operating instructions.
 - 6.2.2.3. Maintenance and Preventative Maintenance Procedures:
 - 6.2.2.3.1. Routine operations.
 - 6.2.2.3.2. Guide to "trouble-shooting".

- 6.2.2.3.3. Disassembly, repair and re-assemble.
- 6.2.2.3.4. Alignment, adjusting and checking.
- 6.2.2.4. Servicing and lubrication schedule.
 - 6.2.2.4.1. List of lubricants required.
- 6.2.2.5. Manufacturer's printed operating and maintenance instructions.
- 6.2.2.6. Description of sequence of operation by control manufacturer.
- 6.2.2.7. Original manufacturer's parts, list, illustrations, assembly drawings and diagrams required for maintenance.
 - 6.2.2.7.1. Predicted life of parts subject to wear.
 - 6.2.2.7.2. Items recommended to be stocked as spare parts.
- 6.2.2.8. As-installed control diagrams by controls manufacturer.
- 6.2.2.9. Each Contractor's coordination drawings.
 - 6.2.2.9.1. As-installed color coded piping diagrams.
- 6.2.2.10. Charts of valve tag numbers, with location and function of each valve.
- 6.2.2.11. List of original manufacturer's spare parts, manufacturer's current prices, and recommended quantities to be maintained in storage.
- 6.2.2.12. Other data as required under pertinent sections of specifications.
- 6.2.3. Content, for each electric and electronic system, as appropriate:
 - 6.2.3.1. Description of system and component parts.
 - 6.2.3.1.1. Function, normal operating characteristics and limiting conditions.
 - 6.2.3.1.2. Performance curves, engineering data and tests.
 - 6.2.3.1.3. Complete nomenclature and commercial number of replaceable parts.
 - 6.2.3.2. Circuit directories of panel boards.
 - 6.2.3.2.1. Electrical service.
 - 6.2.3.2.2. Controls.
 - 6.2.3.2.3. Communications.
 - 6.2.3.3. As-installed color coded wiring diagrams.
 - 6.2.3.4. Operating procedures:
 - 6.2.3.4.1. Routine and normal operating instructions.
 - 6.2.3.4.2. Sequences required.
 - 6.2.3.4.3. Special operating instructions.
 - 6.2.3.5. Maintenance and preventative maintenance procedures:
 - 6.2.3.5.1. Routine operations.
 - 6.2.3.5.2. Guide to "trouble-shooting".
 - 6.2.3.5.3. Disassembly, repair and re-assemble.
 - 6.2.3.5.4. Adjustment and checking.
 - 6.2.3.6. Manufacturer's printed operating and maintenance instructions.

- 6.2.3.7. List of original manufacturer's spare parts, manufacturer's current prices, and recommended quantities to be maintained in storage.
- 6.2.3.8. Other data as required under pertinent sections of specifications.
- 6.2.4. Prepare and include additional data when the need for such data becomes apparent during instruction of Owner's personnel.
- 6.2.5. Additional requirements for operating and maintenance data: Reference sections of Technical Specifications.

SECTION 01740 WARRANTIES AND GUARANTEES

1 GENERAL

1.01 Disclaimers and Limitations: Manufacturer's disclaimers and limitations on product warranties do not relieve the Contractor of the warranty on the Work that incorporates the products. Manufacturer's disclaimers and limitations on product warranties do not relieve suppliers, manufacturers, and subcontractors required to countersign special warranties with the Contractor.

2 WARRANTY REQUIREMENTS

- 2.01 Deliver all written warranties and guarantees required by the Contract Documents with the Owner named as beneficiaries. All warranties shall include labor and materials, shall be signed by the manufacturer or subcontractor as the case may be, and countersigned by the Contractor. All written warranties shall be addressed to the Owner and delivered to CM upon completion of the Project, before or with the submission of Request for Final Payment.
- 2.02 In addition to all other warranties set forth in the Contract Documents or imposed by applicable law, Contractor warrants to Owner and CM that the Work will be free from defects and performed in strict conformity with the requirements of the Contract Documents. This warranty survives the termination of the Agreement and shall only be extinguished by limitation periods imposed by applicable law and shall not be limited by any other provisions contained in the Agreement, including any provisions or time periods related to Contractor's obligation to correct defective Work.
- 2.03 Contractor, upon signing the Agreement, shall obtain and forward to CM any and all Standard Product Warranties for products, materials and systems covered under its Agreement. The Manufacturer's warranties do NOT relieve the Contractor from its warranty obligations under the Contract Documents.
- 2.04 Special Warranties shall become effective on a date established by the Project Team. This date generally shall be the date of Final Completion of the Project or Substantial Completion of the Project or portions thereof as agreed upon by the Project Team. In the case of acceptance of a portion of the Work or Project, separate warranties shall be issued for those specific portions of the Project that were accepted, and shall be dated the date the specific portion was accepted. As additional Work is accepted, separate warranties for those specific portions of the Work shall be issued and properly dated. Issuance of warranties for a portion of the Work shall in no way become the basis for Application for Final Payment.
- 2.05 If for any reason, the Bidder cannot warrant any part of the Work using products, materials, or construction methods that have been specified or shown, it shall notify CM in writing at least ten (10) days before the bid submission date, giving reasons together with the names of products and data on substitutions it can guarantee. Should the Bidder fail to so notify CM within this time period, it will be bound to all warranties and guarantees as set forth in the Contract Documents.
- 2.06 Related Damages and Losses: In correcting Work that has been rejected as defective or otherwise failing to conform to the Contract Documents, whether before or after Substantial Completion, Contractor shall bear all related costs, including, but not necessarily limited to, the cost to correct the Work, the cost to correct all other Work that has been damaged by the defective or non-conforming Work, or that is damaged in the process of correcting the defective or nonconforming Work, and the cost of all additional testing and inspections and compensation for the Architect and/or CM's services and expenses made necessary thereby.
- 2.07 Reinstatement of Warranty: When Work covered by a warranty with a specific time period has failed and has been corrected by Contractor, the warranty shall be reinstated for a time period equal to the original warranty.
- 2.08 Express warranties are in addition to implied warranties and shall not limit the duties, obligations, rights, and remedies otherwise available to the Owner or CM under the law. Express warranty periods shall not be interpreted as limitations on the time in which Owner or CM may enforce Contractor's duties and obligation or their rights and remedies under the Agreement and applicable law.

- 2.08.1 Rejection of Warranties: The Owner and CM reserve the right to reject warranties and to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
- 2.09 Where the Contract Documents require a Special Warranty, or similar commitment on the Work or part of the Work, the Owner and CM reserve the right to refuse to accept the Work, until the Contractor presents evidence that the entities required to countersign such commitments are willing to do so.

3 SUBMITTALS

- 3.01 Submit electronic copies of the warranties to the CM within fourteen (14) days of Substantial Completion using the form found in section 01600-Forms and organizing the warranty documents into an orderly sequence based on the table of contents of the Project Manual. If the project Team's Certificate of Substantial Completion designates a commencement date for warranties other than the date of Substantial Completion for the Work, or a designated portion of the Work, submit written warranties upon request of CM.
- 3.02 When the Contract Documents require Contractor, or Contractor and a Subordinate Party to execute a Special Warranty, prepare a written document that contains appropriate terms and identification, ready for execution by the required parties. Submit a draft to the CM for approval prior to final execution.
- 3.03 Forms for warranties are included in Section 01600-Forms. Prepare a written document utilizing the appropriate form, ready for execution by Contractor and its Subordinate Party(ies). Submit a draft to CM for approval prior to final execution.

SECTION 01750 SYSTEMS DEMONSTRATION, TRAINING AND START-UP

2 GENERAL

2.01 COORDINATE Procedures for demonstration of equipment operation and instruction of Owner's personnel through CM.

3 QUALITY ASSURANCE

- 3.01 When specified in individual Sections, require manufacturer to provide authorized representative to demonstrate operation of equipment and systems, instruct Owner's personnel, and provide written report that demonstrations and instructions have been completed.
- 3.02 CM will provide list of personnel to receive instructions, and will coordinate their attendance at agreed-upon times.

4 SUBMITTALS

- 4.01 Submit preliminary schedule to CM for Architect's and Owner's approval, listing times and dates for demonstration of each item of equipment and each system, at least two (2) weeks prior to proposed dates.
- 4.02 Submit electronic copies of the reports within one week after completion of demonstrations, that demonstrations and instructions have been satisfactorily completed. Give time and date of each demonstration, and hours devoted to demonstration, with a list of persons present.

5 PREPARATION

- 5.01 Provide substantiating information that verifies equipment has been inspected and put into operation; testing, adjusting, and balancing has been performed; and equipment and systems are fully operational.
- 5.02 Submit copies of completed operation and maintenance manuals at least two (2) weeks before execution and have at hand for use in demonstrations and instructions.
- 5.03 CM will develop a schedule for the system demonstration, training, start-up and turn over of all systems and equipment.

6 DEMONSTRATION AND INSTRUCTIONS

- 6.01 Demonstrate operation and maintenance of equipment and systems to the Owner's, CM's and Architect's personnel two (2) weeks prior to date of final inspection. For equipment requiring seasonal operation, perform instructions for other seasons within six months. Contractor shall document the testing, equipment start-up and training sessions as required using the following forms in Section 01600 Forms:
 - 6.01.1 <u>Equipment/System Acceptance</u> This form will be completed for each piece of equipment or system for each contract that requires operational testing and/or training before acceptance. This will document the date of testing, the equipment tested, names of personnel which witnessed the testing and acceptance.
 - 6.01.2 Owner Training Register This form will be completed for each contract that requires training to be provided to the Owner's personnel. This will document the date of training, type of training, names of the personnel trained and acceptance of the training.
- 6.02 The amount of time required for instruction on each item of equipment and system is that specified in individual sections or as mutually agreed upon between Contractor and CM.
- 6.03 Demonstrate start-up, operation, control, adjustment, troubleshooting, servicing, maintenance, and shutdown of each item of equipment at agreed-upon times, at designated location.
- 6.04 Use operation and maintenance manuals as basis of instruction and review the contents of the manuals with personnel in full detail to explain all aspects of operations and maintenance.
- 6.05 Prepare and insert additional data in operations and maintenance manuals when need for additional data becomes apparent during instructions.

6.06 Contractor is responsible for video taping the training sessions. The videotape should be of professional quality and the Owner should be provided with three (3) copies of the videotape.

PROJECT MANUAL FOR THE CONSTRUCTION OF:

PROJECT:

2013 BOND PROGRAM SERIES 1

ATHENS HIGH SCHOOL MEP UPGRADES (13173B) TROY HIGH SCHOOL MEP UPGRADES (13174C)

BID PACKAGE NO. 8

OWNER:

TROY SCHOOL DISTRICT 4400 Livernois Troy, Mi. 48098

TMP PROJECT NOS.: 13173B and 13174C

DATE: September 22, 2015

ISSUED FOR BIDS

ARCHITECT CONS

TMP ARCHITECTURE, INC. 1191 West Square Lake Road Bloomfield Hills, Michigan 48302-0374

PH (248) 338-4561 FX (248) 338-0223

Email info@tmp-architecture.com

CIVIL & LANDSCAPE ENGINEER

PROFESSIONAL ENGINEERING ASSOCIATES, INC. Engineering Consultants 2430 Rochester Court, Suite 100 Troy, Michigan 48083

PH (248) 689-9090 FX (248) 689-1044

CONSTRUCTION MANAGER

BARTON MALOW COMPANY 26500 American Drive Southfield, Mi. 48034

PH (248) 436-5000 FX (248) 436-5001

Email info@bartonmalow.com

MECHANICAL & ELECTRICAL ENGINEER

PETER BASSO ASSOCIATES, INC 5145 Livernois, Suite 100 Troy, Michigan 48098

PH (248) 879-5666 FX (248) 879-0007 Email info@pbanet.com

TABLE OF CONTENTS

TITLE PAGE

TABLE OF CONTENTS

LIST OF DRAWINGS

BID REQUIREMENTS - TO BE PROVIDED BY CONSTRUCTION MANAGER

INFORMATION AVAILABLE TO BIDDERS

Availability of Electronic Files Soil Exploration Data (17 pages)

TECHNICAL SPECIFICATIONS

DIVISION 01 – GENERAL REQUIREMENTS

Sections

012300	Alternates
013219	Schedule of Required Submittals
013300	Submittal Procedures
014213	Abbreviations
014216	Standards and Definitions
016000	Product Requirements
017300	Execution Requirements
017329	Cutting and Patching
017836	Warranties
017839	Electronic Project Record Documents

DIVISION 02 - EXISTING CONDITIONS

Sections

024119	Selective Site Demolition
024120	Selective Demolition

DIVISION 03 – CONCRETE

Sections

033000	Cast-In-Place Concrete
033053	Miscellaneous Cast-In-Place Concrete

DIVISION 04 - MASONRY

Sections

042000 Unit Masonry Assemblies

DIVISION 05 - METAL

Sections

051200	Structural Steel Framing
053100	Steel Decking
055000	Metal Fabrications

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

Sections

061000 Rough Carpentry

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

Sections

072400	Interior/Exterior Finish System
072726	Spray-On Vapor Barrier
075210	Built-Up Roofing
075323	EPDM Single Ply Membrane Roofing
076200	Sheet Metal Flashing and Trim
077100	Manufactured Roof Specialties
079200	Joint Sealants

DIVISION 08 - OPENINGS

Sections

081113	Standard Steel Doors and Frames
083113	Access Doors and Frames
087100	Door Hardware
089000	Louvers and Vents

DIVISION 09 - FINISHES

Sections

092613	Gypsum Veneer Plaster
092900	Gypsum Wallboard Assemblies
093000	Tile
095113	Acoustical Ceilings
096513	Resilient Base and Accessories
096700	Epoxy Floor Coatings
099100	Painting

DIVISION 10 - SPECIALTIES

Sections

102114 Toilet Compartments102800 Toilet and Bath Accessories

DIVISIONS 11 thru 19 - NOT USED

DIVISION 20 - COMMON MECHANICAL REQUIREMENTS

Sections

200500	Mechanical General Requirements
200510	Basic Mechanical Materials and Methods
200513	Motors
200516	Pipe Flexible Connectors, Expansion Fittings and Loops
200519	Meters and Gages
200529	Hangers and Supports
200547	Mechanical Vibration Controls
200553	Mechanical Identification
200700	Mechanical Insulation
202923	Variable Frequency Controllers

DIVISION 22 – PLUMBING

Sections

220523	General Duty Valves for Plumbing
221116	Domestic Water Piping
221119	Domestic Water Piping Specialties
221123	Domestic Water Circulation Pumps
223410	Condensing, Fuel-Fired Domestic Water Heaters
223420	Condensing, Fuel-Fired Pool Water Heaters
223500	Domestic Water Heat Exchangers
224200	Plumbing Fixtures

DIVISION 23 – HEATING, VENTILATING AND AIR CONDITIONING

Sections

230130	HVAC Air-Distribution System Cleaning
230500	Common Work Results For HVAC
230523	General-Duty Valves for HVAC
230593	Testing, Adjusting, and Balancing
230933	Temperature Controls
231123	Fuel Gas Piping
232113	Hydronic Piping
232123	Hydronic Pumps
232300	Refrigerant Piping
232500	HVAC Water Treatment
232510	Piping Systems Flushing and Chemical Cleaning

233113	Metal Ducts
233116	Nonmetal Ducts
233300	Duct Accessories
233416	Centrifugal Fans
233423	Power Ventilators
233600	Air Terminal Units
233713	Diffusers, Registers, and Grilles
233813	Commercial Kitchen Hoods
235100	Breechings, Chimneys, and Stacks
235216	Condensing Boilers
236426	Air-Cooled Rotary-Screw Water Chillers
237000	Central HVAC Equipment
237200	Air-to-Air Energy Recovery Equipment
238123	Computer-Room Air-Conditioning Units
238126	Split-System Air-Conditioning Units
238216	Heating and Cooling Coils

DIVISION 26 - ELECTRICAL

Sections

260010	Electrical Conoral Paguiroments
	Electrical General Requirements Basic Electrical Materials and Methods
260500	
260519	Conductors and Cables
260526	Grounding and Bonding
260529	Hangers and Supports for Electrical Systems
260533	Raceways and Boxes
260553	Electrical Identification
260573	Overcurrent Protective Device Coordination and Arc Flash Study
260923	Lighting Control Devices
260999	Electrical Testing
261116	Secondary Unit Substation
262200	Dry-Type Transformers (600 V And Less)
262413	Switchboards
262416	Panelboards
262726	Wiring Devices
262813	Fuses
262816	Enclosed Switches and Circuit Breakers
262913	Enclosed Controllers
264313	Surge Protective Devices
265100	Interior Lighting
265600	Exterior Lighting

DIVISION 28 - ELECTRICAL SAFETY AND SECURITY

Sections

283100 Fire Alarm

DIVISION 31 – EARTHWORK

Sections

310516	Soils and Aggregates
311000	Site Clearing
312010	Building Earthwork
312316	Excavation
312317	Trenching
312323	Fill
312513	Erosion Controls

DIVISION 32 - NOT USED

DIVISION 33 – UTILITIES

Sections

336113 Underground Hydronic Distribution Piping

END OF SECTION

LIST OF DRAWINGS

SHEET NO. TITLE

Athens High School (13173B)

GENERAL INFORMATION

TS.1 COVER SHEET

TG.1 GENERAL INFORMATION

CIVIL

C-1.1 TOPOGRAPHIC SURVEY
C-2.1 DEMOLITION PLAN

C-3.1 DIMENSION AND PAVING PLAN

C-4.1 GRADING, UTILITY, AND SOIL EROSION CONTROL PLAN

C-5.1 CITY OF TROY SESC PLAN

STRUCTURAL

S-001 GENERAL STRUCTURAL NOTES

S-101 PARTIAL PLANS S-102 PARTIAL PLANS

ARCHITECTURAL

AC.1	FIRST LEVEL COMPOSITE FLOOR PLAN
AC.2	SECOND LEVEL COMPOSITE FLOOR PLAN
AC.3	THIRD LEVEL COMPOSITE FLOOR PLAN
A C 4	COMPOSITE DOOF LEVEL DLAN

AC.4 COMPOSITE ROOF LEVEL PLAN

AD.1 DOOR AND FRAME SCHEDULE AND DETAILS

A0.1A FIRST LEVEL DEMOLITION PLAN - ZONE 'A' A0.1B FIRST LEVEL DEMOLITION PLAN - ZONE 'B' A0.1C FIRST LEVEL DEMOLITION PLAN - ZONE 'C' A0.1E FIRST LEVEL DEMOLITION PLAN - ZONE 'E' A0.1F FIRST LEVEL DEMOLITION PLAN - ZONE 'F' A0.1G FIRST LEVEL DEMOLITION PLAN - ZONE 'G' A0.1H FIRST LEVEL DEMOLITION PLAN - ZONE 'H' A0.1J FIRST LEVEL DEMOLITION PLAN - ZONE 'J' A0.2B SECOND LEVEL DEMOLITION PLAN - ZONE 'B' A0.2C SECOND LEVEL DEMOLITION PLAN - ZONE 'C' A0.2D SECOND LEVEL DEMOLITION PLAN - ZONE 'D' A0.2E SECOND LEVEL DEMOLITION PLAN - ZONE 'E' SECOND LEVEL DEMOLITION PLAN - ZONE 'F' A0.2F A0.2G SECOND LEVEL DEMOLITION PLAN - ZONE 'G' THIRD LEVEL DEMOLITION PLAN - ZONE 'C' A0.3C

A0.3F A0.3G	THIRD LEVEL DEMOLITION PLAN - ZONE 'F' THIRD LEVEL DEMOLITION PLAN - ZONE 'G'
A1.1A A1.1B A1.1F A1.1H A1.1J A1.2B A1.2C A1.2D A1.2E A1.2F A1.2F A1.2G A1.3G	FIRST LEVEL FLOOR PLAN - ZONE 'A' FIRST LEVEL FLOOR PLAN - ZONE 'B' FIRST LEVEL FLOOR PLAN - ZONE 'F' FIRST LEVEL FLOOR PLAN - ZONE 'H' FIEST LEVEL FLOOR PLAN - ZONE 'J' SECOND LEVEL FLOOR PLAN - ZONE 'B' SECOND LEVEL FLOOR PLAN - ZONE 'C' SECOND LEVEL FLOOR PLAN - ZONE 'D' SECOND LEVEL FLOOR PLAN - ZONE 'E' SECOND LEVEL FLOOR PLAN - ZONE 'F' SECOND LEVEL FLOOR PLAN - ZONE 'G' SECOND LEVEL FLOOR PLAN - ZONE 'G' THIRD LEVEL FLOOR PLAN - ZONE 'C' THIRD LEVEL FLOOR PLAN - ZONE 'G'
A2.1A A2.1B A2.1C A2.1E A2.1F A2.1G A2.1J A2.2C A2.2F	FIRST LEVEL REFLECTED CEILING PLAN - ZONE 'A' FIRST LEVEL REFLECTED CEILING PLAN - ZONE 'B' FIRST LEVEL REFLECTED CEILING PLAN - ZONE 'C' FIRST LEVEL REFLECTED CEILING PLAN - ZONE 'E' FIRST LEVEL REFLECTED CEILING PLAN - ZONE 'F' FIRST LEVEL REFLECTED CEILING PLAN - ZONE 'G' FIRST LEVEL REFLECTED CEILING PLAN - ZONE 'J' SECOND LEVEL REFLECTED CEILING PLAN - ZONE 'C' SECOND LEVEL REFLECTED CEILING PLAN - ZONE 'F'
A3.1	BUILDING SECTIONS
A4.1 A4.2	WALL SECTIONS POST SECTIONS AND DETAILS
A5.1	ROOF DETAILS
A6.1	ENLARGED TOILET ROOM FLOOR PLANS
A10.1A A10.1B A10.1C A10.1G A10.1H A10.1J A10.2C A10.2D A10.2E A10.2F A10.2G	FIRST LEVEL FINISH PLAN - ZONE 'A' FIRST LEVEL FINISH PLAN - ZONE 'B' FIRST LEVEL FINISH PLAN - ZONE 'C' FIRST LEVEL FINISH PLAN - ZONE 'G' FIRST LEVEL FINISH PLAN - ZONE 'H' FIRST LEVEL FINISH PLAN - ZONE 'J' SECOND LEVEL FINISH PLAN - ZONE 'C' SECOND LEVEL FINISH PLAN - ZONE 'D' SECOND LEVEL FINISH PLAN - ZONE 'E' SECOND LEVEL FINISH PLAN - ZONE 'F' SECOND LEVEL FINISH PLAN - ZONE 'G'

MECHANICAL

M0.1	MECHANICAL STANDARDS AND DRAWING INDEX
MD1.1A MD1.1B MD1.1C MD1.1D MD1.1E MD1.1E MD1.1F MD1.1G MD1.1J MD1.2A MD1.2B MD1.2C MD1.2D MD1.2E MD1.2E MD1.2E MD1.2E MD1.2E MD1.2E MD1.2F MD1.2G MD1.2J MD1.2G MD1.2J MD1.3C	FIRST LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'A' FIRST LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'B' FIRST LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'C' FIRST LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'D' FIRST LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'E' FIRST LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'E' FIRST LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'F' FIRST LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'G' FIRST LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'J' SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'A' SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'B' SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'C' SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'D' SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'E' SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'E' SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'E' SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'F' SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'G' SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'J' THIRD LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'J' THIRD LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'J'
MD5.1 MD5.2 MD5.3 MD5.4 MD5.5 MD5.6 MD5.7	BOILER ROOM 143 MECHANICAL DEMOLITION PLAN MECHANICAL RM. B200 AND B201 HVAC PIPING DEMOLITION PLAN MECHANICAL RM. B200 AND B201 SHEET METAL DEMOLITION PLAN MECHANICAL RM. F3600 HVAC PIPING DEMOLITION PLAN MECHANICAL RM. F3600 SHEET METAL DEMOLITION PLAN MECHANICAL RM. F300 AND G300 HVAC PIPING DEMOLITION PLAN MECHANICAL RM. F300 AND G300 SHEET METAL DEMOLITION PLAN
M3.1A M3.1B M3.1C M3.1D M3.1E M3.1E ALT M-1 M3.1F M3.1G M3.1J M3.2A M3.2B M3.2C M3.2D M3.2E M3.2E M3.2E ALT M-1 M3.2F M3.2G M3.2J M3.3C	FIRST LEVEL MECHANICAL PLAN - ZONE 'A' FIRST LEVEL MECHANICAL PLAN - ZONE 'B' FIRST LEVEL MECHANICAL PLAN - ZONE 'C' FIRST LEVEL MECHANICAL PLAN - ZONE 'D' FIRST LEVEL MECHANICAL PLAN - ZONE 'E' FIRST LEVEL MECHANICAL PLAN - ZONE 'E' FIRST LEVEL MECHANICAL PLAN - ZONE 'G' FIRST LEVEL MECHANICAL PLAN - ZONE 'G' FIRST LEVEL MECHANICAL PLAN - ZONE 'J' SECOND LEVEL MECHANICAL PLAN - ZONE 'A' SECOND LEVEL MECHANICAL PLAN - ZONE 'B' SECOND LEVEL MECHANICAL PLAN - ZONE 'C' SECOND LEVEL MECHANICAL PLAN - ZONE 'D' SECOND LEVEL MECHANICAL PLAN - ZONE 'E' SECOND LEVEL MECHANICAL PLAN - ZONE 'E' SECOND LEVEL MECHANICAL PLAN - ZONE 'E' SECOND LEVEL MECHANICAL PLAN - ZONE 'F' SECOND LEVEL MECHANICAL PLAN - ZONE 'G' SECOND LEVEL MECHANICAL PLAN - ZONE 'G' SECOND LEVEL MECHANICAL PLAN - ZONE 'J' THIRD LEVEL MECHANICAL PLAN - ZONE 'C'

M5.1 M5.2 M5.3 M5.4 M5.5 M5.6 M5.7 M5.7 ALT M-1	BOILER ROOM 143 MECHANICAL PLAN MECHANICAL RM. B200 AND B201 HVAC PIPING PLAN MECHANICAL RM. B200 AND B201 SHEET METAL PLAN MECHANICAL RM. F3600 HVAC PIPING PLAN MECHANICAL RM. F3600 SHEET METAL PLAN MECHANICAL RM. F300 AND G300 HVAC PIPING PLAN MECHANICAL RM. F300 AND G300 SHEET METAL PLAN MECHANICAL RM. F300 AND G300 SHEET METAL PLAN MECHANICAL RM. F300 – HVAC PLANS ALT M-1
M6.1 M6.2 M6.3 M6.4	MECHANICAL DETAILS MECHANICAL DETAILS MECHANICAL DETAILS MECHANICAL DETAILS
M7.1 M7.1 ALT M-1 M7.2 M7.2 ALT M-1 M7.3 M7.4 M7.5 M7.6	MECHANICAL SCHEDULES MECHANICAL SCHEDULES AND DETAILS ALT M-1 MECHANICAL SCHEDULES MECHANICAL SCHEDULES AND DETAILS ALT M-1 MECHANICAL SCHEDULES MECHANICAL SCHEDULES MECHANICAL SCHEDULES MECHANICAL SCHEDULES MECHANICAL SCHEDULES
M8.1 M8.2 M8.3 M8.4 M8.5 M8.6 M8.7 M8.8 M8.9 M8.10 M8.11 M8.12 M8.13 M8.15 M8.15 M8.16 M8.17	TEMPERATURE CONTROLS STANDARDS AND GENERAL NOTES TEMPERATURE CONTROLS ALT M-1 TEMPERATURE CONTROLS
ELECTRICAL	
E0.1 E0.2 E0.3 E0.4 E0.5 E0.6 E0.7	ELECTRICAL STANDARDS AND DRAWING INDEX ELECTRICAL STANDARD SCHEDULES SITE PLAN COMPOSITE FIRST LEVEL ELECTRICAL COMPOSITE PLAN SECOND LEVEL ELECTRICAL COMPOSITE PLAN THIRD LEVEL ELECTRICAL COMPOSITE PLAN CONCESSION BUILDING ELECTRICAL PLANS

```
FIRST LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'A'
ED1.1A
                   FIRST LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'B'
ED1.1B
ED1.1C
                   FIRST LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'C'
ED1.1D
                   FIRST LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'D'
                   FIRST LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'E'
ED1.1E
ED1.1E ALT
                   FIRST LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'E' ALT E-1
ED1.1F
                   FIRST LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'F'
                   FIRST LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'G'
ED1.1G
                   FIRST LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'H'
ED1.1H
                   FIRST LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'J'
ED1.1J
ED1.2A
                   SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'A'
                   SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'B'
ED1.2B
                   SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'C'
ED1.2C
ED1.2D
                   SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'D'
ED1.2E
                   SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'E'
ED1.2E ALT
                   SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'E' ALT E-1
ED1.2F
                   SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'F'
ED1.2G
                   SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'G'
ED1.2H
                   SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'H'
ED1.2J
                   SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'J'
ED1.3
                   PENTHOUSE LEVEL ELECTRICAL DEMOLITION PLAN
                   FIRST LEVEL LIGHTING PLAN - ZONE 'A'
E2.1A
E2.1B
                   FIRST LEVEL LIGHTING PLAN - ZONE 'B'
E2.1C
                   FIRST LEVEL LIGHTING PLAN - ZONE 'C'
E2.1E
                   FIRST LEVEL LIGHTING PLAN - ZONE 'E'
E2.1E ALT
                   FIRST LEVEL LIGHTING PLAN - ZONE 'E' ALT E-1
E2.1F
                   FIRST LEVEL LIGHTING PLAN - ZONE 'F'
                   FIRST LEVEL LIGHTING PLAN - ZONE 'G'
E2.1G
                   FIRST LEVEL LIGHTING PLAN - ZONE 'H'
E2.1H
                   FIRST LEVEL LIGHTING PLAN - ZONE 'J'
E2.1J
E2.2A
                   SECOND LEVEL LIGHTING PLAN - ZONE 'A'
E2.2C
                   SECOND LEVEL LIGHTING PLAN - ZONE 'C'
F2 2D
                   SECOND LEVEL LIGHTING PLAN - ZONE 'D'
E2.2E
                   SECOND LEVEL LIGHTING PLAN - ZONE 'E'
E2.2F
                   SECOND LEVEL LIGHTING PLAN - ZONE 'F'
E2.2G
                   SECOND LEVEL LIGHTING PLAN - ZONE 'G'
E2.2H
                   SECOND LEVEL LIGHTING PLAN - ZONE 'H'
E2.2J
                   SECOND LEVEL LIGHTING PLAN - ZONE 'J'
E2.3
                   PENTHOUSE LEVEL LIGHTING PLAN
E3.1A
                   FIRST LEVEL POWER PLAN - ZONE 'A'
E3.1B
                   FIRST LEVEL POWER PLAN - ZONE 'B'
                   FIRST LEVEL POWER PLAN - ZONE 'C'
E3.1C
                   FIRST LEVEL POWER PLAN - ZONE 'D'
E3.1D
E3.1E
                   FIRST LEVEL POWER PLAN - ZONE 'E'
E3.1E ALT
                   FIRST LEVEL POWER PLAN - ZONE 'E' ALT E-1
E3.1F
                   FIRST LEVEL POWER PLAN - ZONE 'F'
E3.1G
                   FIRST LEVEL POWER PLAN - ZONE 'G'
E3.1H
                   FIRST LEVEL POWER PLAN - ZONE 'H'
                   FIRST LEVEL POWER PLAN - ZONE 'J'
E3.1J
                   SECOND LEVEL POWER PLAN - ZONE 'A'
E3.2A
                   SECOND LEVEL POWER PLAN - ZONE 'B'
E3.2B
```

E3.2C E3.2D E3.2E E3.2E ALT E3.2F E3.2G E3.2H E3.2J E3.3	SECOND LEVEL POWER PLAN - ZONE 'C' SECOND LEVEL POWER PLAN - ZONE 'D' SECOND LEVEL POWER PLAN - ZONE 'E' SECOND LEVEL POWER PLAN - ZONE 'E' ALT E-1 SECOND LEVEL POWER PLAN - ZONE 'F' SECOND LEVEL POWER PLAN - ZONE 'G' SECOND LEVEL POWER PLAN - ZONE 'H' SECOND LEVEL POWER PLAN - ZONE 'J' PENTHOUSE LEVEL POWER PLAN
E5.1 E5.2 E5.3 E5.4 E5.5 E5.6 E5.7 E5.8 E5.9 E5.10 E5.11 E5.12	DEMOLITION ONE LINE DIAGRAMS DEMOLITION ONE LINE DIAGRAMS NEW WORK ONE LINE DIAGRAMS PANEL SCHEDULES PANEL SCHEDULES PANEL SCHEDULES PANEL SCHEDULES
E7.1 E7.2	ELECTRICAL DETAILS AND DIAGRAMS ELECTRICAL DETAILS AND DIAGRAMS

Troy High School (13174C)

GENERAL INFORMATION

TS.1	COVER SHEET
10.1	COVERSHEET

TG.1 GENERAL INFORMATION

<u>CIVIL</u>

C-1.1	TOPOGRAPHIC SURVEY
C-2 1	DEMOLITION PLAN

C-3.1 DIMENSION, GRADING AND SESC PLAN

C-4.1 CITY OF TROY SESC PLAN

STRUCTURAL

S-001	GENERAL STRUCTURAL NOTES
S-002	GENERAL STRUCTURAL NOTES
S-003	SPECIAL INSPECTIONS
S-101	CHILLERS – ZONE 'E'
S-102	THIRD LEVEL FLOOR PLAN – ZONE 'A'
S-103	HVAC ON ROOF – ZONE 'A'

ARCHITECTURAL

AC.1 AC.2 AC.3	FIRST LEVEL ARCHITECTURAL COMPOSITE FLOOR PLAN SECOND LEVEL ARCHITECTURAL COMPOSITE FLOOR PLAN THIRD LEVEL ARCHITECTURAL COMPOSITE FLOOR PLAN
A0.2A A0.2E A0.2F A0.3A	SECOND LEVEL DEMOLITION PLAN - ZONE 'A' SECOND LEVEL DEMOLITION PLAN - ZONE 'E' SECOND LEVEL DEMOLITION PLAN - ZONE 'F' THIRD LEVEL DEMOLITION PLAN - ZONE 'A'
A1.2A A1.2E A1.2F A1.3A	SECOND LEVEL FLOOR PLAN - ZONE 'A' SECOND LEVEL FLOOR PLAN - ZONE 'E' SECOND LEVEL FLOOR PLAN - ZONE 'F' THIRD LEVEL FLOOR PLAN - ZONE 'A'
A2.2A A2.3A	SECOND LEVEL REFLECTED CEILING PLAN - ZONE 'A' THIRD LEVEL REFLECTED CEILING PLAN - ZONE 'A'
A3.1 A3.2	EXTERIOR ELEVATIONS BUILDING SECTIONS
A4.1	WALL SECTIONS AND PLAN DETAILS
A10.2A A10.3A	SECOND LEVEL FINISH PLAN – ZONE 'A' THIRD LEVEL FINISH PLAN – ZONE 'A'

MECHANICAL

M0.1 M0.2	MECHANICAL STANDARDS AND DRAWING INDEX MECHANICAL NOTES
MD1.2A MD5.1	SECOND LEVEL MECHANICAL DEMOLITION PLAN - ZONE 'A' BOILER ROOM MECHANICAL DEMOLITION PLAN
M3.2A M3.3A	SECOND LEVEL MECHANICAL PLAN - ZONE 'A' THIRD LEVEL MECHANICAL PLAN - ZONE 'A'
M5.1 M5.2 M5.3	BOILER ROOM MECHANICAL PLAN ENLARGED MECHANICAL ROOM PLANS ENLARGED MECHANICAL ROOM PLANS
M6.1 M6.2 M6.3 M6.4	MECHANICAL DETAILS MECHANICAL DETAILS MECHANICAL DETAILS MECHANICAL DETAILS
M7.1 M7.2 M7.3 M7.4	MECHANICAL SCHEDULES MECHANICAL SCHEDULES MECHANICAL SCHEDULES MECHANICAL SCHEDULES

M8.1 M8.2 M8.3 M8.4 M8.5 M8.6 M8.7 M8.8 M8.9 M8.10 M8.11 M8.12	TEMPERATURE CONTROLS STANDARDS AND GENERAL NOTES TEMPERATURE CONTROLS
ELECTRICAL	
E0.1 E0.2 E0.5 E0.6 E0.7	ELECTRICAL STANDARDS AND DRAWING INDEX ELECTRICAL STANDARD SCHEDULES SECOND LEVEL ELECTRICAL DEMOLITION COMPOSITE PLAN SECOND LEVEL LIGHTING COMPOSITE PLAN SECOND LEVEL COMPOSITE PLAN
ED1.2A ED1.2B ED1.2C ED1.2E ED1.2F	SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'A' SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'B' SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'C' SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'E' SECOND LEVEL ELECTRICAL DEMOLITION PLAN - ZONE 'F'
E2.2A E2.2B E2.2C	SECOND LEVEL LIGHTING PLAN - ZONE 'A' SECOND LEVEL LIGHTING PLAN - ZONE 'B' SECOND LEVEL LIGHTING PLAN - ZONE 'C'
E3.2A E3.2D E3.2E E3.2F	SECOND FLOOR POWER PLAN - ZONE 'A' SECOND FLOOR POWER PLAN - ZONE 'D' SECOND FLOOR POWER PLAN - ZONE 'E' SECOND FLOOR POWER PLAN - ZONE 'F'
E5.1 E5.2 E5.3	DEMOLITION ONE LINE DIAGRAMS NEW WORK ONE LINE DIAGRAMS PARTIAL DEMOLITION AND NEW WORK ONE LINE DIAGRAMS

END OF SECTION

ELECTRICAL DETAILS

E7.1

AVAILABILITY OF ELECTRONIC FILES

PART 1 - GENERAL

1.1 POLICY

- A. As a service to contractors, subcontractor, vendors, material suppliers and others needing electronic copies of drawing files, the Architect will provide CAD files electronically in accordance with the following policy:
 - 1. By acceptance it is understood and agreed that the data and medium being supplied is to be used only for the project referenced.
 - 2. It is further understood and agreed that the undersigned will hold TMP Architecture harmless and indemnify TMP Architecture from all claims, liabilities, losses, etc., including attorney's fees arising out of the use or misuse of the transferred items.
 - 3. It is understood and agreed that the items transmitted are prepared from CAD files current at the time of preparation. All files are AutoCAD version 2009 dwg files.
 - 4. This information does not waive the need to verify and review current field conditions and the status of Addenda and/or Bulletin documentation.
 - 5. As a record of information to be transmitted, TMP Architecture will prepare a duplicate electronic back-up for its record.
 - 6. Compensation for providing this material will be as follows:
 - a. Base Fee of \$250 for 1 to 3 drawings.
 - b. Base Fee of \$500 for 4 to 10 drawings.
 - c. For each additional drawing after 10 the fee is \$40.00 per drawing (i.e., 11 drawings = \$540).
 - 7. Payment must be provided along with a signed copy of the Release Letter before files will be released.

1.2 REQUEST PROCEDURE

- A. To receive files the attached Release Letter must be completed in full and submitted to the Construction Manager to be forwarded to the Project Manager at TMP Architecture.
 - A signed copy of the Release Letter must be submitted; faxed or emailed copies will be accepted.
 - Upon remittance of the signed Release Letter and Fee, allow five working days for processing.
 - 3. Transmission of documents will be provided electronically after the receipt of payment.

Dat	2:					
	Requesting Files:					
Nar	ne:					
Cor	npany:					
City	ress: , State, Zip:					
City	Clate, Zip					
Re:	Letter of Authorization for CAD File Transfers Project Name:					
	TMP Project No. : Bid Pack No. :					
Dea	r Sir:					
	your request, TMP Architecture will transmit the requested CAD files in the form of CD-ROM upon ipt of an original signed copy of this letter with conditions of agreement as stated.					
1.	By acceptance it is understood and agreed that the data and medium being supplied is to be used only for the project referenced.					
2.	It is further understood and agreed that the undersigned will hold TMP Architecture harmless and indemnify TMP Architecture from all claims, liabilities, losses, etc., including attorney's fees arising out of the use or misuse of the transferred items.					
3.	It is understood and agreed that the items transmitted are prepared from CAD files current at the time of preparation. All files are AutoCAD 2009.					
4.	This information does not waive the need to verify and review current field conditions and the status of Addenda and/or Bulletin documentation.					
5.	As a record of information to be transmitted, we will prepare a duplicate back-up for our files, which may be electronic or hard-copy.					
6.	Compensation for providing this material will be as follows: Base Fee of \$250 for 1 to 3 drawings and a Base Fee of \$500 for 4 to 10 drawings; for each additional drawing after 10 the fee is \$40.00 per drawing (i.e., 11 drawings = \$540). Payment must be provided along with a signed copy of this form before files will be released. Please remit to TMP Architecture and allow five working days for processing.					
Fee	\$ Drawings:					
Sigi	ed: Printed Name/Title:					
Firn	Requesting:					
Pho	ne: Fax:					
<u>To E</u>	e Completed By TMP Architecture, Inc.					
Rel	eased (signed by): TMP Architecture, Inc.					
Prin	ted Name/Title: Date:					

END OF SECTION

Report on Geotechnical Investigation

Compression Chillers and **Dehumidifier Unit Troy High School** 4777 Northfield Parkway Troy, Michigan

Prepared for:

Troy School District 4400 Livernois Troy, Michigan 48098

G2 Project No. 140452 August 31, 2015

P 847.353.8740 F 847.353.8742

August 31, 2015

Troy School District 4400 Livernois Troy, Michigan 48098 c/o Mr. John Waldrop, AIA TMP Architecture, Inc.

Report on Geotechnical Investigation Re:

Compression Chiller and Dehumidifier Pads

4777 Northfield Parkway

Troy, Michigan

G2 Project No. 140452

Dear Mr. Waldrop:

We have completed the geotechnical investigation for the proposed compression chiller and dehumidifier pads at Troy High School in Troy, Michigan. This report presents the results of our observations and analyses and our recommendations for earthwork operations, foundation design, and construction considerations as they relate to the geotechnical conditions on site.

We appreciate the opportunity to be of service to Troy School District and TMP Architecture, Inc. and look forward to discussing the recommendations presented. In the meantime, if you have any questions regarding the report or any other matter pertaining to the project, please call us.

Sincerely,

G2 Consulting Group, LLC

Amy L. Schneider, P.E.

Project Manager

ALS/NJHT/ljv

Enclosures

Noel J. Hargrave-Thomas, P.E.

Principal

P 847.353.8740

EXECUTIVE SUMMARY

We understand the project includes installation of two compressor chillers manufactured by Daikin. The chillers will be constructed along the north side of Troy High School. Per direction by TMP Architecture, the chillers are to be supported on W8 steel sections. Current plans call for the steel sections to be supported on a concrete slab with a perimeter foundation. In addition, a dehumidifier unit will be constructed along the southwest side of the high school for the pool. We also understand this will be supported on a concrete slab.

Approximately 4 to 6 inches of topsoil are present at soil borings B-1 and B-2. Medium compact gravelly sand fill is present at boring B-3 and extends to an approximate depth of 3 feet. Hard sandy clay fill with miscellaneous debris and organic matter underlies the topsoil in borings B-1 and B-2 and extends from the ground surface at boring B-4 to approximate depths ranging from 2-1/2 to 6-1/2 feet. A layer of medium compact silty sand fill with organic matter extends from an approximate depth of 6 to 8 feet in boring B-2. In general, native stiff to very stiff, and to a lesser extent hard, silty clay and sandy clay underlie the fill and extend to the explored depths of 20 feet. A layer of medium compact silty sand is present in boring B-2 from an approximate depth of 8 to 13 feet. Groundwater was encountered during drilling operations at depths ranging from 9 to 13-1/2 feet in the granular seams. Upon completion of drilling operations, the groundwater was measured at depths ranging from 11-1/2 to 18 feet in the boreholes.

We understand the proposed compression chillers and dehumidifier are to be supported on a concrete slab with a perimeter foundation. The perimeter foundations must extend through the existing fill (extending to depths ranging from 6-1/2 to 8 feet at the dehumidifier location and 2-1/2 to 3 feet at the chiller location) and native stiff silty clay at boring B-1 and bear on the underlying native very stiff silty clay or medium compact silty sand. In consideration that the fill soils extend to depths ranging from 6-1/2 to 8 feet below grade at the dehumidifier location, the contractor can backfill strip footings with flowable fill to a depth of 3-1/2 feet below finished grade to allow support of conventional strip footings. The flowable fill excavations must extend laterally a minimum of 6 inches beyond the proposed footing perimeter. Alternatively, due to the depth of the depth of the existing fill, the dehumidifier can be supported on drilled pier foundations extending through the fill and bearing on the aforementioned soils for ease of construction.

We recommend an allowable bearing pressure of 4,000 pounds per square foot (psf) be used for design of the strip footings or drilled pier foundations bearing on the native very stiff silty clay or medium compact silty sand. Regardless of the foundation type, foundations must extend a minimum depth of 3-1/2 feet below finished grade for protection against frost penetration. We recommend a G2 Consulting Group, LLC (G2) engineer be on site during foundation construction to observe the excavations, measure the bearing depths, and verify the adequacy of the bearing soils.

For strip footing construction, caving and sloughing of the granular fill soil from an approximate depth of 6 to 8 feet at boring B-2 and the gravelly sand in boring B-3 extending to an approximate depth of 3 feet may occur during excavation for foundations. The contractor should be prepared to over excavate and form the foundations, as necessary, where caving soils are encountered in the upper 3-1/2 feet. Any voids from caving soils below 3-1/2 feet should be filled with flowable fill or concrete during construction operations. The sides of the strip footings should be constructed straight and vertical to reduce the risk of frozen soil adhering to the concrete and raising the foundation. For drilled pier foundations, the contractor should be prepared to use extend temporary steel casing through the fill soils and into the underlying native soil to maintain a stable excavation during construction operations. The contractor should take care to not extend drilled piers into the groundwater at an approximate depth of 10 feet below existing grade. Once drilling is completed to the design depth, reinforcing steel should be set and concrete placed by free fall method until a positive head of concrete has been established within the casing. This positive concrete head must be maintained while pulling the casing to prevent the infiltration of loose soil into the fresh concrete. After concrete has been placed to an appropriate grade, the casing may be removed and concrete placement operations completed.

This summary is not to be considered separate from the entire text of this report, with all the conclusions and qualifications mentioned herein. Details of our analysis and recommendations are discussed in the following sections and in the Appendix of this report.

PROJECT DESCRIPTION AND SITE CONDITIONS

We understand the project includes installation of two compressor chillers manufactured by Daikin along the north side of Troy High School. The chillers measure approximately 7-1/2 feet by 27 feet in area and have an operating weight of approximately 18,000 pounds. Per direction of TMP Architecture, the chillers are to be supported on W8 steel sections which will bear on a concrete slab with a perimeter foundation. In addition, a dehumidifier unit will be constructed along the southwest side of the high school for the pool. We also understand this will be supported on a concrete slab with a perimeter foundation.

The compression chillers are to be installed on the north side of Troy High School, directly north of the existing masonry wall surrounding the air conditioner units. The area is currently grass covered and flat. The area is flanked on the east side by bituminous pavement and concrete pavement on the west side. The dehumidifier unit is to be constructed at the southwest corner of the high school building, adjacent to the inside pool. This area is relatively flat and covered with low vegetation.

SCOPE OF SERVICES

The field operations, laboratory testing, and engineering report preparation were performed under direction and supervision of a licensed professional engineer. Our services were performed according to generally accepted standards and procedures in the practice of geotechnical engineering in this area. Our scope of services for this project is as follows:

- 1. We drilled a total of four soil borings at the school. Borings B-1 and B-2 were drilled in the footprint of the proposed dehumidifier unit and extended to a depth of 20 feet each. Borings B-3 and B-4 were drilled in the footprint of the proposed chillers and extended to a depth of 20 feet each.
- 2. We performed laboratory testing on representative samples obtained from the soil borings. Laboratory testing included visual engineering classification, natural moisture content, dry density, organic content, and unconfined compressive strength determinations.
- 3. We prepared this engineering report. The report includes recommendations regarding foundation types, allowable bearing capacity, estimated settlement, and construction considerations related to site construction and associated development.

FIELD OPERATIONS

TMP Architecture, Inc. selected the number, depth, and location of the soil borings based on the location of the proposed compression chillers and dehumidifier unit. The soil boring locations were determined in the field by a G2 engineer measuring from existing site features using conventional taping methods prior to drilling operations. The approximate soil boring locations are shown on the Soil Boring Location Plans, Plate Nos. 1 and 2. No ground surface elevations were available at the time of this investigation.

Soil borings were drilled using a truck-mounted rotary drilling rig. Continuous flight 2-1/4 inch inside diameter, hollow-stem augers were used to advance the boreholes to the explored depths. Within each soil boring, soil samples were obtained at intervals of 2-1/2 feet within the upper 10 feet and at intervals of 5 feet below that depth. These samples were obtained by the Standard Penetration Test method ASTM D 1586, which involves driving a 2-inch diameter split-spoon sampler into the soil with a 140-pound weight falling 30 inches. The sampler is generally driven three successive 6-inch increments with the number of blows for each increment recorded. The number of blows required to advance the sampler the last 12 inches is termed the Standard Penetration Resistance (N). The blow counts for each 6-inch increment and the resulting N-value are presented on the individual soil boring logs.

The soil samples were placed in sealed containers in the field and brought to the laboratory for testing and classification. During drilling operations, the drilling crew maintained logs of the encountered

subsurface conditions, including changes in stratigraphy and observed groundwater levels of the soil borings to be used in conjunction with our analysis of the subsurface conditions. The final boring logs are based on the field logs and laboratory soil classification of these results. After completion of the drilling operations, the boreholes were backfilled with the auger cuttings.

LABORATORY TESTING

Representative soil samples were subjected to laboratory testing to determine soil parameters pertinent to foundation design and site preparation. An experienced geotechnical engineer classified the samples in general conformance with the Unified Soil Classification System.

Laboratory testing included natural moisture content, dry density, loss-on-ignition (L.O.I.), and unconfined compressive strength determinations. The organic matter content of representative samples was determined in accordance with ASTM Test Method D 2974, "Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils". The unconfined compressive strengths were determined by ASTM Test Method D 2166 and using a spring loaded hand penetrometer. Per ASTM Test Method D 2166, the unconfined compressive strength of cohesive soils is determined by axially loading a small cylindrical soil sample under a slow rate of strain. The unconfined compressive strength is defined as the maximum stress applied to the soil sample before shear failure. If shear failure does not occur prior to a total strain of 15 percent, the unconfined compressive strength is defined as the stress at a total strain of 15 percent. The hand penetrometer estimates the unconfined compressive strength to a maximum of 4-1/2 tons per square foot (tsf) by measuring the resistance of the soil sample to the penetration of a calibrated spring loaded cylinder.

The results of the laboratory tests are indicated on the soil boring logs at the depths the samples were obtained. We will hold the soil samples for 60 days from the date of this report, after which time they will be discarded. If you would like the samples, please let us know.

SOIL CONDITIONS

Approximately 4 to 6 inches of topsoil are present at soil borings B-1 and B-2. Gravelly sand fill is present at boring B-3 and extends to an approximate depth of 3 feet. Sandy clay fill with miscellaneous debris and organic matter underlies the topsoil in borings B-1 and B-2 and extends from the ground surface at boring B-4 to approximate depths ranging from 2-1/2 to 6-1/2 feet. A layer of silty sand fill with organic matter extends from an approximate depth of 6 to 8 feet in boring B-2. In general, native silty clay and sandy clay underlie the fill and extend to the explored depths of 20 feet. A layer of silty sand is present in boring B-2 from an approximate depth of 8 to 13 feet.

The sandy clay fill is hard in consistency with natural moisture contents ranging from 7 to 12 percent and unconfined compressive strengths of 9,000 psf. The gravelly sand fill and silty sand fill are medium compact with Standard Penetration Test N-values of 20 and 24 blows per foot and an organic content of 1.8 percent. The native silty clay is generally stiff to very stiff in consistency with natural moisture contents ranging from 8 to 17 percent, dry densities ranging from 121 to 129 pounds per cubic foot (pcf), and unconfined compressive strengths ranging from 3,000 to 6,500 psf. The hard silty clay layers have natural moisture contents ranging from 8 to 13 percent, a dry density of 121 pcf, and unconfined compressive strengths ranging from 9,000 to 13,410 psf. The native silty sand is medium compact with an N-value of 21 blows per foot.

The stratification depths shown on the soil boring logs represent the soil conditions at the boring locations. Variations may occur between borings. Additionally, the stratigraphic lines represent the approximate boundaries between soil types. The transitions may be more gradual than what are shown. We have prepared the boring logs on the basis of laboratory classification and testing as well as field logs of the soils encountered.

The Soil Boring Location Plans, Plate Nos. 1 and 2, and Soil Boring Logs, Figure Nos. 1 through 4, and Unconfined Compressive Strength Test, Figure No. 5, are presented in the Appendix. The soil profiles described above are generalized descriptions of the conditions encountered at the boring locations. General Notes Terminology defining the nomenclature used on the boring logs and elsewhere in this report are presented on Figure No. 6.

GROUNDWATER CONDITIONS

Groundwater was encountered during drilling operations at depths ranging from 9 to 13-1/2 feet in the granular seams. Upon completion of drilling operations, the groundwater was measured at depths ranging from 11-1/2 to 18 feet in the boreholes.

Fluctuations in groundwater levels should be anticipated due to seasonal variations and following periods of prolonged precipitation. It should be noted that groundwater observations made during drilling operations in predominantly cohesive soils are not necessarily indicative of the static groundwater level. This is due to the low permeability of such soils and the tendency of drilling operations to seal off the natural paths of groundwater flow.

SITE PREPARATION

Based on the existing conditions, we anticipate little earthwork will be required to develop the site. Earthwork operations are expected to consist of removing any existing vegetation and topsoil in the footprint of the proposed chiller and humidifier, removing and replacing any existing utilities in the footprint of the structures, and excavating and backfilling of foundations. We recommend all earthwork operations be performed in accordance with comprehensive specifications and be properly monitored in the field by qualified geotechnical engineers and technicians.

Any existing utilities and associated backfill located within the footprint of the proposed structures should be completely removed and the resulting excavations backfilled with engineered fill. Where utilities lie outside the proposed structure zone of influence, utilities to be abandoned can be backfilled with grout and left in place.

Any engineered fill placed within the site should consist of an approved, environmentally clean material. Engineered fill should be free of organic matter, frozen soil, clods, or other harmful substances. The fill should be placed in uniform horizontal layers, not more than 9 inches in loose thickness and compacted to achieve a density of at least 95 percent of the maximum dry density, as determined by the Modified Proctor compaction test (ASTM D 1557). For cohesive engineered fill material, we recommend placing and compacting the material within 1 percent below or 3 percent above optimum moisture content. Any granular fill used within the site may be compacted within 3 percent above or below optimum moisture content. Frozen material should not be used as fill, nor should fill be placed on a frozen subgrade.

FOUNDATION RECOMMENDATIONS

We understand the proposed compression chillers and dehumidifier are to be supported on a concrete slab with a perimeter foundation. The perimeter foundations must extend through the existing fill (extending to depths ranging from 6-1/2 to 8 feet at the dehumidifier location and 2-1/2 to 3 feet at the chiller location) and native stiff silty clay at boring B-1 and bear on the underlying native very stiff silty clay or medium compact silty sand. In consideration that the fill soils extend to depths ranging from 6-1/2 to 8 feet below grade at the dehumidifier location, the contractor can backfill strip footings with flowable fill to a depth of 3-1/2 feet below finished grade to allow support of conventional strip footings. The flowable fill excavations must extend laterally a minimum of 6 inches beyond the proposed footing perimeter. Alternatively, due to the depth of the depth of the existing fill, the dehumidifier can be supported on drilled pier foundations extending through the fill and bearing on the aforementioned soils for ease of construction.

We recommend an allowable bearing pressure of 4,000 be used for design of the strip footings or drilled pier foundations bearing on the native very stiff silty clay or medium compact silty sand. Regardless of the foundation type, foundations must extend a minimum depth of 3-1/2 feet below finished grade for protection against frost penetration. We recommend a G2 engineer be on site during foundation construction to observe the excavations, measure the bearing depths, and verify the adequacy of the bearing soils.

Continuous strip footings should be at least 12 inches in width and isolated spread footings should be at least 30 inches in their least dimension. We recommend all strip footings be suitably reinforced to minimize the effects of differential settlements associated with local variations in subsoil conditions. To achieve a change in the level of the strip footings, the footings should be gradually stepped at a grade no steeper than two units horizontal to one unit vertical.

If the recommendations outlined in this report are adhered to, total and differential settlements for the completed structure should be within 1 inch and 1/2 inch, respectively. We expect settlements of these magnitudes are within tolerable limits for the type of addition proposed.

CONSTRUCTION CONSIDERATIONS

Strip Footings

Caving and sloughing of the granular fill soil from an approximate depth of 6 to 8 feet at boring B-2 may occur during excavation for foundations. At the chiller location, caving and sloughing of the gravelly sand fill may also occur. The contractor should be prepared to over excavate and form the foundations, as necessary, where caving soils are encountered in the upper 3-1/2 feet. Any voids from caving soils below 3-1/2 feet should be filled with flowable fill or concrete during construction operations. The sides of the foundations should be constructed straight and vertical to reduce the risk of frozen soil adhering to the concrete and raising the foundation.

We do not anticipate groundwater will be encountered at the proposed foundation bearing depths. We anticipate any surface run-off accumulation can be controlled by properly constructed sumps during foundation construction.

Drilled Pier

Caving and sloughing of the granular fill soils may occur during excavation operations at the dehumidifier location. Therefore, the contractor should be prepared to use extend temporary steel casing through the fill soils and into the underlying native soil to maintain a stable excavation during construction operations. The contractor should take care to not extend drilled piers into the groundwater at an approximate depth of 10 feet below existing grade.

Once drilling is completed to the design depth, reinforcing steel should be set and concrete placed by free fall method until a positive head of concrete has been established within the casing. This positive concrete head must be maintained while pulling the casing to prevent the infiltration of loose soil into the fresh concrete. After concrete has been placed to an appropriate grade, the casing may be removed and concrete placement operations completed.

To reduce lateral movement of the drilled piers, the contractor must place the drilled pier concrete in intimate contact with undisturbed soil. This includes filling any voids or enlargements in the drilled pier shaft excavation with concrete at the time of drilled pier concrete placement. We recommend using a concrete mix design with a slump of 5 to 7 inches for free fall placement to reduce the potential for concrete arching and provide a workable material.

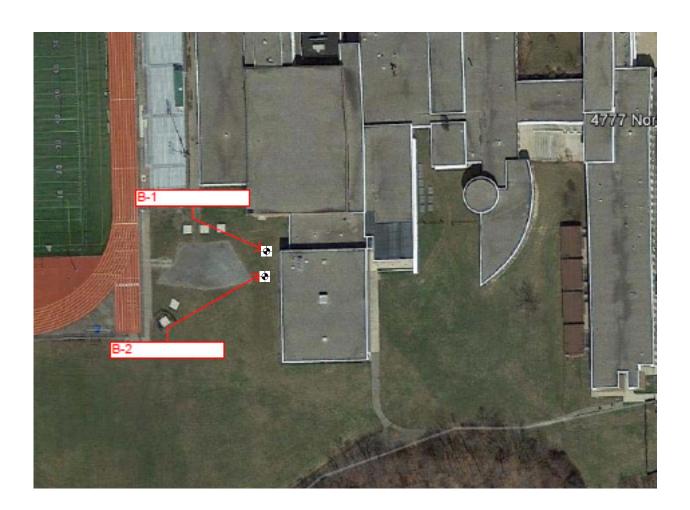
General

Care should always be exercised when excavating near existing structures or utilities to avoid undermining. In no case should excavations extend below the level of adjacent foundations and utilities unless underpinning is planned.

GENERAL COMMENTS

We have formulated the evaluations and recommendations presented in this report relative to site preparation and foundations on the basis of data provided to us relating to the project location, type of structure, and surface grade for the proposed site. Any significant change in this data should be brought to our attention for review and evaluation with respect to prevailing subsurface conditions. Furthermore, if changes occur in the design, location, or concept of the project, conclusions and recommendations contained in this report are not valid unless G2 Consulting Group, LLC reviews the changes. G2 Consulting Group, LLC will then confirm the recommendations presented herein or make changes in writing.

The scope of the present investigation was limited to evaluation of subsurface conditions for the support of proposed chiller and dehumidifier and other related aspects of the development. No chemical, environmental, or hydrogeological testing or analyses were included in the scope of this investigation.


We base the analyses and recommendations submitted in this report upon the data from the soil borings performed at the approximate locations shown on the Soil Boring Location Plans, Plate Nos. 1 and 2. This report does not reflect variations that may occur between the actual boring locations and the actual structure locations. The nature and extent of any such variations may not become clear until the time of construction. If significant variations then become evident, it may be necessary for us to re-evaluate our report recommendations.

We recommend G2 Consulting Group, LLC observe all geotechnical related work, including foundation construction, subgrade preparation, and engineered fill placement. G2 Consulting Group, LLC will perform the appropriate testing to confirm the geotechnical conditions given in the report are found during construction.

APPENDIX

Soil Boring Location Plans	Plate Nos. 1 and 2
Soil Boring Logs	Figure Nos. 1 through 4
Unconfined Compressive Strength Test	Figure No. 5
General Notes Terminology	Figure No. 6

<u>Legend</u>

Soil Borings Drilled by Strata
Drilling Inc. on August 20, 2015

Soil Boring Location Plan

Troy High School - Dehumidifier 4777 Northfield Parkway Troy, Michigan

Project No. 140452

Drawn by: ALS

Date: 8-28-15 Plate Scale: NTS No. 1

<u>Legend</u>

Soil Borings Drilled by Strata
Drilling Inc. on August 20, 2015

Soil Boring Location Plan

Troy High School - Chillers 4777 Northfield Parkway Troy, Michigan

Project No. 140452

Drawn by: ALS

Date: 8-28-15 Plate Scale: NTS No. 2

and Dehumidifier Pad

Project Location: 4777 Northfield Parkway

Troy, Michigan

G2 Project No. 140452

Latitude: N/A Longitude: N/A

SUBSURFACE PROFILE				SOIL SAMPLE DATA					
DEPTH (ft)	PRO- FILE	GROUND SURFACE ELEVATION: N/A	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF COMP. ST (PSF)
	<u>11/2</u> <u>11/2</u>	Topsoil: Brown Silty Clay (6 inches) 0	.5						
-				S-1	16 16 18	34	8.1		9000*
5		Fill: Hard Brown and Dark Brown Sandy Clay with little gravel and trace silt, organic matter		S-2	6 10 12	22	11.7		9000
_		Stiff Mottled Brown and Gray Silty Clay	.5 5	S-3	7 4 5	9	17.0		2000°
10		Very Stiff Brown Silty Clay with trace sand and gravel, occasional sand	10	S-4	7 7 8	15	12.4		6500
-	_	seams		-					
15	¥	13	15	S-5	10 14 17	31	13.4		9000
		Hard Gray Silty Clay with trace gravel, occasional sand layers		-					
20		18 Stiff Gray Silty Clay with trace sand and gravel 20		S-6	4 6 8	14	13.1		4000
=		End of Boring @ 20 ft		-					
-				-					

Total Depth: Drilling Date:

August 20, 2015

Inspector:

Contractor: Driller:

Strata Drilling, Inc. B. Sienkiewicz

Notes:

* Calibrated Hand Penetrometer

completion of drilling operations

Water Level Observation:

Drilling Method:

2-1/4 inch inside diameter hollow stem augers

Excavation Backfilling Procedure: Borehole backfilled with auger cuttings

Encountered at 13-1/2 feet; 11-1/2 feet upon

and Dehumidifier Pad

Project Location: 4777 Northfield Parkway

Troy, Michigan

G2 Project No. 140452

Latitude: N/A Longitude: N/A

SUBSURFACE PROFILE			SOIL SAMPLE DATA							
DEPTH (ft)	PRO- FILE	GROUND SURFACE ELEVATION: N/A		DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF COMP. ST (PSF)
	\$17g : \$\ 17g \	Topsoil: Brown Silty Clay (4 inches)	0.3				(17)	(-7	(, 5, ,	, - ,
_					S-1	10 12 16	28	7.1		9000
5		Fill: Hard Brown Sandy Clay with little gravel and trace silt		 	S-2	6 7 9	16	11.9		9000
					3-2	9	10	11.9		9000
		Fill: Medium Compact Dark Brown and Black Silty Sand with little clay and organic matter (LOI = 1.8%)	6.0		S-3	7 8 12	20	13.0		
10	$\times \times \times \times$		8.0	10	S-4	6 9 12	21			
	_ _	Medium Compact Brown Silty Sand with trace gravel and silt seams	12.0	 						
15		Very Seiff Cons Cile Class with the co	13.0		S-5	10 13 9	22	14.6		5000
		Very Stiff Gray Silty Clay with trace sand and gravel, silt seams				5 7				5000
- 20		End of Boring @ 20 ft	20.0	20	S-6	8	15	12.8		6000
-				 						
-				 25						

Total Depth: Drilling Date: August 20, 2015

Inspector:

Contractor: Strata Drilling, Inc. Driller:

B. Sienkiewicz

Drilling Method:

2-1/4 inch inside diameter hollow stem augers

Water Level Observation:

Encountered at 10 feet; 11-1/2 feet upon completion of

drilling operations

Notes:

* Calibrated Hand Penetrometer

Excavation Backfilling Procedure:

Borehole backfilled with auger cuttings

and Dehumidifier Pad

Project Location: 4777 Northfield Parkway

Troy, Michigan

G2 Project No. 140452

Latitude: N/A Longitude: N/A

SUBSURFACE PROFILE			SOIL SAMPLE DATA						
DEPTH (ft)	PRO- FILE	GROUND SURFACE ELEVATION: N/A	DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP. STF (PSF)
		Fill: Medium Compact Brown Gravelly Sand with trace silt	 	S-1	5 8 16	24			
5		Very Stiff to Hard Mottled Brown and	_ 5	S-2	6 5 7	12	13.7	121	6500*
		Gray Silty Clay with trace sand and gravel, occasional sand seams		S-3	5 6 9	15	12.6	125	13410
10	∇	8. Very Stiff Brown Silty Clay with trace	10	S-4	6 7 10	17	14.3		5000*
		Very Stiff Brown Silty Clay with trace sand and gravel (sand layer between 9 and 9-1/2 feet)							
15			15	S-5	4 6 7	13	13.3		4000
	Ţ	Stiff Gray Silty Clay with trace sand and gravel	 						
20		20.	20	S-6	4 6 6	12	13.1		3000
-		End of Boring @ 20 ft							
25			25						
Total Drillin Inspec	Depth: ig Date: ctor: actor:	20 ft August 20, 2015 Strata Drilling, Inc.	Enc	Level Ob ountered ling oper	oservatior I at 9 feet ations	n: ; 18 feet u	pon comp	letion of	

Contractor: Strata Drilling, Inc.

Driller: B. Sienkiewicz

Notes:

* Calibrated Hand Penetrometer

Drilling Method:

2-1/4 inch inside diameter hollow stem augers

Excavation Backfilling Procedure: Borehole backfilled with auger cuttings

and Dehumidifier Pad

Project Location: 4777 Northfield Parkway

Troy, Michigan

G2 Project No. 140452

Latitude: N/A Longitude: N/A

SUBSURFACE PROFILE			SOIL SAMPLE DATA							
DEPTH (ft)	PRO- FILE	GROUND SURFACE ELEVATION: N/A		DEPTH (ft)	SAMPLE TYPE-NO.	BLOWS/ 6-INCHES	STD. PEN. RESISTANCE (N)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	UNCONF. COMP. STR (PSF)
_		Fill: Hard Brown Sandy Clay with trace silt, gravel, and concrete debris	2.5		S-1	6 8 12	20	10.7		9000*
5		Stiff Mottled Brown and Gray Silty Clay with trace sand and gravel		 - 5 	S-2	7 7 7	14	13.9		3500*
-			7.0	-	S-3	10 12	22	8.4		9000*
10	V	Very Stiff to Hard Brown Silty Clay with trace sand and gravel, occasional silt seams		10	S-4	10 12 14	26	10.6	121	6080
- - 15			13.0		S-5	4 5 6	11	14.0	129	3760
_	<u> </u>	Stiff Gray Silty Clay with trace sand and gravel		 		3 5				
20		End of Boring @ 20 ft	20.0	20	S-6	7	12	14.2		3000*
- - 25										

Total Depth: Drilling Date:

August 20, 2015

Inspector:

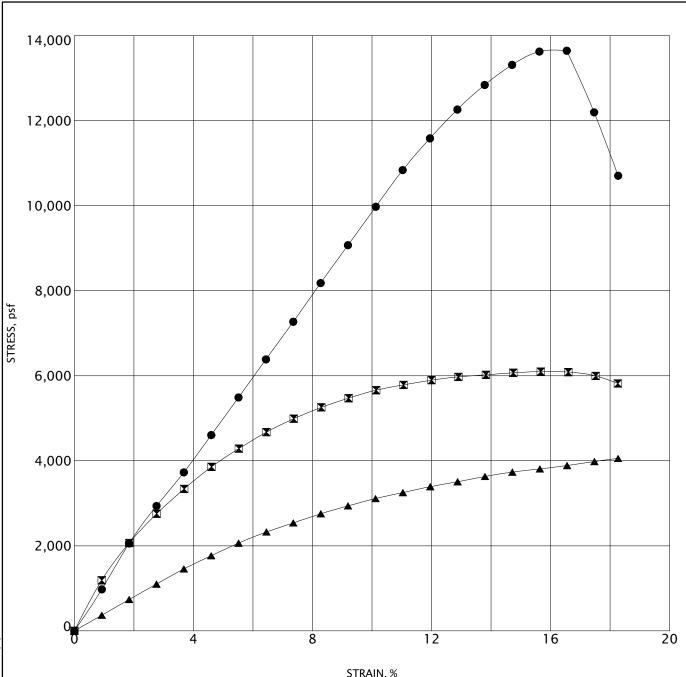
Contractor: Strata Drilling, Inc.

Driller: B. Sienkiewicz

Notes:

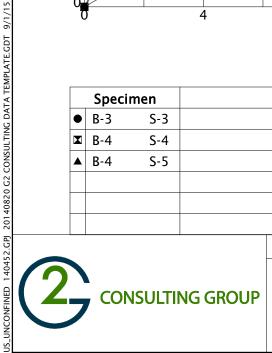
* Calibrated Hand Penetrometer

Water Level Observation:


drilling operations

Drilling Method:

2-1/4 inch inside diameter hollow stem augers


Excavation Backfilling Procedure: Borehole backfilled with auger cuttings

Encountered at 9 feet; 18 feet upon completion of

STRAIN, 9	%
-----------	---

	Specimen		Classification	MC%	$\gamma_{\!_{ m d}}$	UC
•	B -3	S-3	Brown Silty Clay	13	125	13410
	■ B-4	S-4	Brown Silty Clay	11	121	6080
4	■ B-4	S-5	Gray Silty Clay	14	129	3760

UNCONFINED COMPRESSIVE STRENGTH TEST

Project Name: Troy High School Chiller Pad and Dehumidifier Pad 4777 Northfield Parkway Project Location:

Troy, Michigan

G2 Project No.: 140452 Figure No. 5

GENERAL NOTES TERMINOLOGY

Unless otherwise noted, all terms herein refer to the Standard Definitions presented in ASTM 653.

PARTICLE SIZE		CLASSIFIC
Boulders	- greater than 12 inches	The majo
Cobbles	- 3 inches to 12 inches	silt, sand
Gravel - Coarse	- 3/4 inches to 3 inches	other mir
- Fine	- No. 4 to 3/4 inches	
Sand - Coarse	- No. 10 to No. 4	Second M
- Mediu	n - No. 40 to No. 10	(percent
- Fine	- No. 200 to No. 40	Trace - 1
Silt	- 0.005mm to 0.074mm	Adjective
Clay	- Less than 0.005mm	And - ove

CLASSIFICATION

The major soil constituent is the principal noun, i.e. clay, silt, sand, gravel. The second major soil constituent and other minor constituents are reported as follows:

Second Major Constituent (percent by weight)	Minor Constituent (percent by weight)
Trace - 1 to 12%	Trace - 1 to 12%
Adjective - 12 to 35%	Little - 12 to 23%
And - over 35%	Some - 23 to 33%

COHESIVE SOILS

If clay content is sufficient so that clay dominates soil properties, clay becomes the principal noun with the other major soil constituent as modifier, i.e. sandy clay. Other minor soil constituents may be included in accordance with the classification breakdown for cohesionless soils, i.e. silty clay, trace sand, little gravel.

	Unconfined Compressive	
Consistency	Strength (psf)	Approximate Range of (N)
Very Soft	Below 500	0 - 2
Soft	500 - 1,000	3 - 4
Medium	1,000 - 2,000	5 - 8
Stiff	2,000 - 4,000	9 - 15
Very Stiff	4,000 - 8,000	16 - 30
Hard	8,000 - 16,000	31 - 50
Very Hard	Over 16,000	Over 50

Consistency of cohesive soils is based upon an evaluation of the observed resistance to deformation under load and not upon the Standard Penetration Resistance (N).

COHESIONLESS SOILS						
Density Classification	Relative Density %	Approximate Range of (N)				
Very Loose	0 - 15	0 - 4				
Loose	16 - 35	5 - 10				
Medium Compact	36 - 65	11 - 30				
Compact	66 - 85	31 - 50				
Very Compact	86 - 100	Over 50				

Relative Density of cohesionless soils is based upon the evaluation of the Standard Penetration Resistance (N), modified as required for depth effects, sampling effects, etc.

SAMPLE DESIGNATIONS

- AS Auger Sample Cuttings directly from auger flight
- BS Bottle or Bag Samples
- S Split Spoon Sample ASTM D 1586
- LS Liner Sample with liner insert 3 inches in length
- ST Shelby Tube sample 3 inch diameter unless otherwise noted
- PS Piston Sample 3 inch diameter unless otherwise noted
- RC Rock Core NX core unless otherwise noted

STANDARD PENETRATION TEST (ASTM D 1586) - A 2.0 inch outside-diameter, 1-3/8 inch inside-diameter split barrel sampler is driven into undisturbed soil by means of a 140-pound weight falling freely through a vertical distance of 30 inches. The sampler is normally driven three successive 6-inch increments. The total number of blows required for the final 12 inches of penetration is the Standard Penetration Resistance (N).

ALTERNATES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 01 Specification sections, apply to work of this section.

1.2 DESCRIPTION OF REQUIREMENTS:

- A. Definition: An alternate is an amount proposed by Bidders and stated on the Bid Form that will be added to or deducted from Base Bid amount if the Owner decides to accept a corresponding change in either scope of work or in products, materials, equipment, systems or installation methods described in Contract Documents.
- B. Coordination: Coordinate related work and modify or adjust adjacent work as required to ensure that work affected by each accepted alternate is complete and fully integrated into the project.
- C. Notification: Immediately following award of Contract, prepare and distribute to each party involved, notification of the status of each alternate. Indicate whether alternates have been accepted, rejected of deferred for consideration at a later date. Include a complete description of negotiated modifications to alternates, if any.
- D. Schedule: A "Schedule of Alternates" is included at the end of this section. Specification sections referenced in the Schedule contain requirements for materials and methods necessary to achieve the work described under each alternate.
 - 1. Include as part of each alternate, miscellaneous devices, appurtenances and similar items incidental to or required for a complete installation whether or not mentioned as part of the alternate.

PART 2 - PRODUCTS (not applicable)

PART 3 - EXECUTION

3.1 SCHEDULE OF ALTERNATES

- A. Alternate No. A1: Quote add in price to:
 - 1. Remove ceilings in Kitchen E112 and Receiving E115 and provide ceilings as indicated in drawings and specifications.
 - 2. Demo shaft walls and ducts in Rooms E217 and E218 and install new shaft walls as indicated in drawings and specifications.
- B. Alternate No. A2: Quote add in price to remove ceilings in Zone E, Zone F and Zone G in drawings and install new ceilings as indicated in drawings and specifications (except that work included in Alternate A1).
- C. Alternate No. M1: Quote add in price to remove existing Kitchen E115 exhaust hoods complete, including all exhaust ductwork, roof exhaust fan and fire protection and remove existing make-up air unit located in Mechanical Equipment F300 complete including controls

- and make-up air ductwork in order to be replaced with new hood, exhaust fan and make-up air unit and ductwork, as indicated in drawings and specifications
- D. Alternate No. M2: Quote add in price to remove galvanized piping in rooms indicated in drawings as alternate and replace piping as indicated in drawings and specifications
- E. Alternate No. E1: Quote add in price to remove lights in Kitchen E112 and Receiving E115 and provide new lights and power as indicated in drawings and specifications.
- F. Alternate No. E2: Quote add in price to remove lighting in Zone E, Zone F and Zone G in drawings and provide new lights as indicated in drawings and specifications (except that work included in Alternate E1).

END OF SECTION

SCHEDULE OF REQUIRED SUBMITTALS

PART 1 - GENERAL

1.1 SUMMARY

- A. Specified Herein: General Requirements and schedule tabulating submittals required under the individual Trade Sections.
- B. Related Work: The following submittals are described under other Sections of these Specifications:
 - 1. Division 01 Section "Related Documents Submittal Procedures" for shop drawings.
 - 2. Division 01 Section "Project Record Documents" for project record documents.
 - 3. Division 01 Section "Warranties" for warranties and warranty services.

1.2 SUBMITTALS

- A. Submittals schedule is for reference only and is not necessarily complete. Specific requirements are included in the respective Trade Sections.
- B. Description of submittals and definitions of terms are included under other Sections of Division 01.
- C. Submittal of Materials for Approval:
 - 1. See Division 01 "Product Requirements" for requirements for materials submittals.
 - 2. All materials requiring Manufacturer Services or Warranty shall be submitted in the form specified under "Warranties".
 - 3. Standard materials may be submitted in tabular form. Where necessary to clarify proposed use, submit as a Shop Drawing a schedule of applications or a drawing showing proposed locations.

1.3 SCHEDULE

- A. The Contractor shall prepare a schedule relating and conforming to the Approved Construction Schedule. Said Schedule shall recognize and allow for lead-time, including lead-time required by Subcontractors and Manufacturers, and time required for Architect's review in compliance with the Contract Documents for all submittals.
- B. This Schedule shall be submitted to the Owner and the Architect for approval prior to the second Request for Payment.
- C. Exact procedures and time schedules for submittals will be determined at the time Job Progress Schedule is established. Time schedule for submittals shall be periodically revised and adjusted to coordinate with job progress.

1.4 EQUIPMENT ROOM LAYOUT DRAWINGS

A. Each Contractor shall prepare and submit equipment room layout drawings, as called for under "Shop Drawings and Samples," for all equipment furnished under its Contract.

B. Scale (Minimum): 1/4 inch equals 1 foot.

1.5 CERTIFICATE OF COMPLIANCE

- A. Each certificate required for demonstrating proof of compliance of materials with specification requirements, including mill certificates, shall be executed in quadruplicate. It shall be the Contractor's responsibility to review all certificates, before submittal, to ensure compliance with the Contract Documents.
- B. Each certificate shall be signed by an official authorized to certify in behalf of the manufacturing company and shall contain the name and address of the Contractor, the project name and location and the quantity and date or dates of shipment or delivery to which the certificate applies.
- C. Copies of laboratory test reports submitted with certificates shall contain the name and address of the testing laboratory and the date or dates of the tests to which the report applies. Certification shall not be construed as relieving the Contractor from furnishing satisfactory material, if after tests are performed on selected samples, the material is found not to meet the specific requirements.

1.6 SPARE PARTS DATA

A. The Contractor shall furnish spare parts data for each different item of equipment furnished if and as called for in the Trade Sections.

1.7 SAMPLES

- A. After the award of the Contract, the Contractor shall furnish, for approval, samples required by the Specifications. The Contractor shall prepay all shipping charges on samples.
- B. Materials or equipment for which samples are required shall not be used in the work until approved in writing.

1.8 OPERATION AND MAINTENANCE MANUALS

- A. Where required by the Specifications, Operation and Maintenance Manuals shall be provided by the Contractor as specified under "Project Record Documents".
- B. Provide all manuals, parts information and similar data that the Architect may determine to be necessary for proper operation and maintenance.
- C. The manuals shall cover the operation requirements of each item specified to require operational and maintenance manuals, and shall include standard maintenance procedures and recommended schedules for routine service. The manuals shall be submitted to the Architect ten (10) days prior to final tests of mechanical and electrical system.

1.9 TEST PROCEDURES AND TEST RESULTS

A. Where required by the Technical Specifications test procedures and test results shall be provided by the Contractor in quadruplicate. Test procedures shall cover all items required by the Technical Provisions and as specified under "Laboratory Testing and Inspection."

END OF SECTION

ELECTRONIC SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

- A. Specified Herein: General Requirements for preparation, submittal, and distribution of Shop Drawings, Samples, Product Data, and similar information required to be furnished by the Contractors.
- B. Related Work: The following items of work are specified under other Sections of these Specifications:
 - Division 01 Section "Electronic Project Record Documents" for electronic project record documents.

1.2 DEFINITIONS

- A. Samples: See General Conditions.
 - 1. Preliminary Samples: Hand made or simulated examples or proposed materials submitted to demonstrate anticipated finished appearance.
 - 2. Product Samples: Representative examples of materials proposed for use.
 - Range Samples: Samples showing extremes of variations in appearance, texture or color and the limits within which the Contractor agrees to hold the materials used in the work.
 - 4. Sample Installation: Trial run or initial example provided for review and acceptance by the Architect before continuing with the work.
 - Test Samples: Samples provided for purposed of physical or chemical test analysis. If samples are submitted directly to the Testing Laboratory, submit copy of letter of transmittal.
- B. Shop Drawings: See General Conditions
 - 1. Electronic File: Drawings and other data submitted electronically in PDF format only.
 - 2. Preliminary Shop Drawings: Drawings and other data submitted electronically prior to acceptance of systems and only required to show information necessary for evaluation and coordination with other work.
 - 3. Project Shop Drawings: Drawings and other data illustrating materials and assemblies proposed for the Project.
 - 4. Coordination Drawings: Original electronic drawings prepared by the Trades to investigate conflicts and coordinate locations of each with the work of the other.

C. Identification: All shop drawings, samples and product data shall be identified by the project title, Construction Manager's name, the Architect's name and the Architect's project number or numbers.

1.3 ELECTRONIC SUBMITTAL PROCEDURES

A. Summary:

- 1. Shop drawing and product data submittals shall be transmitted to the Construction Manager in electronic (PDF) format using Submittal Exchange, a website service designed specifically for transmitting submittals between construction team members.
- 2. The intent of electronic submittals is to expedite the construction process by reducing paperwork, improving information flow, and decreasing turnaround time.
- 3. Physical samples (color samples, color charts, physical material samples, etc.) will be accompanied by an electronic transmittal processed through Submittal Exchange. Refer to Paragraph 1.4E for additional information.

B. Procedures:

- 1. Submittal Preparation –Subcontractors and Suppliers may use any or all of the following options as directed by the Construction Manger.
 - Subcontractors and Suppliers provide electronic (PDF) submittals to Contractor via email.
 - b. Subcontractors and Suppliers provide paper submittals to General Contractor who electronically scans and converts to PDF format and submits to the Construction Manager by uploading to Submittal Exchange.
- Contractor shall review and apply electronic stamp certifying that the submittal complies
 with the requirements of the Contract Documents including verification of manufacturer /
 product, dimensions and coordination of information with other parts of the work.
- 3. Contractor shall transmit each submittal to Construction Manager using the Submittal Exchange website, www.submittalexchange.com.
- 4. Construction Manager shall transmit each submittal to the Architect using the Submittal Exchange website, www.submittalexchange.com.
- Architect / Engineer review comments will be made available on the Submittal Exchange website for downloading. Construction Manager will receive email notice of completed review and send notification to the Contractor.
- 6. Distribution of reviewed submittals to subcontractors and suppliers is the responsibility of the Contractor.
- 7. Submit electronic copies of reviewed submittals at project closeout for record purposes in accordance with Section 017800 Closeout Submittals

C. Costs:

- 1. Cost of data management service (Submittal Exchange) shall be paid for by the Project Owner thru the Construction Manager.
- 2. At Contractor's option, training is available from Submittal Exchange regarding use of website and PDF submittals. Contact Submittal Exchange at 1-800-714-0024.
- 3. Internet Service and Equipment Requirements:
 - a. Email address and Internet access at Contractor's main office.
 - Adobe Acrobat (<u>www.adobe.com</u>), Bluebeam PDF Revu (<u>www.bluebeam.com</u>), or other similar PDF review software for applying electronic stamps and comments.

1.4 GENERAL REQUIREMENTS FOR ELECTRONIC SUBMITTALS:

- A. Contractor shall transmit each submittal (shop drawings and product data) to the Construction Manager using the Submittal Exchange website, www.submittalexchange.com. Submittals are to be made in the following form.
 - 1. Shop drawing: Combined together into one pdf file for each assembly.
 - 2. Product data: Provide product data in individual pdf file.
- B. File naming shall be in the following format. Specification Section Number; consecutive number of submittal for that section; revision number for that section; school name(s) (where multiple schools are involved only); and description of file being submitted (submittal type).
 - 1. Example: 079200-01-00_Watt, Wass_Joint Sealants_Product data.pdf.
 - 2. Example: 123204-07-01_Prefabricated Casework_Shop Drawings.pdf.
- C. Contractor shall fill out the TMP Shop Drawing and Sample Transmittal Form found at the end of this Section and include at the beginning of the file. An electronic version of Transmittal Form is available upon request from the Architect, thru the Construction Manager. Also, an electronic version of this form is part of the upload process in Submittal Exchange.
- D. Contractor shall review and apply electronic stamp certifying that the submittal complies with the requirements of the Contract Documents including verification of manufacturer / product, dimensions and coordination of information with other parts of the work prior to notifying the Construction Manager that the submittal is read for review.
- E. Physical Samples must be submitted through the Construction Manager and must be accompanied by an electronic (PDF) copy of the completed TMP Shop Drawing and Transmittal Form. Electronic Transmittal Form must be submitted to the Construction Manager using the Submittal Exchange website.

1.5 SCHEDULES

A. Prepare Shop Drawing Submittal Schedule as required.

- B. Recognize and allow for lead-time required for manufacture, fabrication, delivery to the site, and for review.
- C. Arrange schedule in orderly sequence in compliance with Project Schedule.
- D. Request for approval of materials, systems, substitutions, or for deviations from the Contract Documents shall be submitted according to Section 016000 "Product Requirements" and shall be Preliminary submittal with allowances for time for review prior to submittal of Product Samples or Project Shop Drawings.

1.6 SAMPLES - GENERAL

- A. Samples in general, are required for all materials that form an exposed part of the finished Project. Samples of concealed components are not required unless specifically called for.
- B. Typical Samples shall be taken from production run material and shall be representative examples of proposed quality and finish.
- C. Preliminary Samples shall, as far as possible, anticipate the quality and finish of production run material.
- Samples will be retained at the job site for comparison purposes. Samples of manufactured items will be returned to the Contractor for installation in the Work after approval of materials.
 Use in locations where directed.
- E. All materials in the completed installation shall be equal in every respect to the approved product samples and within the limits defined by the approved range samples.

1.7 SAMPLES SUBMITTALS

- A. Size and quantity, unless otherwise specified: Four (4) each; 8 inches by 12 inches, or 12 inches long, as applicable; not over one inch thick for masonry or cementitious materials.
- B. Preliminary or Range Samples shall be resubmitted as directed until an acceptable Sample or Range is established, at which time Project Samples shall be submitted.
- C. Furnish Samples to other trades where required to match color or finish.
- D. Required Samples are scheduled or are listed in the Trade Sections. Optional Samples will be accepted and reviewed by the Architect.
- E. Review will be for shape and appearance only. Physical and chemical properties shall be established by adequate documentation that shall accompany samples.
- F. In all cases where preliminary approval samples have been submitted, final production run, or in-place installation samples will be required for verification.
- G. Notify Construction Manager and Architect in advance and obtain directions for place and time to ship large, heavy or bulky samples. Ship such samples "Prepaid." If return is requested, they will be returned "Collect."

1.8 SHOP DRAWINGS AND PRODUCT DATA - GENERAL

- A. Shop Drawings shall be prepared by a qualified detailer and shall be complete including erection diagrams and shall show the fabrication and construction of all items required for complete assembly.
- B. Provide pertinent information relating to installation and connection to work of other trades, and coordinate with work of other trades as required for proper placing, anchorage and support of the work. Indicate in detail, the precise location and spacing of all embedded anchor bolts, sleeves and other features required to be placed in the concrete, structural steel or masonry or otherwise required to be built into the structure.
- C. Identify details by reference to the Contract Drawings, other Shop Drawings or other information as required to properly identify and locate the portion of the Work covered.
- D. Indicate on the Drawings and explain by covering letter all proposed deviations from the requirements of the Contract Documents.
- E. Manufacturer's Standard Documents:
 - 1. Drawings and similar documents provide in PDF version from original documents: Modify drawings to delete information which is not applicable to the Project, provide additional information where required and submit electronically.
 - 2. Brochures and other pre-printed data, clearly mark PDF information as follows:
 - a. Identify pertinent material, product, and model.
 - b. Number or otherwise reference each item to applicable Contract Document or other Shop Drawing.
 - c. Show dimensions and clearances required.
 - d. Provide all other information required for Shop Drawings including, where applicable, wiring diagrams and controls.
 - e. Delete all options, or variations from the Contract Documents, except where such items are specifically noted as proposed deviations.
- F. Where proper installation of the work requires that other work be set to special detail, held to tolerance, or dimension be established, so indicate on the Shop Drawings.
- G. Where items must fit spaces previously constructed, take measurements at the site, not from drawings.
- H. Where applicable, indicate mechanical and electrical characteristics of, or required to be provided for, the material shown on the Shop Drawings.
- I. Each shop drawing or coordination drawing shall have a blank area (5 x 8 inches), located adjacent to the title block. The title block shall display the following:
 - 1. Number and title of drawing
 - 2. Date of drawing or revision
 - 3. Name or project building or facility

- 4. Name of Contractor and (if appropriate) name of Subcontractor submitting drawings.
- 5. Clear identity of contents and location of the work.
- 6. Project title and contract number.
- 7. Initials or party preparing drawings.
- 8. Signature of party responsible and, where applicable, professional engineers seal.

1.9 SHOP DRAWINGS - TYPES

- A. Preliminary Shop Drawings:
 - 1. Preliminary Shop Drawings shall be provided for portions of the Work where interpretations or variations from the Contract Documents are proposed, or otherwise required.
- B. Project Shop Drawings:
 - Project Shop Drawings shall show all changes to building details to coordinate with required modifications and indicate approval by other trades for required modifications to their work.
 - 2. Where Shop Drawings are based on the use of a particular material, such material shall be submitted for review independently of the Shop Drawing.
 - 3. When Shop Drawings are submitted in the form of brochures indicate all current variations from the information in effect at time documents were issued for bids.
- C. Coordination Drawings: Comply with all requirements of Section 013100.

1.10 DELEGATED-DESIGN SUBMITTALS

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to the Architect thru the Construction Manager.
- B. Shop Drawings: Submit shop drawings for each component of work identified, signed and sealed by the qualified professional engineer responsible for their preparation licensed in the State of Michigan.
- C. Engineering Analysis: Submit comprehensive engineering analysis for each component of work identified, signed and sealed by the qualified professional engineer responsible for their preparation licensed in the State of Michigan.
 - 1. Prepare written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of

assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

- D. Product Data: Submit product data for each product and system specifically assigned to the Contractor to be designed or certified by a design professional, signed and sealed by the responsible design professional.
 - Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads and other factors used to certify the product.
- E. Submittals: Shop drawings, engineering analysis, product data and other required submittals will be digitally signed and sealed and submitted electronically. The design professional's seal, license number, and signature shall be clear and legible and shall appear on each shop drawing sheet, each product data coversheet, and engineering analysis coversheet.

1.11 CONTRACTOR'S RESPONSIBILITIES

- A. The Contractor shall obtain, review, stamp with his approval and submit for review all Shop Drawings and Samples required by the Contract Documents. The Contractor shall be required to utilize the "Shop Drawing Transmittal Form attached to this section. Submittal materials for only one (1) specification section trade shall be submitted per each transmittal form. Do not combine submittals for multiple specification sections on one transmittal from. Use a separate transmittal form for each specification section.
- B. By approving and submitting Shop Drawings and Samples, the Contractor thereby represents that he has determined and verified all field measurements and field construction criteria at the site, and all materials, catalog numbers and similar data, or will do so, and that he has checked and coordinated each Shop Drawing and Sample with the requirements of the work and of the Work and of the Contract Documents.
- C. The Contractor shall not be relieved of responsibility for any deviation from the requirements of the Contract Documents by the Owner's, Construction Manager's, or the Architect's acceptance of Shop Drawings, Product Data or Samples, unless the Contractor has informed the Owner, Construction Manager and the Architect, in writing, of such deviation at the time of submission and the Architect has given written acceptance to the specific deviation. The Contractor shall not be relieved from responsibility for errors or omissions in the Shop Drawings, Product Data or Samples by the acceptance thereof.
- D. The Contractor shall direct specific attention, in writing or on resubmitted Shop Drawings, Product Data or Samples to revisions other than those requested on previous submittals.
- E. No portion of the Work requiring submission of Shop Drawings, Product Data or Sample shall be commenced until the submittal has been accepted as provided herein. All such portions of the Work shall be in accordance with accepted submittals.

1.12 ARCHITECT'S REVIEW

A. The Architect will complete review of Shop Drawings within fifteen (15) working days, and of Samples within twenty-one (21) working days of receipt thereof except that:

- 1. Shorter time limits will be negotiated on a basis of need for each specific case for "fast track" or critical path items.
- With respect to those areas with special architectural finishes and coordination of various material sources the parties shall agree upon a mutually satisfactory time schedule.
- 3. Review time will be considered as starting when Drawings and Samples are substantially correct and so submitted.
- 4. Incomplete or incorrect submittals will be returned without review, for proper submission.
- B. Shop Drawings, Samples and Product Data will be reviewed only for conformance with the design concept, compliance with the information given in the Contract Documents, arrangement and appearance. Deviations from the Contract Documents will be noted with comments and required corrections or changes will be noted on the returned submittal.
- C. Delegated Design Submittals will be reviewed only for conformance with the general design concept, compliance with performance and design criteria, and for loads transmitted to the building structure. Engineering analysis and calculations will not be reviewed and will be retained for record only. The Contractor is responsible for the design and performance of the delegated design systems and components. The review of a delegated design submittal shall not relieve the Contractor of the responsibility for proper and safe design.
- D. Contractor will be notified through the data management service when review is completed.
- E. Architect will retain electronic file of Product Data and A-E "mark-ups" or corrections of mark-ups.
- F. The Architect will **not** accept physical copies (hard copies) of shop drawings or product data submittals. Physical submittals will be accepted for Samples only. Physical Samples must be submitted through the Construction Manager and must be accompanied by an electronic (PDF) copy of the completed TMP Shop Drawing and Sample Transmittal Form.
- G. One sample from each set will be returned to the Contractor, one filed at the office of the Architect, one at the office of the Construction Manager or and one at the jobsite. If the Contractor intends that samples such as hardware or fixtures be installed on the project or returned at completion of the Project, he shall indicate at time of submittal, otherwise the Owner, Construction Manager and the Architect assume no responsibility for protection or return of such samples.

1.13 EQUIPMENT ROOM LAYOUT DRAWINGS

A. The Contractor shall prepare and submit equipment room layout drawings as required by the technical specifications and additionally for areas where equipment proposed for use could present interface or space difficulties. Such drawings shall be prepared in the same manner as coordination drawings.

1.14 MATERIALS, EQUIPMENT AND FIXTURE LISTS

- A. Where required by the Technical Provisions, lists of materials, equipment and fixtures shall be submitted by the Contractor. The lists shall be supported by sufficient descriptive material, such as catalogs, cuts, diagrams, and other data published by the manufacturer, as well as evidence of compliance with safety and performance standards, to demonstrate conformance to the specification requirements; catalog numbers alone will not be acceptable.
- B. The data shall include the name and address of the nearest service and maintenance organization that regularly stocks repair parts. No consideration will be given to partial lists submitted from time to time.
- C. Materials, equipment and fixtures will not be approved for use at capacity ratings in excess of manufacturer's published data.
- D. Approval of materials and equipment will be tentative subject to submission of complete shop drawings indicating compliance with the Contract Documents.

** END OF SECTION**

TMP SHOP DRAWING AND SAMPLE TRANSMITTAL FORM

CONTRACTOR/CONST. MANAGER:				ER:	PROJECT TITLE AND L	OCATION:	DATE SUBMITTED:	NEW	NEW		
							CHECKER:			RESUB. NO.	
SPEC SECTION NO.	NO. PRINT	NO. SEPI.	NO. CAT.	NO. SAMPLES	SUBCONTRACTOR/MFR.	ITEM DESCRIPTION			DATE CHECKED	DATE RETURNED	NO. COPIES
The undersigned Approval of item	d certifies ms submi	that the alted does n	oove submi ot relieve c	tted items hav ontractor fron	ve been reviewed in detail and are con complying with all requirements of	rrect and in strict conformance the contract documents.	e with the contract documents except as	otherwise noted. NO	ΓE: * ACTI	ON DEFINITI	ON
CONTRACTOR'S COMMENTS:						CONTRACTOR'S NAM	ME	R = RN = RR =	REVIEWED - N EXCEPTIONS N REVIEWED WI CORRECTIONS REVISE AND S	NOTED ITH S NOTED SEND	
ARCHITECT'S COMMENTS:						SIGNATURE cc: Owner		X = NA =	RECORD COPY NOT APPROVE RESUBMIT NO ACTION RI	ED –	

TMP ARCHITECTURE, INC. · 1191 WEST SQUARE LAKE ROAD · BLOOMFIELD HILLS, MICHIGAN 48302-0374 PH · 248.338.4561 FX · 248.338.02

ABBREVIATIONS

PART 1 - GENERAL

1.1 The following is a list of abbreviations utilized throughout the Contract Documents.

Α	В	С

ABV. A.F.F. ABR. ABS. ACC. A.C.C. ACC.PNL. A.V. AC. AC.T. AC.INSUL. A.D.A. ADDN. ADDNL. ADDNL. ADDNL. ADDNL. ADDNL. AMT. ALUM./AL. AMT. AMP. AMPL. AMPL. ANCH. A.B. & L/AN. APPR. APPR. ARCH. A- A.T. ASPH. ASSY. @	Above Above Finish Floor Abrasive Absorbing Access Air Cooled Condenser Access Panel Acid Vent Acid Waste Acoustic/Acoustical Acoustic Tile Acoustical Insulation Americans with Disability Act. Addendum Addition Additional Adhesive Adjacent/ Adjustable Aggregate Air Circuit Breaker Air Conditioning Air Conditioning Compressor Air Conditioning Unit Air Handling Unit Air Handling Unit Air Handling Unit Alternate Aluminum Amount Amphere Amplifier Anchor/Anchorage Anchor Bolt And Angleg Anodized Apartment Approved Approximate Architectural Architectural Architectural Architectural Drawing Number Ash Tray Asphalt Assembly At	B/B B.F.P. B.D.D. B.F. B.B.R. B.PL. B.SMT. B.B.M. BEV. BI.I. B.B.R. BLR.F. BLR.F. BLR.F. BLR.F. BLR.F. BLYD. BLYD. BLYD. BRKT. BRKK. BRK.B.B.C. BRKT. BRKK. BRK.B.B.C. BRKT. BRK	Back-to-Back Back Flow Preventer Back Draft Damper Barrier Free Base Board Radiation Base Plate Basement Bath Room Beam Bearing Bedroom Bench Mark Bent Between Bevel Bituminous Black-iron Block Board Boiler Feed Boiler House Both Side Both Ways Bottom Bottom of Duct Bottom of Pipe Bottom Elevation Boulevard Boundry Bracket Brake Horsepower Brass Breaker Brick British Thermal Unit Bronze Building Building Management System Built-up Roofing Bullnose Bulkhead Bulletin Burglar Alarm Buzzer	CTR. C.L. C/C CER. CER.T. CBD. CHAM. CHG. C/CHAN. CHKD. PL. CH.W.S. CHD. CIRCUM. CIRC. CIRC. CIRC. CIRC. CLR. CLRM. C.O. CLR. CLR. CLR. CLR. CLR. CLR. CLR. CLR	Cabinet Cabinet Unit Heater Capacity Carpet Casement Casework Casing Cast Iron Cast Iron Frame Cast Iron Pipe Casting Catalog Number Catch Basin Ceiling Ceiling Diffuser Ceiling Height Cement Plaster Center Line Center-to-Center Ceramic Ceramic Tile Chalkboard Chamfer Change Channel Checkered Plate Chilled Water Return Chilled Water Supply Chord Circumference Circle/Circular Circuit Circuit Breaker Civil Drawing Number Class Classroom Clean Out Clear Clear Glass Coefficient Cold Water Column Company Compartment
	Ash Tray	BULL.	Bulletin	C.W.	Cold Water
ASSY. @	Assembly At			CO. COMPT.	
AUTO. A.S.R.	Automatic Automatic Sprinkler			COMPO. C.A.	Composition Compressed Air
AUX. AVG.	Riser Auxiliary Average			COMPR. CONC. C.M.U.	Compressor Concrete Concrete Masonry Unit

C.W.R. C.W.S. COND. COND. CONF. CONN. C.A.V. CONST. C.J.	Condensing Water Return Condensing Water Supply Condensate Conduit Conference Connect Constant Air Volume Control Joint	DISCONT. DW. DISP. DIST. D.P. DO. DIV. DR. D.O. DR.OP. DBL.	Discontinuous Dishwasher Dispenser Distance Distribution Panel Ditto Divider/Division Door Door Opening Door Operator Double	E/E E.A.T. ENTR. EP. EQ. EQUIP. EQUIV. ESC. EST. EXC.	End-to-End Entering Air Temperature Entrance/Entry Epoxy Equal Equipment Equivalent Escalator Estimate Excavated
CONT. CONTR. C.P. CONVYR. COR. COR. CORR. CPR. CNTR. CTSK. CTSK. CCOV. COV.PL. COV.PL. C.C.T.	Continue/Continuous Contractor Control Panel Convector Corner Corner Guard Corridor/Corrugated Copper Counter Countersink/ Countersunk Course Cover Cover Plate Cubical Curtain Track Cubic Feet/Cubic	D.A. D.H. DWL. DN. D.S. D.S.B. DRN. D.T. D.T.C. DWR. DWG. D.F. D.B. D.S.P. DBWTR. DUP. D.DR.	Double Acting Double Hung Dowel Down Downspout Downspout Boot Drain Drain Tile Drain Tile Connector Drawer Drawing Drinking Fountain Dry Bulb Dry Stand Pipe Dumbwaiter Duplicate Dutch Door	EXH. E.D. E.F. E.G. E.R. EXIST. EXP. EXP.B. EXPL.P. EXPLP. EXT'N. EXT. EXT. EXT. EXTR. EXTR. E.S.P.	Exhaust Exhaust Duct Exhaust Fan Exhaust Grille Exhaust Register Existing Expansion Expansion Bolt Expansion Joint Expansion Proof Exposed Extension Exterior Extra Heavy Extruded External Static Pressure
C.F.M.	Foot Cubic Feet Per Minute Cubic Yard	D.DIX.	E		F
CULV. C.D. CYL. CYC.	Culvert Cup Dispenser Cylinder Cycles	EA. E.F. E.W. E ELAST. FLASH.	Each Each Face Each Way East Elastomeric Flashing	FAB. F/F F. FIN. F.C.U. F.S. FAS.	Fabricated/Fabric Face-to-face Factory Finish Fan Coil Unit Far Side Fastener
DMPR. DMPFG. D.L. DB. D. DEG. DMT. PARTN. DEPT. DEPR. DES. DET. DES. DET. DIAG. DIAG. DIA. DIFF.	Damper Dampproofing Dead Load Decibel Deep Degree Demountable Partition Department Depressed Design Detail Detroit Edison Co. Diagonal Diagram Diameter	ELAST W.F E.S.R. E.D.H. ELEC. ELEC. CL. ELEC.CAB. E.C. E- E.P. E.R.P. E.U.H. EWC E.W.H. ELEC.OPEI	Electrical Contractor Electrical Drawing Number Electrical Panel Electric Radiant Panel Electric Unit Heater Electric Water Cooler Electric Water Heater	FDR. FT. F.P.M. FN. FBD. FIG. FIN.FLR/ F.F. F.T.R. F.A. F.A.C.P. F. BRK. F.D. F.E. F.E.	Feeder Feet/Foot Feet Per Minute Fence Fiberboard Figure Finish/Finished Finish Floor Finned Tube Radiation Fire Alarm Fire Alarm Control Panel Fire Brick Fire Damper Fire Extinguisher Fire Extinguisher

F.V.C. FP. FPRFG. FIXT. FLG. FLASH. F.H.M.S.	Fire Valve Cabinet Fireplace Fireproofing Fixture Flange Flashing Flat Head Machine Screw Flat Head Wood Screw	H.R. H.BD. HDWE. HDWD. HD. HDR. H.O.A. HD. H.A.GL.	Handrail Hardboard Hardware Hardwood Head Header Hands-Off-Auto Head Heat Absorbing Glass	I.F. INST'L. INSUL. I.H. INT. INTER. INV. I.E.	Inside Face Install/ Installation Insulate/ Insulation Intake Hood Interior Intermediate Invert Invert Elevation
F.C. FLR.	Flexible Connection Floor	H.R.U. HTR.	Heat Recovery Unit Heater		J
F.CO. F.D. FLR.FIN. FLUOR. FLDG. FTG. FMBD.	Floor Cleanout Floor Drain Floor Finish Fluorescent Folding Footing Formboard	HTG. H/V H.V.A.C. H.H.W.R.	Heating Heating And Ventilating Heating, Ventilating, and Air Conditioning Heating Hot Water Return	J.C. JT. JST. J.B. JR.	Janitor Closet Joint Joist Junction Box Junior
FDN. FR.	Foundation Frame	H.H.W.S.	Heating Hot Water Supply		K
FRMG. F.A.I.	Framing Fresh Air Intake	HGT. HEX.	Height Hexagon		
FRZR. F.L.A. F.S. FURN.	Freezer Full Load Amperes Full Size Furnish/ Furnished	H. H.I.D. H.P. H.PR.	High High Intensity Discharge High Point High Pressure	K.P. KV. KV.A. KW. K.	Kick Plate Kilovolt Kilovolt Ampere Kilowatt Kip (1000#)
	G	H.S. H.S.B. H.V. HWY.	High Strength High Strength Bolt High Voltage Highway	KIT. K.D. K.O.P.	Kitchen Knock Down Knock-Out Panel
GA. GAL. G.P.H.	Gauge Gallon Gallons Per Hour	HSTWY. H.C. H.M.	Hoistway Hollow Core Hollow Metal		L
G.P.M. GALV. GALV.I. G. GKT. G.V. & B. GA. GEN'L. GLZ. G.H.T. G.B. GR. GB GRAT. GRN. G.L. GRN. GSS.	Gallons Per Minute Galvanized Galvanized Iron Gas Gasket Gate Valve And Box Gauge General Glass Glazing Glazed Hollow Tile Grab Bar Grade/Grille Grade Beam Grating Grid Line Granite Grease Separator	HK. HORIZ. HP. H.B. H.S.P. H.V.C. HOSP. H.W. H.W.S. HR. H.O. HYD.	Hook Horizontal/ Horizontally Horsepower Hose Bibb Hose Stand Pipe Hose Valve Cabinet Hospital Hot Water Hot Water Return Hot Water Supply Hour Hub Outlet Hydrant/Hydraulic Hydrogen	LBL. LAB. LAD. L.B. LAM. LDG. L- LGE. LDRY. LAV. L.A.T. L.H. L.H.R.B.	Label Laboratory Ladder Lag Bolt Laminate/ Laminated Landing Landscape Drawing Number Large Laundry Lavatory Leaving Air Temperature Left Hand Left Hand Reverse Bevel Length
G.T. GND. G.F. GT. GYP. GYP.BD.	Grease Trap Ground Ground Fault Grout Gypsum Gypsum Board H Handicapped	I.D. INCAND. IN. or " INCIN. INCL. I.W. INFO. I.D.	Identification Incandescent Inch/ Inches Incinerator Include/ Including Indirect Waste Information Inside Diameter	LEV. LIB. LT. LPRF. LTG. L.P. L.R.P.	Level Library Light Lightproof Lighting Lighting Panel Lighting Receptacle Panel Lightweight

LTWT. CONC. LMS. LTL. L.D. L.C.D. L.F. LIQ. L.L. L.R. LOC. LKR. LG. L.L.H. L.L.V. LVR. L.O. L.P. L.PR. LBR. LBS.	Lightweight Concrete Limestone Lintel Linear Diffuser Linear Ceiling Diffuser Linear Feet/Foot Liquid Live Load Living Room Location Locker Long Long Leg Horizontal Long Leg Vertical Louver Louver Opening Low Point Low Pressure Lumber Pounds	M.D.O.T. MWK. MIN. MIR. M. & S. MISC. M.I. MOD. MON. M.S.& S. M.O. M.O.D. MLDG. MTD. MTD. MTD. MTG. MTD. MOV. MOV. PARTN. MULL. M MBH	Michigan Department of Transportation Millwork Minimum Mirror Mirror And Shelf Miscellaneous Miscellaneous Iron Model Monument Mop Strip And Shelf Motor Operated Motor Operated Damper Molding Mounted Meeting/Mounting Mounted Moveable Moveable Partition Mullion Thousand 1000BTU/Hour	OZ. O/O O.A. O.D. O.F. O.H.S. OA. OHD. OHD.DR. OYY. PRD. PRD. PR. PNL. P.T.D. P.T.W.R. PARA. PRL.	Ounce Out-to-Out Outside Air Outside Diameter Outside Face Oval Head Screw Overall Overhead Overhead Door Oxygen P Painted Pair Panel Paper Towel Dispenser Paper Towel Waste Receptacle Paragraph Parallel
MACH	Machine	IVIDIT	N	PGK. P.BD. PRTN.	Parking Particle Board Partition
MACH. M.B. MACH.RM. M.U.A. M.A.U. M.D.P. M.S.B. MAINT. MH. M.V.D. MFR. MAR. MK. MAS. M.O. MATL. MAX. MECH. M-	Make-Up Air Make-up Air Unit Main Distribution Panel Main Switch Board Maintenance Manhole Manual Volume Damper Manufacturer Marble Mark Masonry Masonry Opening Material Maximum Mechanical Mechanical Drawing Number	NAT. N.S. NK. NEUT. N.R.C. NOM. N.C. NOR. N.C. N.O. N.O. N	Natural Near Side Neck Neutral Noise Reduction Coefficient Nominal Non-Corrosive Normal Normally Closed Normally Open North Nosing Not In Contract Not To Scale Number	PASS. PAT. PVMT. PVG. PED. PERF. PERIM. PERM. PERP. PHOTO. P.H. PC. PLAS. PL.AM. PL. PL.GL. PLAT. PLBG. PLYWD. PT.	Passage Patent Pavement Paving Pedestal Perforated Perimeter Permanent Perpendicular Photograph Physically Handicapped Piece Pieces Plaster Plastic Laminate Plate Plate Glass Platform Plumbing Plywood Point
M.C. MED. MEMB. MET. M.C.S. M.D.S. M.E.S. M.L. M.L.& PLAS. MET.W.P.	Medicine Cabinet Medium Membrane Metal/ Metallic Metal Carpet Strip Metal Divider Strip Metal Edge Strip Metal Lath Metal Lath And Plaster Metallic Waterproofing Mezzanine	OBS. OBS.GL. OFF. O.C. OPQ. OPG. OPER. O.B.V.D. OPP. OPP.HD ORIG. ORN.	Obscure Obscure Glass Office On Center Opaque Opening Operator Opposed Blade Volume Damper Opposite Opposite Hand Original Ornamental	P.T. P.C. POL. PVC. PORC. PORC. ENAM. POR. PORT. POS. P.I.V. LBS. or # P.L.F.	Point of Tangency Point of Curvature Polish/ Polished Polyvinylchloride Porcelain Porcelain Enamel Porous Portable Position Post Indicator Valve Pounds Pounds Per Linear Foot

P.S.F. P.S.I. P.C.F. P.P. P/C P.T.C. PREFAB. PFN. P.C.T./C.M. P.G. P.R.G. P.R.V. PRIM. PROJ. PROP. P.L. P.A. P.S. P.B.	Pounds Per Square Foot Pounds Per Square Inch Pounds Per Cubic Foot Power Panel Precast Precast Terrazzo Receptor Prefabricated Prefinished Pressure Control Terminal/Control Module Pressure Relief Grille Pressure Reducing Valve Primary Project/ Projection Property/ Proposed Property Line Public Address Purse Shelf Push Button	R.H. REM. REP. REQ'D. RESIL. RET. R.A. R.A.D. R.A.F. REV. R.P.M. R. H. R.B. R.O.W. RVT. RD. R.S.C. RF. H. R.C. R.C. R.D. R.T.U. R.S. R.V.	Relief Hood Remove/ Removable Repair Required Resilient Return Return Air Return Air Duct Return Air Fan Revised/Revision Revolutions Per Minute Riser Right Hand Right Hand Reverse Bevel Right Of Way Rivet Road Rolling Steel Curtain Roof Roof Conductor Roof Drain Roof Hatch Roof Sump Roof Ventilator	SGL. SK. S.D. S.C. S.T.C. SP. SPR. SPKR. SPEC. S.D. SPRYD. SPKLR. SQ. S.F. STAG. ST.STL STD. SP. STAG. ST.STL STD. SP. STAG. STL. STL. STL. STL. STL. STL. STL. STL	Single Sink Soap Dispenser Solid Core Sound Transmission Class South Space Spare Speaker Specifications Splitter Damper Sprayed Sprinkler Square Square Feet/ Square Foot Staggered Stainless Steel Standard Standpipe Static Pressure Station Steam Steel Steel Plate Stiffener
QTY. Q.T. QTR. QTR.RD.	Quantity Quarry Tile Quarter Quarter Round R	RFG. R.W.C. RM. R.O. RND. or O R.H.M.S. R.H.W.S.	Roofing Rain Water Conductor Room Rough Opening Round Round Head Machine Screw Round Head Wood Screw Rubber Tile	STO.FR. STOR. ST. STR. ST. STRUCT. S.G.F.T. S.STL. SS.D. SS.D.C.	Storefront Storage Storm Straight Street Structural Drawing Number Structural Glazed Facing Tile Structural Steel Subsoil Drain Subsoil Drain
RBT. R.C.P. RAD. or R. R.W.C. R.R. RECV. RECPT. R.P. REC. RECIRC. RECT. RED. REFL. REFL. REFRIG. REFR. REG. RH.C. REINF.	Rabbet Radiant Ceiling Panel Radius Rain Water Conductor Railroad Receive/ Receiving Receptacle Receptacle Panel Recess Recirculation Rectangle / Rectangular Reducer Redwood Refer/Reference Reflected/Reflective Refrigerant Refrigerator Register Reheat Coil Reinforce/Reinforcing Reinforcement	SAN. S.N.D. S.N.R. SCHED. SCN. STG. SECT. SERV. S.S. SHTHG. SHT.MET. SHT.MET. SHWR. S.C.R. S.DR. SW. SIM.	Sanitary Sanitary Napkin Dispenser Sanitary Napkin Receptacle Schedule Screen Seating Section Service Service Sink Sheathing Sheet Sheet Metal Shelf And Pole Shower Shower Curtain Rod Shower Door Sidewalk Similar	SUB. S.A.G. S.D. SUBST. S.A.R. S.F. S.A. S.A.D. SUPP. SURF. SUSP. SWBD. SWBD. SWGR. SYM. SYS.	Connection Substation Supply Air Grille Supply Diffuser/ Duct Substitute Supply Air Register Supply Fan Supply Air Supply Air Diffuser Support Surface/Surfacing Suspend/Suspension Switch Switchboard Switchgear Symbol/Symmetrical System T Tackboard Tangent Technical

TEL. TEL.CAB. TV TV.M. TEMP. TEMP.GL. T.W. T.U. TERR. T.B. T. THK. T.S. M (1000) K (KIP) THRESH. THRU. T. T./TOIL. T.P.D. T.P.H. T&G T&B T/C T/F T/M T/P T/R T/R T/R T/R T/R T/R T/S T.D. T.G. TRFR. T.D. T.D.	Telephone Telephone Cabinet Television Television Monitor Temperature Tempered Glass Tempered Water Terminal Unit Terrazzo Test Boring Thermostat Thick/Thickness Thickened Slab Thousand Thousand Pounds Thread/Threaded Threshold Through Tile Toilet Paper Dispenser Toilet Paper Holder Tongue And Groove Top & Bottom Top Of Cover/Curb Top Elevation Top Of Footing Top Of Masonry To Of Pavement Top of Rail Top of Rim Top of Steel Top of Wall Towel Bar Towel Dispenser Towel Dispenser Transformer Transom Tread Trench Drain	U.O.N. U.S.A. UR. VAC. V.B. V.C.O. V.BARR. VAR. VARN. VNR V. PLAS. V. V.T.R VENT. VI.F. VS. VERT. VERT.C. VEST. VI. VNY. V.C.T. VIN.FAB. V.R.S. VIT. V.C.P. VOL. V.D. V	Unless Otherwise Noted Untempered Supply Air Urinal V Vacuum Vacuum Breaker Vacuum Cleaner Outlet Vapor Barrier Variable Variable Air Volume Varnish Veneer Veneer Plaster Vent Vent Thru Roof Ventilate/ Ventilation Verify In Field Versus Vertical/Vertically Vertical Curve Vestibule Vibration Isolator Vinyl Vinyl Composition Tile Vinyl Fabric Vinyl Fabric Vinyl Reducer Strip Vitreous Vitrified Clay Pipe Volume Volume Damper Volts W	W W.B. W. W-x- WT W.O. W.GL. W.M. W/ W/O WD. W.L. W.PT. W.I. YD. Y.P. Y.S. YR.	West Wet Bulb Wide/Width Wide Flange Section Wide Flange Tee Section Window Opening Wire Glass Wire Mesh With Without Wood Working Line Working Point Wrought Iron Y Yard Yield Point Yield Strength Year Z Zinc-Coated
U.C. U.G. U.L. ULT. UNFIN. U.SUB. U.V. U.S.G.S.	Tube Section Turning Vane Twin Tee Typical U Undercut Underground Underwriters' Laboratories, Inc. Ultimate Unfinished Unit Heater Unit Substation Unit Ventilator United States Geological Survey	WAINS. W.CAB. W.CO. W.H. W/W W.V. WHSE. W.F. W. & V W.R. W.C. W.G. W.G. W.H. WP. W.P. W.STPG. WT. W.W.F	Wainscot Wall Cabinet Wall Cleanout Wall Hydrant Wall-to-wall Wall Vent Warehouse Wash Fountain Waste/Watts Waste And Vent Waste Receptacle Water Closet Water Gauge Water Heater Waterproofing Weatherstripping Weight Welded Wire Fabric		

STANDARDS AND DEFINITIONS

PART 1 - GENERAL

1.1 SUMMARY

A. Specified Herein: Standards and Definitions

Definitions

Specification Content

Quality Standard of the Industry

1.2 DEFINITIONS

- A. Certain terms used in the Contract Documents are defined generally in this article. Definitions and explanations of this section are not necessarily either complete or exclusive, but are general for the work to extent not stated more explicitly in another provision of the Contract Documents.
- B. Indicated: A cross-reference to details, notes or schedules on the drawings, to other paragraphs or schedules in the Specifications, and to similar means of recording requirements in the Contract Documents. Where terms such as "shown", "noted", "scheduled", and "specified" are used in lieu of "indicated", it is for purpose of helping reader locate cross-reference, and no limitation of location is intended except as specifically noted.
- C. Furnish: Supply and deliver to project site, ready for unloading, unpacking, assembly, installation, etc., as applicable in each instance.
- D. Install: Perform operations at project site including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing protecting, cleaning and similar operations, as applicable in each instance.
- E. Provide: Furnish and install, complete and ready for intended use, as applicable in each instance.
- F. Installer: The entity (person or firm) engaged by the Contractor or its subcontractor or subsubcontractor for the performance of a particular unit of work at the project site, including installation, erection, application and similar required operations. It is a general requirement that such entities (Installers) be expert in operations they are engaged to perform.

1.3 FORMAT AND SPECIFICATION EXPLANATIONS

- A. Specification Production: None of these explanations will be interpreted to modify substance of requirements. Portions of these Specifications have been produced by Architect's/Engineer's standard methods of editing master Specifications, and may contain minor deviations from traditional writing formats. Such deviations are a normal result of this production technique, and no other meaning will be implied or permitted.
- B. Format Explanation: The format of principal portions of these Specifications can be described as follows; although other portions may not fully comply and no particular significance will be attached to such compliance or non-compliance:

- Sections and Divisions: For convenience, basic unit of Specification text is a "section", each unit of which is named and numbered. These are organized into related families of sections, and various families of sections are organized into "divisions", which are recognized as the present industry-consensus on uniform organization and sequencing of Specifications. The section title is not intended to limit meaning or content of section, nor to be fully descriptive of requirements specified therein, nor to be an integral part of text.
- 2. Each section of specifications has been subdivided into 3 (or less) "parts" for uniformity and convenience (Part 1 General, Part 2 Products, and Part 3 Execution). These do not limit the meaning of and are not an integral part of text that specifies requirements.
- Imperative Language: Requirements expressed imperatively shall be performed by Contractor. For clarity of reading at certain locations, contrasting subjective language is used to describe responsibilities that must be fulfilled indirectly by Contractor, or when so noted, by others.
- 4. Section Numbering: Used to facilitate cross-reference in Contract Documents. Sections are placed in Project Manual in numeric sequence; however, numbering sequence is not complete, and listing of sections at beginning of project Manual must be consulted to determine numbers and names of specification sections in the Contract Documents.
- 5. Page Numbering: Numbered independently for each section; recorded in listing of sections (Index or Table of Contents) in Project Manual. Section number is shown with page number at bottom or each page, to facilitate location of text in Project Manual.

1.4 SPECIFICATION CONTENT

- A. Specifying Methods: The techniques or methods of specifying to record requirements varies throughout text, and may include "prescriptive", "open generic-descriptive", "compliance with standards", "performance", "proprietary", or a combination of these. The method used for specifying one unit of work has no bearing on requirements for another unit or work.
- B. Overlapping and Conflicting Requirements: Where compliance with 2 or more industry standards or sets of requirements is specified, and overlapping of these different standards or requirements establishes different or conflicting minimums of levels of quality, most stringent requirement (which is generally recognized to be also most costly) is intended and will be enforced, unless specifically detailed language written into the Contract Documents (not by way of reference to an industry standard) clearly indicated that a less stringent requirement is to be fulfilled. Refer apparently equal but different requirements, and uncertainties as to which level of quality is more stringent, to Architect for a decision before proceeding.
 - 1. Contractor's Options: Except for overlapping or conflicting requirements, where more than one set of requirements are specified for a particular unit of work, option is intended to be Contractor's regardless of whether specifically indicated as such.
- C. Specified Quality Standards: The fact that a specified product or model number is in conflict with specified quality requirements such as "concealed fasteners" or "special colors" such specification shall be construed to mean that acceptance is contingent upon manufacturer or fabricator modifying the product to comply with the Specifications.

- D. Minimum Quality/Quantity: In every instance, quality level or quantity shown or specified is intended as minimum for the work to be performed or provided. Except as otherwise specifically indicated, actual work may either comply exactly with that minimum (within specified tolerances), or may exceed that minimum within reasonable limits. In complying with requirements, indicated numeric values are either minimums or maximums as noted or a appropriate for context of requirements. Refer instances of uncertainty to Architect for decision before proceeding.
- E. Specialists; Assignments: In certain instances, specification text requires (or at least implies) that specific work be assigned to specialists or expert entities, who must be engaged for performance of those units of work. These must be recognized as special requirements over which Contractor has no choice or option. These assignments must not be confused with (and are not intended to interfere with) normal application of regulations, union jurisdictions and similar conventions. One purpose of such assignments is to establish which party or entity involved in a specific unit of work is recognized as "expert" for indicated construction processes or operations. Nevertheless, final responsibility for fulfillment or entire set of requirements remains with Contractor.
- F. Abbreviations: The language or Specifications and other Contract Documents is of the abbreviated type in certain instances, and implies word and meanings that will be appropriately interpreted. Actual work abbreviations of a self-explanatory nature have been included in the text. Specific abbreviations have been established, principally for lengthy technical terminology and primarily in conjunction with coordination of Specification requirements with notations on drawings and in schedules. These are frequently defined in sections at first instance of use. Trade association names and titles of general standards are frequently abbreviated. Singular words will be interpreted as plural and plural words will be interpreted as singular where applicable and where full context of the Contract Documents so indicates.

1.5 QUALITY STANDARDS OF THE INDUSTRY

- A. General Applicability of Standards: Applicable standards of construction industry have same force and effect (and are made a part of Contract Documents by reference) as if copied directly into Contract Documents, or as if published copies were bound herewith.
 - 1. Reference standards (referenced directly in Contract Documents or by governing regulations) have precedence over non-referenced standards.
 - 2. Non-referenced standards have no particular applicability except as a measure of compliance with standards recognized in construction industry.

B. Copies of Standards:

- 1. Where copies of standards are needed for proper performance of the work, the Contractor is required to obtain such copies directly from the publication source.
- The Architect reserves the right to reasonably require the Contractor to submit, or maintain at the jobsite, copies of all applicable standards as needed for enforcement of the requirements.
- C. Publication Dates: Except as otherwise indicated, where compliance with an industry standard is required, comply with standard in effect as of date of Contract Documents.
- D. Abbreviations and Names: Acronyms or abbreviations used in Contract Documents mean the industry recognized name applicable to context of text provision.

1.6 DRAWINGS, DETAILS, SCHEDULES

- A. Large scale details are provided to show arrangement, attachment, and otherwise indicate relationships of component materials and for purposes of clarify often do not show all materials. The fact that a material is, or is not indicated on such details shall not act to relieve the Contractor of responsibility for providing a specified item.
- B. Schedules are provided for convenience of reference only. In the event of an omission or conflict between schedules and other documents, the more restrictive document shall govern as directed by the Architect.

1.7 CODES AND STANDARDS

- A. Comply with latest revisions to date of all Governing Codes and with all other legal provisions relating to the Work. Other standards and references shall be current edition as of date of issue of Bidding Documents.
- B. Conform to all laws, ordinances and regulations affecting the erection, sequence of erection, and completion of the whole or any part of the work; and conform to the requirements of the Owner and of public authorities having lawful or customary jurisdiction.
- C. These requirements shall take precedence over the Contract Documents except where the Contract Documents require higher standards also acceptable to the authorities.

1.8 PERMITS, CODES, ORDINANCES AND NOTICES

- A. See General Conditions for permits.
- B. Obtain and keep available at the job, copy of building ordinances pertinent to the work.
- C. Inform the Owner and the Architect, in writing, of the manner and time in which each of the requirements of the General Conditions concerning permits are complied with.
- D. Make all necessary arrangements and obtain permits for blockage of streets and for all interference with the public right of way.
- E. Special Inspections: All special inspections required to be made under provisions by building code of utility company regulations shall be arranged and paid for by the Contractor whose work requires such inspection.

END OF SECTION

PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS:

A. DRAWINGS AND GENERAL PROVISIONS of Contract, including General and Supplementary Conditions and other Division 01 Specification sections, apply to work of this section.

1.2 SUBMITTALS

- A. Substitution Request Submittal: Requests for substitution will be considered if presented to the Architect at least 10 days in advance of bid due date.
 - Identify the product, or the fabrication to be replaced in each request. Include related Specification Section and Drawing numbers. Provide complete documentation showing compliance with the requirements for substitutions, and the following information, as appropriate:
 - a. Product Data, including Drawings and descriptions of products, fabrication and installation procedures.
 - b. Samples, where applicable or requested.
 - c. A detailed comparison of significant qualities of the proposed substitution with those of the Work specified. Significant qualities may include elements such as size, weight, durability, performance and visual effect.
 - d. Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by the Owner and separate Contractors that will become necessary to accommodate the proposed substitution.
 - e. A Statement indicating the substitution's effect on the Contractor's Construction Schedule compared to the schedule without approval of the substitution. Indicate the effect of the proposed substitution on overall Contract Time.
 - f. Cost information, including all related costs under this Contract and excluding Architect's redesign costs, net change, if any, in the Contract Sum, and waiving all claims for additional costs related to the substitution which subsequently became apparent.
 - g. Certification by the Contractor that the substitution proposed is appropriate in every significant respect to that required by the Contract Documents, and that it will perform adequately in the application indicated. Include the Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of the failure of the substitution to perform adequately.
- B. Product Presentation: Conduct a presentation at the Architect's office if required by the Architect to prove appropriateness to the specified product.
- C. Architect's Action: Within one (1) week of receipt of Bids, the Architect may request additional information or documentation necessary for evaluation of the request. Within two (2) weeks of receipt of the request, or one (1) week of receipt of the additional information or documentation, which ever is later, the Architect will notify the Contractor of acceptance or rejection of the proposed substitution. If a decision on use of a proposed substitute is not made or obtained within the time allocated, use the product specified by name. If acceptance is made prior to award, it will be included in the Contract Amount. If acceptance is made after Award, it will be in the form of a Change Order.

1.3 GENERAL REQUIREMENTS FOR SUBSTITUTIONS

A. Substitutions During Bidding:

- 1. Substitutions shall be included in the proposal under the following conditions only and shall follow all requirements of "Acceptance of Substitutions."
 - a. When the Contractor is unable to obtain competitive prices from more than one of the specified manufacturers.
 - b. When the Contractor knows of another product of equal or better quality and performance.
 - c. When the Contractor has had unsatisfactory experience with one or more of the specified products or has reason to believe that the specified Manufacturer will not provide the necessary guarantees or assume responsibility for performance.

B. Substitutions After Contract:

- 1. Substitutions proposed after Award of the contract will only be considered for the following reasons.
- 2. A substantial advantage is offered the Owner, in terms of cost, time, energy conservation or other considerations of merit, after deducting offsetting responsibilities the Owner may be required to bear. Additional responsibilities for the Owner may include additional compensation to the Architect for redesign and evaluation services, increased cost of other construction by the Owner or separate Contractors, and similar considerations.

C. Acceptance of Substitutions:

- 1. Substitutions will be considered for any manufacturer except those followed by the words "No Substitutions" in the Specifications.
- 2. In all cases where substitutions are proposed by the Contractor, it shall be the sole responsibility of the Contractor to provide adequate data and samples as required by the Architect to evaluate the substitution.
- The Architect shall not be obliged to justify his reason for rejecting a proposed substitution.
- 4. In the event that a substitution is accepted conditionally on the Contractor's agreement to assume full responsibility for equality and performance, the Contract shall provide a full value warranty and agree to make good all damages resulting from the failure of the substitute product.

1.4 ACCEPTANCE OF MATERIALS AND MANUFACTURERS

A. Standard Materials:

- 1. Architect's acceptance applies to the Manufacturer only and shall not act to permit any deviation from other requirements of the Specifications.
- Acceptance will be based on the Manufacturer's specifications at time of issuance of Bidding Documents. Deviations from such specifications shall be considered as a substitution.

- 3. Requests for acceptance shall be in tabular form stating Specification paragraph and material selected, except as otherwise provided.
- 4. Shop Drawings shall not indicate any material for which acceptance has not been received, unless accompanied by a separate request for approval. In no case shall Architect's review and return of Shop Drawings constitute and acceptance of either specified or substitute manufacturers or materials.
- B. Materials Involving Supplementary Warranty of Maintenance Contract:
 - These materials shall be submitted as a request for acceptance over the signature of a
 qualified technical representative in the direct employ of the Manufacturer of such other
 person as the manufacturer may authorize in writing. Request for acceptance shall
 contain the following information.
 - a. Name of project.
 - b. Name of Contractor, Subcontractor or other party to whom material is furnished.
 - c. Reference to Specification Section and Article where material is specified and other Contract Documents necessary for identification.
 - d. Statement of acceptance of documents, conditions, and performance requirements:
 - 1) Statement that documents as issued are in accordance with manufacturer's recommendations for use of specified materials, or
 - 2) Recommended modification of detail, use, application or for substitution of different product by same manufacturer as being more suitable for the performance requirements of the warranty.
 - e. Statement that detailed installation instructions will be provided.
 - f. Extent of job site technical services, consultants or instructors proposed, if any.
 - g. Statement that warranty will be provided.
 - h. Special provisions required to keep warranty in force.
 - 2. Requests for acceptance may be in the form of a letter including the above items and addressed to the subcontractor responsible for installation of the material, or may be according to a sample form of Material Proposal, provided by the Architect.
 - 3. Upon receipt of the manufacturer's proposal, the subcontractor shall add his own statement agreeing to comply with the manufacturer's requirements and warranting his own workmanship.
 - 4. The Contractor shall submit letter of endorsement of copies of all documents, including letters of comment, to the Architect for approval. In the event that the request for approval recommends a change in the work, modification of detail, or substitution of material, the Contractor shall indicate his concurrence with the change as being within the scope of the Contract or indicate the change in the Contract Sum for making such change, or state his objections to the change.

END OF SECTION

EXECUTION REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Specified Herein: General Requirements for standards of construction operations and procedures of a repetitive or general nature.

1.2 MANUFACTURER'S REVIEW

- A. Manufacturer's review of documents and conditions of use is a statement by the manufacturer or a representative or agent thereof that it has reviewed the documents pertaining to the work and verified the proposed use of the material including details and instructions for applications or installation, is suitable for the intended purpose, and under similar conditions of use.
- B. Obtain and submit a statement from the manufacturer indicating that they have no objection to the proposed details or method of installation, and that instructions for applications or installation are in conformance with manufacturer's recommendations. Statement shall include any additional precautions or protective measures that should be taken.
- C. Manufacturer's review shall recognize adjacent materials and state if there is, in its opinion, a serious question of compatibility including possibility of damage to other materials, or damage to the material or assembly by other materials. Such conditions shall be reconsidered and adjustments made, previous approvals notwithstanding.

1.3 APPROVED APPLICATOR

- A. An approved applicator or installer is one whom the manufacturer has reason to believe is experienced and qualified in the work and is familiar with the product and with the manufacturer's recommendations for use and installation.
- B. Obtain and submit a statement from the manufacturer that the proposed applicator or installer is approved and indicate whether or not this approval is subject to review and observation of the work by the manufacturer's representative.
- C. Manufacturer shall not approve an installer or applicator if, because of past history of performance or other reasons, there is a reasonable doubt that it can be relied upon to perform in accordance with the Contract Documents.
- D. Upon completion of the work, manufacturer shall certify that approved material in the proper quantities have been delivered to the approved applicator for use on the Project.
- E. In the event that manufacturer declines to approve proposed applicator, submit a statement as to whether or not on-site instruction or manufacturer's supervision is recommended.

1.4 MATERIAL HANDLING, STORAGE AND DELIVERY

A. Where applicable, deliver all packaged materials to the site in manufacturer's original unopened containers.

- B. Properly pack all materials in appropriate containers for shipment. Identify contents with piece marks referenced to shop drawings and as far as possible in some sequence as erection. Provide packing, wrapping and other protection as required to insure satisfactory condition of materials and finishes at time of erection.
- C. Inspection and acceptance will be made on the basis of materials as delivered to the job site.
- D. Provide adequate quantities to allow for damage and breakage during shipment and delivery and for replacement of all materials damaged prior to final acceptance. All such replacement of damaged materials shall be at no additional cost to the Owner.
- E. Store materials and equipment that are subject to degradation by outside exposure in a weathertight enclosure.

1.5 MIXING, THINNING AND STORAGE

- A. Store and mix paints only in areas designated, and provide proper protection for walls and floors.
- B. Mix and thin paints in strict accordance with recommendations of the manufacturer.
- C. Deliver and store paints and flammable materials in the manufacturer's original unopened containers, as far as practicable. Keep partially used materials in tightly closed containers.
- D. Do not store oil or paint soaked rags inside the building. Do not store materials in any room containing a direct-fired heating unit.

1.6 ON SITE INSTRUCTION

- A. On-site instruction shall consist of inspection and instruction performed by a qualified representative of the manufacturer.
- B. Obtain and submit a statement from the manufacturer that its authorized representative will provide the specified inspection and instruction and submit a record of the date on which specified services were provided.
- C. Service shall consist of:
 - 1. Preliminary inspection of substrates and all other conditions that would affect the performance of the work.
 - 2. Give notice of all unacceptable conditions and recommend remedial action.
 - 3. Recommend proper procedures for conditions as encountered at the site.
 - 4. Verify that workers are qualified and have received proper instructions.

1.7 MANUFACTURER'S SUPERVISION

- A. Manufacturer's supervision, in addition to all services specified for on- site instruction, consists of continuing inspection and verification that the work has been performed in accordance with the Contract.
- B. Obtain and submit a statement from the manufacturer that complete supervision will be provided.

- C. Where supervision is specified, all costs shall be included in the Base Bid. Where supervision is recommended as a modification, submit a proposal indicating the extent and additional cost, if any, of such service.
- D. Upon completion submit a report giving dates of inspections and include pertinent information as applicable to the particular trade such a procedures, coats, coverages, tests as necessary to verify conformance and certify that the proper types and quantities of materials were installed.

1.8 WORKMANSHIP

- A. Employ skilled mechanics and fabricate all work in the best and most workman-like manner and in strict accordance with the detail drawings, by fabricating contractors regularly engaged in the particular type or work.
- B. Conform to the acceptable fabrication and erection standards of the manufacturer and to the applicable rulings of Code Authorities.

1.9 FABRICATION

- A. Fabricate and install all items plumb, true, straight, square, level and in proper elevations, plane, locations and alignment with other work. Design all work for adjustment to field connection, fitted with proper joints and intersections, adequately anchored in place. Complete work in every detail.
- B. Design and anchor work so that work will not be distorted not fasteners overstressed from expansion and contraction due to temperature change.
- C. All fasteners for exposed surface where not otherwise indicated shall be concealed.

D. Fabricated Items:

- 1. Model numbers of Manufacturers as listed herein are intended to indicate design and detail for each item. Variations affecting function or appearance will not be accepted.
- 2. Identifying Markings: Where the manufacturer's name, patent number, model number or similar identifying marks are required, locate such markings in as inconspicuous as possible location. In no case will such marks be acceptable as part of the basic design.
- 3. Hardware for all Units: Concealed fasteners and hardware. Butt hinges are not acceptable as a substitute where item scheduled in Specification is manufactured with concealed pivots or piano hinges.

1.10 INSTALLATION

- A. Accurately locate, carefully plumb and level, and securely attach all accessories.
- B. Provide concealed grounds and backing or other anchorages devices, properly located, as required for fastening.
- C. Use manufacturer's standard mounting devices as best suited to installation conditions and as accepted by the Architect. Make all attachments by positive mechanical fastening devices, except where other installation methods are indicated.

- D. Where so recommended by the manufacturer, install the work under direct supervision of the authorized representative of the manufacturer. Employ workers experienced and qualified in the trade.
- E. Install units true and plumb in the opening maintaining proper contact with frames or adjacent materials and fitting closely to detail at intersection with other materials to provide for proper operation.
- F. Connect and properly adjust all operating devices and equipment to operate smoothly and perfectly.
- G. Upon completion or when directed, conduct careful inspection and correct defective work. Perform necessary adjustments as required to leave the completed installation in efficiently operable condition.

1.11 PREPARATION OF SURFACES FOR COATINGS AND COVERINGS

- A. Inspect all surfaces and verify that all required cants and chamfers are provided, and that all surfaces are free from irregularities of projections that would interfere with proper application.
- B. Thoroughly clean surfaces; remove all loose materials, grease, oil and foreign matter.
- C. Allow surfaces to completely dry before applying materials.
- D. Report all unsatisfactory surface to contractor for correction before proceeding. Otherwise proceeding will constitute acceptance of surface by Contractor.
- E. Note: Interior application of solvent type adhesives and systems require special ventilation or special solvents if ventilation is not possible.

1.12 BUILDING-IN, ANCHORS, INSERTS

- A. Unless otherwise stipulated, each trade generally shall promptly furnish anchorage and insert devices, together with adequate setting information, where necessary for building into the work by other trades.
- B. Verify the accuracy of all built-in anchors and inserts.
- C. Delays and errors shall be corrected by the trade responsible therefor.
- D. Power driven anchors of equivalent capacity and function may be accepted, subject to written acceptance, where approved by local jurisdictional authorities.
- E. Do not endanger or alter the work of any other trade without obtaining prior written consent.
- F. Furnish all supports necessary for proper installation of equipment.

END OF SECTION

CUTTING AND PATCHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes procedural requirements for cutting and patching.
- B. Related Sections include the following:
 - 1. Division 02 Section "Selective Demolition" for demolition of selected portions of the building for alterations.
 - 2. Divisions 02 through 35 Sections for specific requirements and limitations applicable to cutting and patching individual parts of the Work.
 - Requirements in this Section apply to mechanical and electrical installations.
 Refer to Divisions 15 and 16 Sections for other requirements and limitations applicable to cutting and patching mechanical and electrical installations.

1.3 DEFINITIONS

- Cutting: Removal of existing construction necessary to permit installation or performance of other Work.
- B. Patching: Fitting and repair work required to restore surfaces to original conditions after installation of other Work.

1.4 SUBMITTALS

- A. Cutting and Patching Proposal: Submit a proposal describing procedures at least 10 days before the time cutting and patching will be performed, requesting approval to proceed. Include the following information:
 - 1. Extent: Describe cutting and patching, show how they will be performed, and indicate why they cannot be avoided.
 - 2. Changes to Existing Construction: Describe anticipated results. Include changes to structural elements and operating components as well as changes in building's appearance and other significant visual elements.
 - 3. Products: List products to be used and firms or entities that will perform the Work.
 - 4. Dates: Indicate when cutting and patching will be performed.
 - Utilities: List utilities that cutting and patching procedures will disturb or affect. List
 utilities that will be relocated and those that will be temporarily out of service. Indicate
 how long service will be disrupted.

- 6. Structural Elements: Where cutting and patching involve adding reinforcement to structural elements, submit details and engineering calculations showing integration of reinforcement with original structure.
- 7. Architect's Approval: Obtain approval of cutting and patching proposal before cutting and patching. Approval does not waive right to later require removal and replacement of unsatisfactory work.

1.5 QUALITY ASSURANCE

- A. Roofing: When modifying an existing roof and adding new penetrations comply with the following requirements:
 - 1. Notify original roof manufacturer prior to beginning any work and comply with all manufacturer guidelines and requirements.
 - 2. Provide original roof manufacturer with a brief description of the proposed work, including any required submittals.
 - 3. Work shall not begin until written approval is received from original roof manufacturer.
 - 4. Work must be done by an approved roofing manufacturer's contractor.
 - 5. Original roof manufacturer shall inspect all modifications to the original roof system.
- B. Structural Elements: Do not cut and patch the following structural elements in a manner that could change their load-carrying capacity or load-deflection ratio.
 - 1. Obtain approval of the cutting and patching proposal before cutting and patching the following structural elements:
 - a. Foundation construction.
 - b. Bearing and retaining walls.
 - c. Structural concrete.
 - d. Structural steel.
 - e. Lintels.
 - f. Timber and primary wood framing.
 - g. Structural decking.
 - h. Stair systems.
 - i. Miscellaneous structural metals.
 - j. Shoring, bracing and sheeting.
 - Structural systems of special construction in Division 13 Sections.
- C. Operational Elements: Do not cut and patch the following operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.
 - 1. Obtain approval of the cutting and patching proposal before cutting and patching the following operating elements or safety related elements:
 - a. Primary operational systems and equipment.
 - b. Air or smoke barriers.
 - c. Fire-protection systems.
 - d. Control systems.
 - e. Communication systems.
 - f. Conveying systems.
 - g. Electrical wiring systems.

- h. Operating systems of special construction in Division 13 Sections.
- D. Miscellaneous Elements: Do not cut and patch the following elements or related components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.
 - 1. Water, moisture, or vapor barriers.
 - Membranes and flashings.
 - Exterior curtain-wall construction.
 - 4. Equipment supports.
 - 5. Piping, ductwork, vessels, and equipment.
 - 6. Noise- and vibration-control elements and systems.
- E. Visual Requirements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch construction exposed on the exterior or in occupied spaces in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
 - 1. If possible, retain original Installer or fabricator to cut and patch exposed Work listed below. If it is impossible to engage original Installer or fabricator, engage another recognized, experienced, and specialized firm.
 - a. Processed concrete finishes.
 - b. Stonework and stone masonry.
 - c. Ornamental metal.
 - d. Matched-veneer woodwork.
 - e. Preformed metal panels.
 - f. Roofing.
 - g. Firestopping.
 - h. Window wall system.
 - i. Stucco and ornamental plaster.
 - j. Terrazzo.
 - k. Finished wood flooring.
 - I. Fluid-applied flooring.
 - m. Aggregate wall coating.
 - n. Wall covering.
 - o. Swimming pool finishes.
 - p. HVAC enclosures, cabinets, or covers.
 - q. Acoustical Ceilings
 - r. Carpeting
- F. Cutting and Patching Conference: Before proceeding, meet at Project site with parties involved in cutting and patching, including mechanical and electrical trades. Review areas of potential interference and conflict. Coordinate procedures and resolve potential conflicts before proceeding.

1.6 WARRANTY

- A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during cutting and patching operations, by methods and with materials so as not to void existing warranties.
 - 1. Existing Roof: The existing roof is a roof system which is still under warranty. Comply with the requirements stated in the "Quality Assurance" paragraph above.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Comply with requirements specified in other Sections of these Specifications.
- B. Existing Materials: Use materials identical to existing materials. For exposed surfaces, use materials that visually match existing adjacent surfaces to the fullest extent possible.
 - 1. If identical materials are unavailable or cannot be used, use materials that, when installed, will match the visual and functional performance of existing materials.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine surfaces to be cut and patched and conditions under which cutting and patching are to be performed.
 - 1. Compatibility: Before patching, verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
 - Proceed with installation only after unsafe or unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Temporary Support: Provide temporary support of Work to be cut.
- B. Protection: Protect existing construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- C. Adjoining Areas: Avoid interference with use of adjoining areas or interruption of free passage to adjoining areas.
- D. Existing Services: Where existing services are required to be removed, relocated, or abandoned, bypass such services before cutting to avoid interruption of services to occupied areas.

3.3 PERFORMANCE

- A. General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 - Cut existing construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

- B. Cutting: Cut existing construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 - In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots as small as possible, neatly to size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Existing Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 - 4. Excavating and Backfilling: Comply with requirements in applicable Division 2 Sections where required by cutting and patching operations.
 - 5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
 - 6. Proceed with patching after construction operations requiring cutting are complete.
- C. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other Work. Patch with durable seams that are as invisible as possible. Provide materials and comply with installation requirements specified in other Sections of these Specifications.
 - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate integrity of installation.
 - 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will eliminate evidence of patching and refinishing.
 - 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove existing floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 - a. Where patching occurs in a painted surface, apply primer and intermediate paint coats over the patch and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
 - 4. Ceilings: Patch, repair, or rehang existing ceilings as necessary to provide an evenplane surface of uniform appearance.
 - 5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition.

END OF SECTION

WARRANTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Specified Herein: Warranties and continuing services required to be provided by manufacturers of materials and systems where required for proper performance.
- B. The word "Guarantee" when appearing in any Contract Document or construction correspondence shall be defined as warranty in accordance with Article 9.4 of the General Conditions.

1.2 SUBMITTALS

- A. Submit warranties in accordance with Article 9.4 of the General Conditions as modified by Supplementary Conditions and additional requirements specified under the individual Trade Sections.
- B. Required types of warranties and additional services are scheduled and listed in the Trade Sections.
- C. In all cases where "Special Warranties" or "Service Contracts" are required, the request for approval of materials will be accepted by the Owner and the Architect on the understanding that manufacturer agrees to provide the specified warranty or other service unless stated otherwise in the request.
- D. The Owner will not be bound to accept any limitations or variations from the specified warranty that was not filed with the request for acceptance and accepted prior to purchase of materials.
- E. Warranties shall be submitted prior to request for payment for 100% completion in each case, shall acknowledge the responsibilities defined under Supplementary Conditions and shall include:
 - Manufacturer's warranty that all materials comply with its published standards, comply with the requirements of the Specifications and where specified, are adequate for the proposed use.
 - 2. Subcontractor's warranty that all workmanship complies with the requirements of the Specifications and of the manufacturer
 - 3. Contractor's warranty covering the entire work and accepting responsibility for all limitations imposed by the manufacturer or sub- contractor except where such limitations have been previously accepted by the Architect.
 - 4. Certification and verification of previously submitted information including statement of all limitations, required maintenance and similar conditions of the warranty.

1.3 STANDARD WARRANTIES

- A. A standard warranty is a warranty whose terms are essentially the same as normally offered by the manufacturer of standard with the industry.
- B. General Conditions require that standard warranties apply as a minimum requirement notwithstanding the fact that submittal of a copy of the warranty is not required.

- C. Unless otherwise specified a standard warranty shall be for a period on one (1) year from Date of Substantial Completion.
- D. Contractor shall obtain and furnish to the Owner from each manufacturer of materials or equipment incorporated into the Work a warranty at least as favorable to Owner as that customarily given by such manufacturer to others. Contractor shall inform itself as to any conditions precedent to the effectiveness of each manufacturer's warranty and comply with all such conditions (or obtain waivers thereof from the manufacturer) so that such warranty shall be fully effective. If any event occurs which might invalidate any manufacturer's warranty, Contractor shall promptly notify the Owner and the Architect.
- E. All warranty periods shall commence on the Date of Substantial Completion except that, if it is discovered after said date that certain work or materials were not in fact in conformance with the requirements of the Contract Documents, the applicable warranty period shall recommence from the completion of the repair or replacement of such Work to make it so conform.
- F. The fact that a manufacturer's warranty differs in its terms from those of the Contractor or any Subcontractor, the acceptance by the Owner of any warranty of a manufacturer or Subcontractor, or the fact that the Owner has claimed initially on such warranty, shall not in any way release Contractor from his warranty obligations under the Contract.

1.4 SPECIAL WARRANTIES

- A. A special warranty is one whose terms, in addition to the standard coverage offered by the manufacturer, contain other special provisions, including:
 - 1. Acknowledgment of specified list of items that shall be specifically noted as being covered by the warranty.
 - 2. Acknowledgment of specific conditions for use or exposure.
 - 3. Extension of warranty to waive standard exceptions or to extend limits including time.
 - 4. Requirements for specific performance by other trades including method of separation and protection from, or assurance of compatibility with, adjacent materials.
 - 5. Assemblies and systems that may include products of other manufacturers.
 - 6. Conditions where certain performance criteria are specified and must be either acknowledged or actual limits are required to be determined by performance testing subject to Owner's review and acceptance.
 - Conditions where manufacturer's continuing involvement such as maintenance or advisory service is required.
- B. Maintenance Service During Warranty Period:
 - 1. Reference to routine maintenance required to be performed by the Owner during the warranty period shall be listed in the original submittal of proposed warranty.
 - All other administration and maintenance service required during the warranty period, including installation of items repaired or replaced under the terms of the warranty shall be included in the original Contract.

1.5 SERVICE CONTRACTS

- A. Required types of Service Contract Proposals are scheduled under Schedule of Required Submittals and are listed in the Trade Sections.
- B. Where specified, the Subcontractor or Manufacturer originally supplying services and skills required for proper maintenance and agreeing to maintain availability of replacement parts and materials.
- C. The Service Contract is in addition to, and independent of, the Warranty and shall not act to either extend the Warranty or to reduce the Contractor's responsibilities thereunder.
- D. Unless otherwise specified or agreed, Service Contracts shall be written for a period of five (5) years starting with the termination of similar services included under the warranty and shall include cancellation privilege annually when exercised at least 60 days prior to anniversary date.

E. The Contractor shall:

- Prior to submittal of Manufacturer of Subcontractor for approval, verify that specified service is available and will be offered.
- 2. Secure from the Manufacturer of Subcontractor a bona fide proposal to perform the specified services.
- 3. When so directed, assist the Architect in obtaining proposals for the performance of the specified services by other competent parties.

1.6 ADVISORY AND INSPECTION SERVICE

- A. Advisory and Inspection Service consists of:
 - Periodic inspection on a regular scheduled basis. Include schedule of proposed inspections in the agreement.
 - 2. All necessary information, including special training, where required to adequately instruct Owner's maintenance personnel in preventative maintenance procedures, and periodic inspection to verify that such procedures are adequate.
 - 3. Providing recommendations for additional preventative maintenance repairs and treatments. If such maintenance work is recommended:
 - a. Obtain or submit price quotations for recommended work.
 - b. When so instructed by the Owner, make all necessary arrangements for the performance of the Work.

B. Parts and Materials Agreement:

- Where standard commercially available parts of materials are suitable for maintenance or repair, inform Owner concerning trade name or description and location where they may be obtained.
- Where parts or materials are not readily available maintain replacement stocks at a location as required to prevent undue delay in repairs or loss of use of equipment pending delivery.

1.7 MAINTENANCE SERVICE

- A. A Maintenance Service Contract is an agreement that in addition to Advisory and Inspection Service, the Manufacturer will provide, or otherwise make available through his agent, a regular maintenance service program scheduled during normal working hours.
- B. Proposals shall schedule proposed times for servicing and list the services to be performed.
- C. Maintenance service of equipment shall be performed solely by the original Equipment Contractor and shall not be assigned or transferred to any agent or subcontractor without the approval of the Owner.

D. Repairs:

- 1. Permanent repairs shall be started within seven (7) days after notification by the Owner.
- In the event that emergency and permanent repairs are not started within the specified time limits, or if the work is stopped without the Owner's consent, the Owner shall have the same options to have repairs performed by others as specified under Warranties without invalidating this agreement.
- E. Equipment maintenance shall include systematic examinations, and adjustments and lubrication of all equipment. The Equipment Maintenance Contractor shall repair and replace electrical and mechanical parts whenever required using only genuine standard parts recommended or produced by the manufacturer of the equipment.
- F. Addition work when so directed by the Owner shall be included under the work of the Maintenance Contract and the Contractor shall be reimbursed at the then prevailing rate for the cost of materials, labor and services. Such additional work shall include:
 - 1. Repairs or replacement required as a result of negligence, abuse, or other actions contrary to the Equipment Contractor's operating instructions.
 - Improvement or additional equipment required by the Owner, Insurance Companies, or Governmental Authorities.
 - 3. Except for emergency service, the additional cost for overtime work based on the difference between regular and overtime labor when the Owner requests that such work be performed outside of regular working and so authorized in writing.
- G. Additional requirements for specific maintenance contracts are specified in the various Trade Sections.

1.8 CERTIFICATION

- A. Product Certification: See Division 1.
- B. Workmanship Certification is a statement by the applicator or installer that all materials and workmanship in connection with the system have been furnished and installed in complete conformance with Contract Documents, and with the manufacturer's specifications and requirements for the particular type of use specified.
- C. A product certification where specified as a requirement shall be in a form similar to the following:

"We, the (Manufacturing Company), certify that the complete system as detailed and specified can be installed and will perform in accordance with the requirements of the specifications and

the ASTM Standards referenced therein for the guarantee period of one year or such longer period as may be negotiated between the Owner and the (Manufacturing Company).

Upon completion of the Project we will inspect the work and certify to the Owner that the system as installed is in accordance with the Manufacturer's requirements or indicated in writing what remedial action is necessary in order that it does so conform."

END OF SECTION

ELECTRONIC PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Specified Herein: General Requirements for preparation and submittal of Project Record Documents.

1.2 DEFINITIONS

- A. Record Documents: Copies of the Contract Documents, Shop Drawings, Product Data and Samples maintained at the site for purpose of recording changes and other project information.
- B. Maintenance and Parts Manuals: Annotated PDF file format Brochures, instructions, parts lists and similar documents, published by manufacturers and suppliers of materials and equipment for purpose of providing information necessary to maintenance, repair and replacement.
- C. "As-Built" Drawings: Except for "as-built" corrections to the Shop Drawings the only record of architectural as-built conditions required will be clean copy of the Contractor's notations on the Record Drawings in Annotated PDF file format, unless otherwise specified.
- D. "As-Built" drawings for Mechanical, Electrical and Life Safety or Security Systems shall be fully dimensioned and detailed drawings, in Annotated PDF file format, showing all systems as they exist at the completion of Work.

1.3 SCHEDULES

- A. Prepare schedule listing required Record Drawings and Maintenance Manual submittals in accordance with "Submittals" Section of this Division 01.
- B. Keep schedule up to date listing record drawings and other documents as they are received from Manufacturers, Suppliers and Subcontractors.
- C. Hold all such material until completion of the project and submit when directed.

1.4 DRAWINGS AND SPECIFICATIONS AT THE SITE

- A. Each Contractor shall maintain at the site and available for reference by the Owner and the Architect one copy of all Drawings, Specifications, Addenda, approved Shop Drawings, Change Orders and other Modifications applicable to their portion of the Work, in good order and marked to record all changes made during construction.
- B. The Drawings, marked to record all changes made during construction, shall be delivered to the Owner upon completion of the Work in Annotated PDF file format.
- C. Record Documents: At the date of Final Completion and as condition precedent to Final Payment, each Contractor shall furnish the following documents to the Owner:

- Record Drawings in PDF file format showing the field changes affecting the general construction, mechanical, electrical, and all other Work, and indicating the Work as actually installed in the building.
 - a. These shall consist of carefully drawn markings on a set of black and white prints of the Construction Documents obtained especially for the purpose unless otherwise specified. The prints can be scanned into a PDF file when project is completed or the contractor can keep a Annotated PDF file on site.
 - b. The Contractor shall maintain at the job site one set of Construction Documents and indicate thereon each field change as it occurs.
- 2. A neatly arranged searchable PDF file containing the wiring and control diagrams, operating and maintenance instructions, cuts of all mechanical and electrical equipment and fixtures, as installed including catalogues or parts lists from the prime manufacturer. Said lists shall not be based on local dealer stock number systems.

1.5 RECORD DRAWINGS

- A. Record Drawings are required to establish the location of concealed work deviations from details or dimensions indicated on the construction drawings. Where location or dimensions of portions of the work is indicated by note or line drawings or otherwise indicated to be at the option of the Contractor, the final determination of such options shall be indicated in the Record Drawings.
- B. Record Drawings are required for information only but are intended to provide complete information for as-built drawings.
- C. Final PDF file record copy of all Shop Drawings shall be submitted showing all corrections made and also indicating all field changes or other variations from the details as originally reviewed by the Contractor and the Architect.

1.6 OPERATING AND MAINTENANCE MANUALS

- A. Prior to completion of work in this Contract, each Contractor shall submit for review by the Architect searchable PDF file of manufacturer's catalog data covering all fixtures, equipment and finish materials incorporated into the project. Manufacturer's catalog data shall include full identification of the equipment or fixture capacities, current characteristics, dimensions, and identification of all replacement parts. Operating instructions for all installed equipment, including supplier's names and telephone numbers shall be placed on or lettered on the front page of each catalog or manual.
- B. Maintenance procedure descriptions shall be submitted for all materials requiring special treatments or continued maintenance work and for all assemblies, which may require parts replacement during the life of the installation. Manuals shall indicate recommended schedule for routine service and shall provide complete instructions for performing such service.
- C. Manuals and catalogs shall be searchable PDF format. Each item shall be tab and shall have an index. All material shall be grouped together by specification number.
- D. Contractor shall arrange and provide for the services of factory representatives or other authorized qualified specialists to provide operating and maintenance instruction sessions

directly with Owner's related operating and maintenance personnel for the systems, equipment and materials involved.

- E. These requirements are in addition to other similar requirements stated elsewhere in the Contract Documents including those of "Warranties" Section of Division 01.
- F. Equipment Operation manuals and operating instructions for each item of mechanical and electrical equipment:
 - Operation and Maintenance Charts: Searchable PDF and one (1) hard copy of an operating and maintenance instruction chart which will incorporate applicable comprehensive descriptive instructions, lay-outs, diagrams or any other information that will necessary and/or of value to the operating and maintenance personnel. Hard copy of the charts shall be framed and glazed and mounted at a designated location, and the other three sets shall be included in the operation and maintenance manuals.
 - 2. Operation and Maintenance Manuals: Searchable PDF file of an operation and maintenance manual which shall contain complete instructions for overall operation and maintenance of the facility and its component parts. The manual shall also contain the operating and maintenance instruction charts as specified.

END OF SECTION

SELECTIVE SITE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Demolition and removal of selected portions of building or structure.

1.3 DEFINITIONS

- A. Remove: Detach items from existing construction and legally dispose of them off-site.
- B. Existing to Remain: Existing items of construction that are not to be removed.

1.4 SUBMITTALS

- A. Schedule of Selective Demolition Activities: Indicate the following:
 - 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's on-site operations are uninterrupted.
 - Interruption of utility services. Indicate how long utility services will be interrupted.
 - 3. Coordination for shutoff, capping, and continuation of utility services.
 - Locations of proposed dust- and noise-control temporary partitions and means of egress.
 - 5. Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work.
 - 6. Means of protection for items to remain and items in path of waste removal from building.
- B. Predemolition Photographs: Show existing conditions of adjoining construction and site improvements, including finish surfaces that might be misconstrued as damage caused by selective demolition operations.
- C. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- D. Standards: Comply with ANSI A10.6 and NFPA 241.

1.5 PROJECT CONDITIONS

- A. Owner will occupy portions of building immediately adjacent to selective demolition area.
 - Conduct selective demolition so Owner's operations will not be disrupted.
- B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
- C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.
- D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 - 1. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Owner will remove hazardous materials under a separate contract.
- E. Storage or sale of removed items or materials on-site is not permitted.
- F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that utilities have been disconnected and capped.
- B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
- C. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.
- D. Survey of Existing Conditions: Record existing conditions by use of preconstruction photographs.
- E. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems: Maintain services/systems indicated to remain and protect them against damage during selective demolition operations.

3.3 PREPARATION

- A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
- B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 - 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 - 2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.
 - 3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
- C. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.

3.4 SELECTIVE DEMOLITION, GENERAL

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 - Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 - 3. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of
 - 4. hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
 - 5. Maintain adequate ventilation when using cutting torches.
 - 6. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
 - 7. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.

- 8. Dispose of demolished items and materials promptly.
- B. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition.

3.2 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

- A. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, then remove masonry between saw cuts.
- B. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.

3.3 DISPOSAL OF DEMOLISHED MATERIALS

- A. General: Except for items or materials indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.
 - 1. Do not allow demolished materials to accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
- B. Burning: Do not burn demolished materials.
- C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.4 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION

SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Demolition and removal of selected portions of a building or structure.
 - 2. Demolition and removal of selected site elements.
 - 3. Repair procedures for selective demolition operations.
- B. Related Sections include the following:
 - 1. Division 1 Section "Cutting and Patching" for cutting and patching procedures for selective demolition operations.
 - 2. Division 23 Sections for demolishing, cutting, patching, or relocating mechanical items.
 - 3. Division 26 Sections for demolishing, cutting, patching, or relocating electrical items.

1.3 DEFINITIONS

- A. Remove: Detach items from existing construction and legally dispose of them off-site, unless indicated to be removed and salvaged or removed and reinstalled.
- B. Remove and Salvage: Detach items from existing construction and deliver them to Owner.
- C. Remove and Reinstall: Detach items from existing construction, prepare them for reuse, and reinstall them where indicated.
- D. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.4 MATERIALS OWNERSHIP

- A. Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, demolished materials shall become Contractor's property and shall be removed from Project site.
- B. Historic items, relics, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, antiques, and other items of interest or value to Owner that may be encountered during selective demolition remain Owner's property. Carefully remove and salvage each item or object in a manner to prevent damage and deliver promptly to Owner.

1.5 SUBMITTALS

- A. Qualification Data: For firms and persons specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include lists of completed projects with project names and addresses, names and addresses of architects and owners, and other information specified.
- B. Proposed Dust-Control and Noise-Control Measures: Submit statement or drawing that indicates the measures proposed for use, proposed locations, and proposed time frame for their operation. Identify options if proposed measures are later determined to be inadequate.
- C. Schedule of Selective Demolition Activities: Indicate the following:
 - 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's on-site operations are uninterrupted.
 - 2. Interruption of utility services.
 - 3. Coordination for shutoff, capping, and continuation of utility services.
 - 4. Use of elevator and stairs.
 - 5. Locations of temporary partitions and means of egress.
 - 6. Coordination of Owner's continuing occupancy of portions of existing building and of Owner's partial occupancy of completed Work.
- D. Inventory: After selective demolition is complete, submit a list of items that have been removed and salvaged.
- E. Predemolition Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by selective demolition operations. Submit before Work begins.
- F. Landfill Records: Indicate receipt and acceptance of hazardous wastes by a landfill facility licensed to accept hazardous wastes.
- G. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.

1.6 QUALITY ASSURANCE

- A. Demolition Firm Qualifications: An experienced firm that has specialized in demolition work similar in material and extent to that indicated for this Project.
- B. Refrigerant Recovery Technician Qualifications: Certified by EPA-approved certification program.
- C. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- D. Standards: Comply with ANSI A10.6 and NFPA 241.

- E. Predemolition Conference: Conduct conference at Project site to comply with requirements in Division 1. Review methods and procedures related to selective demolition including, but not limited to, the following:
 - 1. Inspect and discuss condition of construction to be selectively demolished.
 - 2. Review structural load limitations of existing structure.
 - 3. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.

1.7 PROJECT CONDITIONS

- A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted. Provide not less than 72 hours' notice to Owner of activities that will affect Owner's operations.
- B. Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities.
 - 1. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from authorities having jurisdiction.
- C. Owner assumes no responsibility for condition of areas to be selectively demolished.
 - 1. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
- D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 - 1. Hazardous materials will be removed by Owner before start of the Work.
 - 2. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
- E. Storage or sale of removed items or materials on-site will not be permitted.
- F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 - Maintain fire-protection facilities in service during selective demolition operations.

1.8 WARRANTY

- A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties.
 - 1. If possible, retain original Installer or fabricator to patch the exposed Work listed below that is damaged during selective demolition. If it is impossible to engage original

Installer or fabricator, engage another recognized experienced and specialized firm.

- a. Ornamental metal.
- b. Preformed metal panels.
- c. Roofing.
- d. Firestopping.
- e. Window wall system.
- f. Terrazzo.
- g. Finished wood flooring.
- h. Swimming pool finishes.
- i. HVAC enclosures, cabinets, or covers.

PART 2 - PRODUCTS

2.1 REPAIR MATERIALS

- A. Use repair materials identical to existing materials.
 - If identical materials are unavailable or cannot be used for exposed surfaces, use materials that visually match existing adjacent surfaces to the fullest extent possible.
 - Use materials whose installed performance equals or surpasses that of existing materials.
- B. Comply with material and installation requirements specified in individual Specification Sections.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that utilities have been disconnected and capped.
- B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
- C. Inventory and record the condition of items to be removed and reinstalled and items to be removed and salvaged.
- D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.
- E. Engage a professional engineer to survey condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective demolition operations.
- F. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities.

3.2 UTILITY SERVICES

A. Existing Utilities: Maintain services indicated to remain and protect them against damage during selective demolition operations.

- B. Do not interrupt existing utilities serving occupied or operating facilities unless authorized in writing by Owner and authorities having jurisdiction. Provide temporary services during interruptions to existing utilities, as acceptable to Owner and to authorities having jurisdiction.
 - 1. Provide at least 72 hours' notice to Owner if shutdown of service is required during changeover.
- C. Utility Requirements: Locate, identify, disconnect, and seal or cap off indicated utilities serving areas to be selectively demolished.
 - 1. Owner will arrange to shut off indicated utilities when requested by Contractor.
 - 2. Arrange to shut off indicated utilities with utility companies.
 - 3. If utility services are required to be removed, relocated, or abandoned, before proceeding with selective demolition provide temporary utilities that bypass area of selective demolition and that maintain continuity of service to other parts of building.
 - 4. Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit after bypassing.
 - 5. Refer to Divisions 23 and 26 for other applicable requirements and limitations.

3.3 PREPARATION

- A. Dangerous Materials: Drain, purge, or otherwise remove, collect, and dispose of chemicals, gases, explosives, acids, flammables, or other dangerous materials before proceeding with selective demolition operations.
- B. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - Do not close or obstruct streets, walks, walkways, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by governing regulations.
 - 2. Erect temporary protection, such as walks, fences, railings, canopies, and covered passageways, where required by authorities having jurisdiction.
 - 3. Protect existing site improvements, appurtenances, and landscaping to remain.
 - 4. Erect a plainly visible fence around drip line of individual trees or around perimeter drip line of groups of trees to remain.
- C. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 - 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 - 2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces and new construction, to prevent water leakage and damage to structure and interior areas.

- 3. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.
- 4. Cover and protect furniture, furnishings, and equipment that have not been removed.
- D. Temporary Enclosures: Provide temporary enclosures for protection of existing building and construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities. Provide temporary weathertight enclosure for building exterior.
 - 1. Where heating or cooling is needed and permanent enclosure is not complete, provide insulated temporary enclosures. Coordinate enclosure with ventilating and material drying or curing requirements to avoid dangerous conditions and effects.
- E. Temporary Partitions: Erect and maintain dustproof partitions and temporary enclosures to limit dust and dirt migration and to separate areas from fumes and noise.
- F. Temporary Shoring: Provide and maintain interior and exterior shoring, bracing, or structural support to preserve stability and prevent movement, settlement, or collapse of construction to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.
 - 1. Strengthen or add new supports when required during progress of selective demolition.

3.4 POLLUTION CONTROLS

- A. Dust Control: Use water mist, temporary enclosures, and other suitable methods to limit spread of dust and dirt. Comply with governing environmental-protection regulations.
 - 1. Do not use water when it may damage existing construction or create hazardous or objectionable conditions, such as ice, flooding, and pollution.
 - 2. Wet mop floors to eliminate trackable dirt and wipe down walls and doors of demolition enclosure. Vacuum carpeted areas.
- B. Disposal: Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 - 1. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
- C. Cleaning: Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

3.5 SELECTIVE DEMOLITION

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - Proceed with selective demolition systematically, from higher to lower level. Complete selective demolition operations above each floor or tier before disturbing supporting members on the next lower level.

- a. Remove debris from elevated portions by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
- Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
- 3. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
- 4. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain portable fire-suppression devices during flame-cutting operations.
- 5. Maintain adequate ventilation when using cutting torches.
- 6. Remove decayed, vermin-infested, or otherwise dangerous or unsuitable materials and promptly dispose of off-site.
- 7. Remove structural framing members and lower to ground by method suitable to avoid free fall and to prevent ground impact or dust generation.
- 8. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
- 9. Dispose of demolished items and materials promptly.
- 10. Return elements of construction and surfaces that are to remain to condition existing before selective demolition operations began.
- 11. Explosives: Use of explosives is not permitted.
- B. Existing Facilities: Comply with building manager's requirements for using and protecting elevators, stairs, walkways, loading docks, building entries, and other building facilities during selective demolition operations.
- C. Removed and Salvaged Items: Comply with the following:
 - 1. Clean salvaged items.
 - 2. Pack or crate items after cleaning. Identify contents of containers.
 - 3. Store items in a secure area until delivery to Owner.
 - 4. Transport items to Owner's storage area on-site.
 - Protect items from damage during transport and storage.
- D. Removed and Reinstalled Items: Comply with the following:
 - 1. Clean and repair items to functional condition adequate for intended reuse. Paint equipment to match new equipment.

- 2. Pack or crate items after cleaning and repairing. Identify contents of containers.
- 3. Protect items from damage during transport and storage.
- 4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.
- E. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.
- F. Concrete: Demolish in small sections. Cut concrete to a depth of at least 3/4 inch (19 mm) at junctures with construction to remain, using power-driven saw. Dislodge concrete from reinforcement at perimeter of areas being demolished, cut reinforcement, and then remove remainder of concrete indicated for selective demolition. Neatly trim openings to dimensions indicated.
- G. Structural Steel: Dismantle field connections without bending or damaging steel members. Do not use flame-cutting torches unless otherwise authorized by Architect.
 - 1. Transport steel trusses and joists as whole units without dismantling them further.
- H. Below-Grade Construction: Demolish in sections. Remove below-grade construction, including basements, foundation walls and footings, completely to at least 12 inches below grade unless otherwise indicated on Drawings.
- I. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, then remove masonry between saw cuts.
- J. Concrete Slabs-on-Grade: Saw-cut perimeter of area to be demolished, then break up and remove.
- K. Building Components: Remove metal gratings, metal ladders, doors, windows, door hardware, cabinets, mirrors, chalkboards and marker boards, tackboards, toilet accessories, plumbing fixtures, and light fixtures, as whole units, intact and undamaged.
- L. Elevators: Remove as whole units as much as practical.
- M. Equipment: Disconnect equipment at nearest fitting connection to services, complete with service valves. Remove as whole units, complete with controls.
- N. Air-Conditioning Equipment: Remove equipment without releasing refrigerants.
- O. Carpet and Pad: Remove in large pieces and roll tightly after removing demolition debris, trash, adhesive, and tack strips.
- P. Resilient Floor Coverings: Remove floor coverings and adhesive according to recommendations in RFCI-WP and its Addendum.
 - 1. Remove residual adhesive and prepare substrate for new floor coverings by one of the methods recommended by RFCI.
- Q. Roofing: Remove no more existing roofing than can be covered in one day by new roofing. Refer to applicable Division 7 Section for new roofing requirements.

- R. Existing Utilities: Unless otherwise indicated on Drawings, demolish existing utilities and below-grade utility structures that are within 5 feet (1.5 m) outside of footprint indicated for new construction. Abandon utilities outside this area.
 - 1. Fill abandoned utility structures with satisfactory soil materials according to backfill requirements in Division 2 Section "Earthwork."
 - 2. Piping: Disconnect piping at unions, flanges, valves, or fittings.
 - Wiring Ducts: Disassemble into unit lengths and remove plug-in and disconnecting devices.

3.6 PATCHING AND REPAIRS

- A. General: Promptly repair damage to adjacent construction caused by selective demolition operations.
- B. Patching: Comply with Division 1 Section "Cutting and Patching."

3.7 DISPOSAL OF DEMOLISHED MATERIALS

- A. General: Promptly dispose of demolished materials. Do not allow demolished materials to accumulate on-site.
- B. Burning: Do not burn demolished materials.
- C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.8 SELECTIVE DEMOLITION SCHEDULE

- A. Existing Items and Construction to Be Removed: As indicated on Drawings.
- B. Existing Items to Be Removed and Salvaged: As indicated on Drawings.
- C. Existing Items to Be Removed and Reinstalled: As indicated on Drawings.
- D. Existing Items to Remain: As indicated on Drawings.

END OF SECTION

CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section specifies cast-in place concrete, including formwork, reinforcing, mix design, placement procedures, and finishes.
- B. Cast-in-place concrete includes the following:
 - Foundations and footings.

1.3 SUBMITTALS

- A. General: Submit the following according to Conditions of the Contract and Division 1 Specification Sections.
- B. Product data for proprietary materials and items, including reinforcement and admixtures, and others if requested by Architect.
- C. Shop drawings for reinforcement detailing fabricating, bending, and placing concrete reinforcement. Comply with ACI 315 "Manual of Standard Practice for Detailing Reinforced Concrete Structures" showing bar schedules, stirrup spacing, bent bar diagrams, and arrangement of concrete reinforcement. Include special reinforcing required for openings through concrete structures.
- D. Laboratory test reports for concrete materials and mix design test.

1.4 QUALITY ASSURANCE

- A. Codes and Standards: Comply with provisions of the following codes, specifications, and standards, except where more stringent requirements are shown or specified:
 - 1. American Concrete Institute (ACI) 301, "Specifications for Structural Concrete for Buildings."
 - 2. ACI 318, "Building Code Requirements for Reinforced Concrete."
 - Concrete Reinforcing Steel Institute (CRSI) "Manual of Standard Practice."
 - 4. ACI 117, "Standard Specifications for Tolerances for Concrete Construction and Materials".
- B. Materials and installed work may require testing and retesting at any time during progress of Work. Tests, including retesting of rejected materials for installed Work, shall be done at Contractor's expense.

- C. Preinstallation Conference: Conduct conference at Project site to comply with requirements of Division 1 and the following:
 - 1. At least 35 days prior to submitting design mixes, conduct a meeting to review detailed requirements for preparing concrete design mixes and to determine procedures for satisfactory concrete operations. Review requirements for submittals, status of coordinating work, and availability of materials. Establish preliminary work progress schedule and procedures for materials inspection, testing, and certifications. Require representatives of each entity directly concerned with cast-in-place concrete to attend conference, including, but not limited to, the following:
 - a. Contractor's superintendent.
 - b. Agency responsible for concrete design mixes.
 - c. Agency responsible for field quality control.
 - d. Ready-mix concrete producer.
 - e. Concrete subcontractor.
 - f. Primary admixture manufacturers.

PART 2 - PRODUCTS

2.1 FORM MATERIALS

- A. Forms for Exposed Finish Concrete: Plywood, metal, metal-framed plywood faced, or other acceptable panel-type materials to provide continuous, straight, smooth, exposed surfaces. Furnish in largest practicable sizes to minimize number of joints and to conform to joint system shown on drawings.
- B. Forms for Unexposed Finish Concrete: Plywood, lumber, metal, or another acceptable material. Provide lumber dressed on at least two edges and one side for tight fit.
- C. Form Release Agent: Provide commercial formulation form release agent with a maximum of 350 mg/l volatile organic compounds (VOCs) that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.
- D. Form Ties: Factory-fabricated, adjustable-length, removable or snap-off metal form ties designed to prevent form deflection and to prevent spalling of concrete upon removal. Provide units that will leave no metal closer than 1-1/2 inches to the plane of the exposed concrete surface.
 - 1. Provide ties that, when removed, will leave holes not larger than 1 inch in diameter in the concrete surface.

2.2 REINFORCING MATERIALS

- A. Reinforcing Bars: ASTM A 615, Grade 60, deformed.
- B. Welded Wire Fabric: ASTM A 185, welded steel wire fabric.
- C. Supports for Reinforcement: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire fabric in place. Use wire bar-type supports complying with CRSI specifications.
 - 1. For slabs-on-grade, use supports with sand plates or horizontal runners where base material will not support chair legs.

2.3 CONCRETE MATERIALS

- A. Portland Cement: ASTM C 150, Type I.
 - 1. Use one brand of cement throughout Project unless otherwise acceptable to Architect.
- B. Fly Ash: ASTM C 618, Type C.
- C. Normal-Weight Aggregates: ASTM C 33 and as specified. Provide aggregates from a single source for exposed concrete.
 - 1. For exposed exterior surfaces, do not use fine or coarse aggregates that contain substances that cause spalling.
- D. Water: Potable.
- E. Admixtures, General: Provide concrete admixtures that contain not more than 0.1 percent chloride ions.
- F. Air-Entraining Admixture: ASTM C 260, certified by manufacturer to be compatible with other required admixtures.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Air-Mix or Perma-Air, Euclid Chemical Co.
 - b. Darex AEA or Daravair, W.R. Grace & Co.
 - c. MB-VR or Micro-Air, Master Builders, Inc.
 - d. Sealtight AEA, W.R. Meadows, Inc.
- G. Water-Reducing Admixture: ASTM C 494, Type A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Eucon WR-91, Euclid Chemical Co.
 - b. Daraccm-55 W.R. Grace & Co.
 - c. Pozzolith Normal or Polyheed, Master Builders, Inc.
- H. High-Range Water-Reducing Admixture: ASTM C 494, Type F or Type G.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Eucon MR, Euclid Chemical Co.
 - b. WRDA 19 or Daracem, W.R. Grace & Co.
 - c. Rheobuild or Polyheed, Master Builders, Inc.
- I. Water-Reducing, Accelerating Admixture: ASTM C 494, Type E.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Accelquard 80, Euclid Chemical Co.
 - b. Daraset, W.R. Grace & Co.
 - c. Pozzutec 20, Master Builders, Inc.

- J. Water-Reducing, Retarding Admixture: ASTM C 494, Type D.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Eucon Retarder 75, Euclid Chemical Co.
 - b. Daratard-17, W.R. Grace & Co.
 - c. Pozzolith R, Master Builders, Inc.

2.4 RELATED MATERIALS

- A. Vapor Retarder: Provide vapor retarder that is resistant to deterioration when tested according to ASTM E 154, as follows:
 - 1. Polyethylene sheet not less than 8 mils thick.
- B. Moisture-Retaining Cover: One of the following, complying with ASTM C 171.
 - 1. Waterproof paper.
 - 2. Polyethylene film.
 - 3. Polyethylene-coated burlap.
- C. Concrete Sealer: Sealer for interior exposed concrete slabs. Prior to application of sealer, cure concrete according to manufacturer's recommendations.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Day-Chem Sure Hard (J17), Dayton Superior.
 - b. Intraseal, Conspec Marketing and Mfg. Co.
- D. Bonding Agent: Polyvinyl acetate or acrylic base.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Polyvinyl Acetate (Interior Only):
 - 1) Superior Concrete Bonder, (J-41) Dayton Superior Corp.
 - 2) Euco Weld, Euclid Chemical Co.
 - 3) Everweld, L&M Construction Chemicals, Inc.
 - b. Acrylic or Styrene Butadiene:
 - 1) Day-Chem Ad Bond, Dayton Superior Corp.
 - 2) SBR Latex, Euclid Chemical Co.
 - 3) Daraweld C, W.R. Grace & Co.
 - 4) Everbond, L&M Construction Chemicals, Inc.
 - 5) Acryl-Set, Master Builders Inc.
- E. Epoxy Adhesive: ASTM C 881, two-component material suitable for use on dry or damp surfaces. Provide material type, grade, and class to suit Project requirements.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Resi-Bond (J-58), Dayton Superior.
 - b. Euco Epoxy System #452 or #620, Euclid Chemical Co.

- c. Epabond, L&M Construction Chemicals, Inc.
- d. Concresive Standard Liquid, Master Builders, Inc.
- e. Rezi-Weld 1000, W.R. Meadows, Inc.
- F. Underlayment Compound: Free-flowing, self-leveling, pumpable, cement-based compound for applications from 1 inch thick to feathered edges.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. K-15, Ardex, Inc.
 - b. Levelayer I L&M Construction Chemicals, Inc.
 - c. Underlayment 110, Master Builders, Inc.
- G. Waterstops: Provide a flexible butyl rubber and swellable clay waterproofing compound at all construction joints in concrete walls below grade.
 - 1. Manufacturers: Subject to compliance with requirements, provide one of the following:
 - a. Waterstop RX-101; Cetco.
 - b. Swellstop Waterstop; Greenstreak.

2.5 PROPORTIONING AND DESIGNING MIXES

- A. Prepare design mixes for each type and strength of concrete by either laboratory trial batch or field experience methods as specified in ACI 301. For the trial batch method, use an independent testing agency acceptable to Architect for preparing and reporting proposed mix designs.
 - 1. Do not use the same testing agency for field quality control testing.
 - 2. Limit use of fly ash to not exceed 20 percent of cement content by weight.
- B. Submit written reports to Architect of each proposed mix for each class of concrete at least 15 days prior to start of Work. Do not begin concrete production until proposed mix designs have been reviewed by Architect.
- C. Design mixes to provide normal weight concrete with the following properties as indicated on drawings and schedules:
 - 1. 9000-psi, 28-day compressive strength; water-cement ratio, 0.44 (air-entrained).
- D. Slump Limits: Proportion and design mixes to result in concrete slump at point of placement as follows:
 - 1. Ramps, slabs, and sloping surfaces: Not more than 3 inches.
 - 2. Reinforced foundation systems: Not less than 2 inches and not more than 4 inches.
 - 3. Concrete containing high-range water-reducing admixture (superplasticizer): Not more than 8 inches after adding admixture to site-verified 2-to-4-inch slump concrete.
 - 4. Other concrete: Not more than 4 inches.
- E. Adjustment to Concrete Mixes: Mix design adjustments may be requested by Contractor when characteristics of materials, job conditions, weather, test results, or other circumstances

warrant, as accepted by Architect. Laboratory test data for revised mix design and strength results must be submitted to and accepted by Architect before using in Work.

2.6 ADMIXTURES

- A. Use water-reducing admixture or high-range water-reducing admixture (superplasticizer) in concrete, as required, for placement and workability.
- B. Use air-entraining admixture in exterior exposed concrete unless otherwise indicated. Add air-entraining admixture at manufacturer's prescribed rate to result in concrete at point of placement having total air content with a tolerance of plus or minus 1-1/2 percent within the following limits:
 - Concrete structures and slabs exposed to freezing and thawing, deicer chemicals, or hydraulic pressure:
 - a. 5.5 percent for 1-1/2-inch maximum aggregate.
 - b. 6.0 percent for 1-inch maximum aggregate.
 - c. 6.0 percent for 3/4-inch maximum aggregate.
 - d. 7.0 percent for 1/2-inch maximum aggregate.
 - 2. Other concrete not exposed to freezing, thawing, or hydraulic pressure, or to receive a surface hardener: 2 to 4 percent air.
- C. Use admixtures for water reduction and set accelerating or retarding in strict compliance with manufacturer's directions.

2.7 CONCRETE MIXING

- A. Ready-Mixed Concrete: Comply with requirements of ASTM C 94, and as specified.
 - 1. When air temperature is between 85 deg F (30 deg C) and 90 deg F (32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes, and when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.

PART 3- EXECUTION

3.1 GENERAL

A. Coordinate the installation of joint materials, vapor retarder/barrier, and other related materials with placement of forms and reinforcing steel.

3.2 FORMS

- A. General: Design, erect, support, brace, and maintain formwork to support vertical, lateral, static, and dynamic loads that might be applied until concrete structure can support such loads. Construct formwork so concrete members and structures are of correct size, shape, alignment, elevation, and position. Maintain formwork construction tolerances and surface irregularities complying with the following ACI 347 limits:
 - 1. Provide Class A tolerances for concrete surfaces exposed to view.
 - 2. Provide Class C tolerances for other concrete surfaces.

- B. Construct forms to sizes, shapes, lines, and dimensions shown and to obtain accurate alignment, location, grades, level, and plumb work in finished structures. Provide for openings, offsets, sinkages, keyways, recesses, moldings, rustications, reglets, chamfers, blocking, screeds, bulkheads, anchorages and inserts, and other features required in the Work. Use selected materials to obtain required finishes. Solidly butt joints and provide backup at joints to prevent cement paste from leaking.
- C. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush plates or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces where slope is too steep to place concrete with bottom forms only. Kerf wood inserts for forming keyways, reglets, recesses, and the like for easy removal.
- D. Provide temporary openings for clean-outs and inspections where interior area of formwork is inaccessible before and during concrete placement. Securely brace temporary openings and set tightly to forms to prevent losing concrete mortar. Locate temporary openings in forms at inconspicuous locations.
- E. Chamfer exposed corners and edges as indicated, using wood, metal, PVC, or rubber chamfer strips fabricated to produce uniform smooth lines and tight edge joints.
- F. Provisions for Other Trades: Provide openings in concrete formwork to accommodate work of other trades. Determine size and location of openings, recesses, and chases from trades providing such items. Accurately place and securely support items built into forms.
- G. Cleaning and Tightening: Thoroughly clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, or other debris just before placing concrete. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

3.3 VAPOR RETARDER/BARRIER INSTALLATION

- A. General: Place vapor retarder/barrier sheeting in position with longest dimension parallel with direction of pour.
- B. Lap joints 6 inches and seal with manufacturer's recommended mastic or pressure-sensitive tape.

3.4 PLACING REINFORCEMENT

- A. General: Comply with Concrete Reinforcing Steel Institute's recommended practice for "Placing Reinforcing Bars," for details and methods of reinforcement placement and supports and as specified.
 - 1. Avoiding cutting or puncturing vapor retarder/barrier during reinforcement placement and concreting operations. Repair damages before placing concrete.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other materials that reduce or destroy bond with concrete.
- C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcing by metal chairs, runners, bolsters, spacers, and hangers, as approved by Architect.
- D. Place reinforcement to maintain minimum coverages as indicated for concrete protection.

 Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during

- concrete placement operations. Set wire ties so ends are directed into concrete, not toward exposed concrete surfaces.
- E. Install welded wire fabric in lengths as long as practicable. Lap adjoining pieces at least one full mesh and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

3.5 JOINTS

- A. Construction Joints: Locate and install construction joints so they do not impair strength or appearance of the structure, as acceptable to Architect.
- B. Provide keyways at least 1-1/2 inches deep in construction joints slabs, Bulkheads designed and accepted for this purpose may be used for slabs.
- C. Use bonding agent on existing concrete surfaces that will be joined with fresh concrete.

3.6 INSTALLING EMBEDDED ITEMS

- A. General: Set and build into formwork anchorage devices and other embedded items required for other work that is attached to or supported by cast-in-place concrete. Use setting drawings, diagrams, instructions, and directions provided by suppliers of items to be attached.
- B. Forms for Slabs: Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and contours in finished surfaces. Provide and secure units to support screed strips using strike-off templates or compacting-type screeds.

3.7 PREPARING FORM SURFACES

- A. General: Coat contact surfaces of forms with an approved, nonresidual, low-VOC, form-coating compound before placing reinforcement.
- B. Do not allow excess form-coating material to accumulate in forms or come into contact with inplace concrete surfaces against which fresh concrete will be placed. Apply according to manufacturer's instructions.
 - 1. Coat steel forms with a nonstaining, rust-preventative material. Rust-stained steel formwork is not acceptable.

3.8 CONCRETE PLACEMENT

- A. Inspection: Before placing concrete, inspect and complete formwork installation, reinforcing steel, and items to be embedded or cast in. Notify other trades to permit installation of their work.
- B. General: Comply with ACI 304, "Guide for Measuring, Mixing, Transporting, and Placing Concrete," and as specified.
- C. Deposit concrete continuously or in layers of such thickness that no new concrete will be placed on concrete that has hardened sufficiently to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as specified. Deposit concrete to avoid segregation at its final location.

- D. Placing Concrete in Forms: Deposit concrete in forms in horizontal layers no deeper than 24 inches and in a manner to avoid inclined construction joints. Where placement consists of several layers, place each layer while preceding layer is still plastic to avoid cold joints.
 - Consolidate placed concrete by mechanical vibrating equipment supplemented by handspading, rodding, or tamping. Use equipment and procedures for consolidation of concrete complying with ACI 309.
 - 2. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations no farther than the visible effectiveness of the machine. Place vibrators to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to set. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mix to segregate.
- E. Cold-Weather Placement: Comply with provisions of ACI 306 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
- F. When air temperature has fallen to or is expected to fall below 40°F (4°C), uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50°F (10°C) and not more than 80°F (27°C) at point of placement.
 - 1. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 - 2. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise accepted in mix designs.
- G. Hot-Weather Placement: When hot weather conditions exist that would impair quality and strength of concrete, place concrete complying with ACI 305 and as specified.
 - 1. Cool ingredients before mixing to maintain concrete temperature at time of placement to below 90°F (32°C). Mixing water may be chilled or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - Cover reinforcing steel with water-soaked burlap if it becomes too hot, so that steel
 temperature will not exceed the ambient air temperature immediately before embedding
 in concrete.
 - 3. Fog spray forms, reinforcing steel, and subgrade just before placing concrete. Keep subgrade moisture uniform without puddles or dry areas.
 - 4. Use water-reducing retarding admixture when required by high temperatures, low humidity, or other adverse placing conditions, as acceptable to Architect.

3.9 FINISHING FORMED SURFACES

A. Rough-Formed Finish: Provide a rough-formed finish on formed concrete surfaces not exposed to view in the finished Work or concealed by other construction. This is the concrete surface having texture imparted by form-facing material used, with tie holes and defective areas repaired and patched, and fins and other projections exceeding 1/4 inch in height rubbed down or chipped off.

- B. Smooth-Formed Finish: Provide a smooth-formed finish on formed concrete surfaces exposed to view or to be covered with a coating material applied directly to concrete, or a covering material applied directly to concrete, such as waterproofing, dampproofing, veneer plaster, painting, or another similar system. This is an as-cast concrete surface obtained with selected form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch defective areas with fins and other projections completely removed and smoothed.
- C. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike-off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.10 MISCELLANEOUS CONCRETE ITEMS

- A. Filling In: Fill in holes and openings left in concrete structures for passage of work by other trades, unless otherwise shown or directed, after work of other trades is in place. Mix, place, and cure concrete as specified to blend with in-place construction. Provide other miscellaneous concrete filling shown or required to complete Work.
- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

3.11 CONCRETE CURING AND PROTECTION

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. In hot, dry, and windy weather protect concrete from rapid moisture loss before and during finishing operations with an evaporation-control material. Apply according to manufacturer's instructions after screeding and bull floating, but before power floating and troweling.
- B. Start initial curing as soon as free water has disappeared from concrete surface after placing and finishing. Weather permitting, keep continuously moist for not less than 7 days.
- C. Curing Methods: Cure concrete by moist curing, by moisture-retaining cover curing, or by combining these methods, as specified.
- D. Provide moisture curing by the following methods:
 - 1. Keep concrete surface continuously wet by covering with water.
 - 2. Use continuous water-fog spray.
 - 3. Cover concrete surface with specified absorptive cover, thoroughly saturate cover with water, and keep continuously wet. Place absorptive cover to provide coverage of concrete surfaces and edges, with a 4-inch lap over adjacent absorptive covers.
- E. Provide moisture-retaining cover curing as follows:
 - Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width with sides and ends lapped at least 3 inches and sealed by waterproof tape or adhesive. Immediately repair any holes or tears during curing period using cover material and waterproof tape.

- F. Curing Formed Surfaces: Cure formed concrete surfaces, by moist curing with forms in place for the full curing period or until forms are removed. If forms are removed, continue curing by methods specified above, as applicable.
- G. Curing Unformed Surfaces: Cure unformed surfaces, including slabs, floor topping, and other flat surfaces, by applying the appropriate curing method.
 - 1. Final cure concrete surfaces to receive finish flooring with a moisture-retaining cover, unless otherwise directed.

3.12 REMOVING FORMS

A. General: Formwork not supporting weight of concrete, such as sides of beams, walls, columns, and similar parts of the work, may be removed after cumulatively curing at not less than 50°F (10°C) for 24 hours after placing concrete, provided concrete is sufficiently hard to not be damaged by form-removal operations, and provided curing and protection operations are maintained.

3.13 REUSING FORMS

- A. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-coating compound as specified for new formwork.
- B. When forms are extended for successive concrete placement, thoroughly clean surfaces, remove fins and laitance, and tighten forms to close joints. Align and secure joint to avoid offsets. Do not use patched forms for exposed concrete surfaces except as acceptable to Architect.

3.14 CONCRETE SURFACE REPAIRS

- A. Patching Defective Areas: Repair and patch defective areas with cement mortar immediately after removing forms, when acceptable to Architect.
- B. Mix dry-pack mortar, consisting of one part Portland cement to 2-1/2 parts fine aggregate passing a No. 16 mesh sieve, using only enough water as required for handling and placing.
 - Cut out honeycombs, rock pockets, voids over 1/4 inch in any dimension, and holes left by tie rods and bolts down to solid concrete but in no case to a depth less than 1 inch. Make edges of cuts perpendicular to the concrete surface. Thoroughly clean, dampen with water, and brush-coat the area to be patched with bonding agent. Place patching mortar before bonding agent has dried.
 - For surfaces exposed to view, blend white Portland cement and standard Portland cement so that, when dry, patching mortar will match surrounding color. Provide test areas at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike-off slightly higher than surrounding surface.
- C. Repairing Formed Surfaces: Remove and replace concrete having defective surfaces if defects cannot be repaired to satisfaction of Architect. Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycomb, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning. Flush out form tie holes and fill with dry-pack mortar or precast cement cone plugs secured in place with bonding agent.

- 1. Repair concealed formed surfaces, where possible, containing defects that affect the concrete's durability. If defects cannot be repaired, remove and replace the concrete.
- D. Repairing Unformed Surfaces: Test unformed surfaces, such as monolithic slabs, for smoothness and verify surface tolerances specified for each surface and finish. Correct low and high areas as specified. Test unformed surfaces sloped to drain for trueness of slope and smoothness by using a template having the required slope.
 - Repair finished unformed surfaces containing defects that affect the concrete's durability. Surface defects include crazing and cracks in excess of 0.01 inch wide or that penetrate to the reinforcement or completely through nonreinforced sections regardless of width, spalling, popouts, honeycombs, rock pockets, and other objectionable conditions.
 - 2. Correct high areas in unformed surfaces by grinding after concrete has cured at least 14 days.
 - Correct low areas in unformed surfaces during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete. Proprietary underlayment compounds may be used when acceptable to Architect.
 - 4. Repair defective areas, except random cracks and single holes not exceeding 1 inch in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose reinforcing steel with at least 3/4-inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials to provide concrete of same type or class as original concrete. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.
- E. Repair isolated random cracks and single holes 1 inch or less in diameter by dry-pack method. Groove top of cracks and cut out holes to sound concrete and clean of dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding compound. Place dry-pack before bonding agent has dried. Compact dry-pack mixture in place and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
- F. Perform structural repairs with prior approval of Architect for method and procedure, using specified epoxy adhesive and mortar.
- G. Repair methods not specified above may be used, subject to acceptance of Architect.

3.15 QUALITY CONTROL TESTING DURING CONSTRUCTION

- A. General: The Owner will employ a testing agency to perform tests and to submit test reports.
- B. Measure floor finish tolerances in accordance with ASTM E1155 Standard Test Method for determining floor flatness and levelness using the F-number system.
- C. Sampling and testing for quality control during concrete placement may include the following, as directed by Architect.
 - 1. Sampling Fresh Concrete: ASTM C 172, except modified for slump to comply with ASTM C 94.
 - Slump: ASTM C 143; one test at point of discharge for each day's pour of each type of concrete; additional tests when concrete consistency seems to have changed.

- b. Air Content: ASTM C 173, volumetric method for lightweight or normal weight concrete; ASTM C 231, pressure method for normal weight concrete; one for each day's pour of each type of air-entrained concrete.
- c. Concrete Temperature: ASTM C 1064; one test hourly when air temperature is 40 deg F (4 deg C) and below, when 80 deg F (27 deg C) and above, and one test for each set of compressive-strength specimens.
- d. Compression Test Specimen: ASTM C 31; one set of four standard cylinders for each compressive-strength test, unless otherwise directed. Mold and store cylinders for laboratory-cured test specimens except when field-cured test specimens are required.
- e. Compressive-Strength Tests: ASTM C 39; one set for each day's pour exceeding 5 cu. yd. plus additional sets for each 50 cu. yd. more than the first 25 cu. yd. of each concrete class placed in any one day; one specimen tested at 7 days, two specimens tested at 28 days, and one specimen retained in reserve for later testing if required.
- 2. When frequency of testing will provide fewer than five strength tests for a given class of concrete, conduct testing from at least five randomly selected batches or from each batch if fewer than five are used.
- 3. When total quantity of a given class of concrete is less than 50 cu. yd., Architect may waive strength testing if adequate evidence of satisfactory strength is provided.
- 4. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, evaluate current operations and provide corrective procedures for protecting and curing the in-place concrete.
- 5. Strength level of concrete will be considered satisfactory if averages of sets of three consecutive strength test results equal or exceed specified compressive strength and no individual strength test result falls below specified compressive strength by more than 500 psi.
- D. Test results will be reported in writing to Architect, Structural Engineer, ready-mix producer, and Contractor within 24 hours after tests. Reports of compressive strength tests shall contain the Project identification name and number, date of concrete placement, name of concrete testing service, concrete type and class, location of concrete batch in structure, design compressive strength at 28 days, concrete mix proportions and materials, compressive breaking strength, and type of break for both 7-day tests and 28-day tests.
- E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted but shall not be used as the sole basis for acceptance or rejection.
- F. Additional Tests: The testing agency will make additional tests of in-place concrete when test results indicate specified concrete strengths and other characteristics have not been attained in the structure, as directed by Architect. Testing agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42, or by other methods as directed.

END OF SECTION

MISCELLANEOUS CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes cast-in-place concrete, including reinforcement, concrete materials, mixture design, placement procedures, and finishes.
- B. Related Requirements:
 - 1. Section 312000 "Earth Moving" for drainage fill under slabs-on-grade.
 - 2. Section 321313 "Concrete Paving" for concrete pavement and walks.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. LEED Submittals:
 - 1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.
 - 2. Product Certificates for Credit MR 5: For products and materials required to comply with requirements for regional materials, certificates indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include statement indicating distance to Project, cost for each regional material, and fraction by weight that is considered regional.
 - 3. Design Mixtures for Credit ID 1.1: For each concrete mixture containing fly ash as a replacement for portland cement or other portland cement replacements. For each design mixture submitted, include an equivalent concrete mixture that does not contain portland cement replacements, to determine amount of portland cement replaced.
- C. Design Mixtures: For each concrete mixture.

1.4 QUALITY ASSURANCE

A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

- A. Comply with the following sections of ACI 301 (ACI 301M) unless modified by requirements in the Contract Documents:
 - 1. "General Requirements."
 - 2. "Formwork and Formwork Accessories."
 - 3. "Reinforcement and Reinforcement Supports."
 - "Concrete Mixtures."
 - 5. "Handling, Placing, and Constructing."
 - "Lightweight Concrete."
- B. Comply with ACI 117 (ACI 117M).

2.2 STEEL REINFORCEMENT

- A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
- B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), deformed.
- C. Plain-Steel Wire: ASTM A 1064/A 1064M, as drawn.
- D. Plain-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, plain, fabricated from asdrawn steel wire into flat sheets.
- E. Deformed-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, flat sheet.

2.3 CONCRETE MATERIALS

- A. Regional Materials: Concrete shall be manufactured within 500 miles (800 km) of Project site from aggregates that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles (800 km) of Project site.
- B. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.
- C. Cementitious Materials:
 - 1. Portland Cement: ASTM C 150/C 150M, Type I, Type II
 - 2. Fly Ash: ASTM C 618, Class C or F.
 - 3. Ground Granulated Blast-Furnace Slag: ASTM C 989/C 989M, Grade 100 or 120.
- D. Normal-Weight Aggregate: ASTM C 33/C 33M, 1 inch (25mm) nominal.
- E. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

- F. Air-Entraining Admixture: ASTM C 260/C 260M.
- G. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 - 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
- H. Water: ASTM C 94/C 94M.

2.4 VAPOR RETARDERS

A. Vapor Retarder: Polyethylene sheet, ASTM D 4397, not less than 10 mils (0.25 mm) thick.

2.5 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming; manufactured for application to fresh concrete.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth or cotton mats.
- C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- D. Water: Potable.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.
- F. Clear, Solvent-Borne, Membrane-Forming Curing and Sealing Compound: ASTM C 309, Type 1, Class B.
 - 1. VOC Content: 200 g/L or less.

2.6 RELTATED MATERIALS

A. Expansion-and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber.

2.7 CONCRETE MIXTURES

- A. Comply with ACI 301 (ACI 301M).
- B. Normal-Weight Concrete:
 - 1. Minimum Compressive Strength: 9000 psi (27.6 MPa) at 28 days.
 - 2. Maximum W/C Ratio: 0.50

- 3. Cementitious Materials: Use fly ash, pozzolan, slag cement, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.
- 4. Slump Limit: 8 inches (200 mm) for concrete with verified slump of 2 to 4 inches (50 to 100mm) before adding high-range water-reducing admixture or plasticizing admixtureplus or minus 1 inch (25 mm).
- 5. Air Content: Maintain within range permitted by ACI 301 (ACI 301M). Do not allow air content of trowel-finished floor slabs to exceed 3 percent. Provide 6% plus or minus 1% for any exterior or concrete exposed to weather.

2.8 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M. and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 FORMWORK INSTALLATION

- A. Design, construct, erect, brace, and maintain formwork according to ACI 301 (ACI 301M), to support vertical lateral, static and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct formwork so concrete members and strucrures are of size, shae, alignment, elevation and position indicuted within tolerance limits of ACI 171.
- C. Chamfer exterior corners and edges of permanently exposed concrete.

3.2 EMBEDDED ITEM INSTALLATION

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

3.3 VAPOR-RETARDER INSTALLATION

- A. Install, protect, and repair vapor retarders according to ASTM E 1643; place sheets in position with longest dimension parallel with direction of pour.
 - 1. Lap joints 6 inches (150 mm) and seal with manufacturer's recommended adhesive or joint tape.

3.4 STEEL REINFORCEMENT INSTALLATION

- A. Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
 - 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

3.5 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness, as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch (3.2 mm). Repeat grooving of contraction joints after applying surface finishes. Eliminate groover marks on concrete surfaces.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3.2-mm-) wide joints into concrete when cutting action does not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

3.6 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
- B. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provided construction joints as indicated. Deposit concrete to avoid segregation.
 - 1. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
- C. cold-weather Placement: Comply with ACI 306.1
- D. Hot-weather Placement: Comply with ACI 301.
- E. Equipment Bases and Foundations:
 - 1. Coordinate sizes and locations of concrete bases with actual equipment provided.
 - Construct concrete bases 8 inches (200 mm) high unless otherwise indicated; and extend base not less than 6 inches (150 mm) in each direction beyond the maximum dimensions

- of supported equipment unless otherwise indicated or unless required for seismic anchor support.
- 3. Minimum Compressive Strength: 9000 psi (27.6 MPa) at 28 days.
- Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
- 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base, and anchor them into structural concrete substrate.
- 6. Prior to pouring concrete, place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 7. Cast anchor-bolt insert into bases. Install anchor bolts to elevations required for proper attachment to supported equipment.

3.7 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections exceeding specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to public view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defective areas. Remove fins and other projections exceeding 1/8 inch (3 mm).
 - 1. Apply to concrete surfaces exposed to public view, with a coating or covering material applied directly to concrete.
- C. Rubbed Finish: Apply the following rubbed finish, defined in ACI 301 (ACI 301M), to smooth-formed-finished as-cast concrete where indicated:
 - 1. Smooth-rubbed finish.
 - 2. Grout-cleaned finish.
 - 3. Cork-floated finish.
- D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.8 FINISHING UNFORMED SURFACES

- A. General: Comply with ACI 302.1R for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Screed surfaces with a straightedge and strike off. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane before excess moisture or bleedwater appears on surface.
 - 1. Do not further disturb surfaces before starting finishing operations.

- C. Scratch Finish: Apply scratch finish to surfaces indicated and surfaces to receive concrete floor topping or mortar setting beds for ceramic or quarry tile, portland cement terrazzo, and other bonded cementitious floor finishes unless otherwise indicated.
- D. Float Finish: Apply float finish to surfaces indicated, to surfaces to receive trowel finish, and to floor and slab surfaces to be covered with fluid-applied or sheet waterproofing, fluid-applied or direct-to-deck-applied membrane roofing, or sand-bed terrazzo.
- E. Trowel Finish: Apply a hard trowel finish to surfaces indicated and to floor and slab surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin film-finish coating system.
- F. Trowel and Fine-Broom Finish: Apply a partial trowel finish, stopping after second troweling, to surfaces indicated and to surfaces where ceramic or quarry tile is to be installed by either thickset or thinset methods. Immediately after second troweling, and when concrete is still plastic, slightly scarify surface with a fine broom.
- G. Slip-Resistive Broom Finish: Apply a slip-resistive finish to surfaces indicated and to exterior concrete platforms, steps, and ramps. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route.

3.9 CONCRETE PROTECTING AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and with ACI 301 (ACI 301M) for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Curing Methods: Cure formed and unformed concrete for at least seven days by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.
 - Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period, using cover material and waterproof tape.
 - Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.10 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections and prepare test reports.

END OF SECTION

UNIT MASONRY ASSEMBLIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and General Provisions of Contract, including General and Supplementary Conditions and Division 01 Specification sections, apply to work of this section.
- B. The provisions and guidelines indicated in ACI 530.1/ASCE 6/TMS 602 Specification for Masonry Structures (referred to hereinafter as the MSJC Code), current at the time of project bidding shall constitute the masonry standard and shall apply to this Section.

1.2 DESCRIPTION OF WORK

- A. Extent of each type of masonry work is indicated on drawings and schedule.
- B. Types of masonry work required include:
 - 1. Concrete Unit Masonry.
 - 2. Brick
 - 3. Reinforced masonry
- C. Products installed but not furnished under this Section include the following:
 - 1. Division 05 Section "Metal Fabrication" for steel lintels in unit masonry.
 - 2. Division 06 Section "Rough Carpentry" for wood nailers and blocking built into unit masonry.
 - 3. Division 07 Section "Fluid Applied Membrane Air & Vapor Barriers"
 - 4. Division 07 Section "Sheet Metal Flashing and Trim" for reglets in masonry joints for metal flashing.
 - 5. Division 07 Section "Firestop Joint Systems" for head-of-wall joints.
 - 6. Division 08 Section "Standard Steel Doors and Frames" for hollow metal frames in unit masonry openings.

1.3 QUALITY ASSURANCE

- A. Testing Agency Services
 - 1. The Construction Manager/Owner will secure and pay for the services of a qualified, independent materials engineer to perform quality assurance testing of mortar and grout materials, to confirm re-bar and anchorage placement, to verify compliance of materials with specified requirements, to observe and document compliance with hot and cold weather construction methods, and to perform required field and laboratory testing. Testing Agency shall be acceptable to the architect and the owner and shall be licensed to practice in the state in which the project is located.

- B. Masonry Inspection Requirements:
 - 1. Testing Frequency for Non-Essential Facilities Level B Quality Assurance:
 - Assurance level to be in accordance with Table 4 of the MSJC Specification for Masonry Structures.
 - b. Frequency level for Category I, II or III buildings to be in accordance with Table 1704.5.1 Level 1 Special Inspections of the Michigan Building Code.
 - 2. For this project, the testing and inspecting agency will be hired by the Owner or the Owner's representative.
 - 3. Contractor may retain a qualified consultant to review procedures and construction methods to comply with this specification, industry standards and construction codes.
- C. Testing Agency Qualifications: Qualified according to ASTM C 1093 for testing indicated.
- D. Masonry Standard: Comply with **the MSJC Code** unless modified by requirements in the Contract Documents.
- E. Single source responsibility for Masonry Units: Obtain exposed masonry units of uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from one manufacturer for each different product required for each continuous surface or visually related surfaces.
- F. Single source responsibility for Mortar Materials: Obtain mortar ingredients of uniform quality, including color for exposed masonry, from one manufacturer for each cementitious component and from one source and producer for each aggregate.
- G. Field Constructed Mock-Ups: Prior to installation of masonry work, erect sample wall panels to further verify selections made for color and textural characteristics, under sample submittals of masonry units and mortar, and to represent completed masonry work for qualities of appearance, materials and construction; build mock-ups to comply with the following requirements:
 - Locate mock-ups on site in locations indicated or, if not indicated, as directed by Architect.
 - 2. Build mock-ups for the following types of masonry in sizes of approximately 4'-0" long by 4' high by full thickness, including face and back-up wythes as well as accessories.
 - a. Typical exterior concrete block walls including each type of exposed face.
 - b. Typical interior and exterior structural glazed facing tile, including each type and color of material in pattern indicated.
 - c. Typical interior and exterior prefaced concrete masonry units, including each type and color of material in pattern indicated.
 - d. Include stone trim in mock-ups.
 - 3. Protect mock-ups from the elements with weather resistant membrane.
 - 4. Retain mock-ups during construction as standard for judging completed masonry work. When directed, demolish mock-ups and remove from site.

1.4 PERFORMANCE REQUIREMENTS

- A. Provide structural unit masonry that develops indicated net-area compressive strengths (f'm) at 28 days.
- B. Determine net-area compressive strength (f'm) of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to Tables 1 and 2 in Section 1.4 of the MSJC Code. Provide f'm for concrete masonry construction according to the following:

Use	Compressive	Unit	Grout	Mortar
	Strength, f'm	Strength	Strength	Туре
	(psi)	(psi)	(psi)	
Typical, unless noted otherwise	20000 min.	2800 min.	2000 min.	M or S

1.5 SUBMITTALS

- A. Product Data: Submit manufacturer's product data for each type of masonry unit, accessory, and other manufactured products, including certifications that each type complies with specified requirements.
- B. Shop Drawings: Show fabrication and installation details for the following:
 - 1. Reinforcing Steel: Detail bending and placement of unit masonry reinforcing bars. Comply with ACI 315, "Details and Detailing of Concrete Reinforcement."
- C. Material Certificates: Signed by manufacturers certifying that each of the following items complies with requirements:
 - 1. Each type of masonry unit required.
 - Include size-variation data for brick, verifying that actual range of sizes falls within specified tolerances.
 - b. Include test data, measurements, and calculations establishing net-area compressive strength of masonry units.
 - 2. Each cement product required for mortar and grout, including name of manufacturer, brand, type, and weight slips at time of delivery.
 - 3. For each combination of masonry unit type and mortar type, include a written statement identifying the following:
 - a. Net-area compressive strength of masonry units.
 - b. Mortar type.
 - c. Net-area compressive strength of the completed masonry system determined according to Tables 1 and 2 in Section 1.4 of the MSJC Code.
 - 4. Each combination of masonry unit type and mortar type specified to be manufactured with integral water repellant.
 - 5. Each material and grade indicated for reinforcing bars.

- 6. Each type and size of joint reinforcement.
- 7. Each type and size of anchor, tie, and metal accessory.
- D. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
 - 1. Include test reports from past projects which were performed in accordance with ASTM C 780, for mortar mixes intended for this project required to comply with property specification.
 - Include test reports from past projects which were performed in accordance with ASTM C 1019, for grout mixes intended for this project required to comply with compressive strength requirement.
- E. Statement of Compressive Strength of Masonry: For each combination of masonry unit type and mortar type, provide statement of average net-area compressive strength of masonry units, mortar type, and resulting net-area compressive strength of masonry determined according to Tables 1 and 2 in Section 1.4 of **the MSJC Code**.
- F. Cold-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with cold-weather requirements.
 - 1. Hot-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with hot-weather requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver masonry materials to project in undamaged condition.
- B. Store and handle masonry units to prevent their deterioration or damage due to moisture, temperature changes, contaminants, corrosion or other causes.
 - 1. Limit moisture absorption of concrete masonry units during delivery and until time of installation to the maximum percentage specified for Type I units for the average annual relative humidity as reported by the U.S. Weather Bureau Station nearest project site.
- C. Store cementitious materials off the ground, under cover and in dry location.
- D. Store aggregates where grading and other required characteristics can be maintained.
- E. Store masonry accessories including metal items to prevent deterioration by corrosion and accumulation of dirt.

1.7 PROJECT CONDITIONS

- A. Protection of work: During erection, cover top of walls with waterproof sheeting at end of each day's work. Cover partially completed structures when work is not in progress.
- B. Extend cover a minimum of 24 inches down both sides and hold cover securely in place.
- Do not apply uniform floor or roof loading for at least 3 days after building masonry walls or columns.
- D. Staining: Prevent grout or mortar or soil from staining the face of masonry to be left exposed or painted. Remove immediately grout or mortar in contact with such masonry.

- E. Protect base of walls from rain-splashed mud and mortar splatter by means of covering spread on ground and over wall surfaces.
- F. Protect sills, ledges and projections from droppings of mortar.

1.8 COLD WEATHER PROTECTION

- A. Do not lay masonry units which are wet or frozen.
- B. Remove any ice or snow formed on masonry bed by carefully applying heat until top surface is dry to the touch.
- C. Remove masonry damaged by freezing conditions.
- D. For clay masonry units with initial rates of absorption (suction) which require them to be wetted before laying, comply with the following requirements.
 - 1. For units with surface temperatures above 32°F (0°C), wet with water heated to above 70°F (21°C).
 - 2. For units with surface temperatures below 32°F (0°C), wet with water heated to above 130°F (54°C).
- E. Perform the following construction procedures while masonry work is progressing.

 Temperature ranges indicated below apply to air temperatures existing at time of installation except for grout.
- F. For grout, temperature ranges apply to anticipated minimum night temperatures. In heating mortar and grout materials, maintain mixing temperature selected with 10°F (6°C).
 - 1. 40°F (4°C) to 32°F (0°C):
 - a. Mortar: Heat mixing water to produce mortar temperature between 40°F (4°C) and 120°F (49°C).
 - b. Grout: Follow normal masonry procedures.
 - 2. 32°F (0°C) to 25°F (-4°C):
 - a. Mortar: Heat mixing water and sand to produce mortar temperatures between 40°F (4°C) and 120°F (49°C); maintain temperature of mortar on boards above freezing.
 - b. Grout: Heat grout materials to 90°F (32°C) to produce in-place grout temperature of 70°F (21°C) at end of work day.
 - 3. 25°F (-4°C) to 20°F (-7°C):
 - Mortar: Heat mixing water and sand to produce mortar temperatures between 40°F (4°C) and 120°F (49°C); maintain temperature of mortar on boards above freezing.
 - b. Grout: Heat grout materials to 90°F (32°C) to produce in-place grout temperature of 70°F (21°C) at end of work day.
 - Heat both sides of walls under construction using salamanders or other heat sources.
 - d. Use windbreaks or enclosures when wind is in excess of 15 mph.

- 4. 20°F (-7°C) and below:
 - a. Mortar: Heat mixing water and sand to produce mortar temperatures between 40°F (4°C) and 120°F (49°C).
 - b. Grout: Heat grout materials to 90°F (32°C) to produce in-place grout temperature of 70°F (21°C) at end of work day.
 - c. Masonry Units: Heat masonry units so that they are above 20°F (-7°C) at time of laying.
 - d. Provide enclosure and auxiliary heat to maintain an air temperature of at least 40°F (4°C) for 24 hours after laying units.
- 5. Do not heat water for mortar and grout to above 160°F (71°C).
- G. Protect completed masonry and masonry not being worked on in the following manner. Temperature ranges indicated apply to mean daily air temperatures except for grouted masonry. For grouted masonry, temperature ranges apply to anticipated minimum night temperatures.
 - 1. 40°F (4°C) to 32°F (0°C):
 - a. Protect masonry from rain or snow for at least 24 hours by covering with weatherresistive membrane.
 - 2. 32°F (0°C) to 25°F (-4°C):
 - Completely cover masonry with weather-resistive membrane for at least 24 hours.
 - 3. 25°F (-4°C) to 20°F (-7°C):
 - a. Completely cover masonry with weather-resistive insulating blankets or similar protection for at least 24 hours, 48 hours for grouted masonry.
 - 4. 20°F (-7°C) and below:
 - a. Except as otherwise indicated, maintain masonry temperature above 32°F (0°C) for 24 hours using enclosures and supplementary heat, electric heating blankets, infrared lamps or other methods proven to be satisfactory. For grouted masonry maintain heated enclosure to 40°F (4°C) for 48 hours.

PART 2 - PRODUCTS

- 2.1 BRICK MADE FROM CLAY OR SHALE
 - A. General: Comply with referenced standards and other requirements indicated below applicable to each form of brick required.
- 2.2 BRICK TYPES
 - A. General: Comply with referenced standards and other requirements listed below:
 - 1. Face Brick Athens High School shall be as follows:
 - a. Type A (Field Brick): Manufacturer: The Belden Brick Co.

Color: Beaver Blend, smooth (norman) – to match existing

b. Type B (Accent Brick): Manufacturer: The Belden Brick Co.

Color: Onyx, velour (modular)

2. Face Brick Troy High School shall be as follows:

a. Type C (Field Brick): Manufacturer: The Belden Brick Co.

Color: 8 X 109 Clear w/ additive velour texture (norman)

to match existing.

b. Type D (Accent Brick): Manufacturer: Cloud Ceramics

Color: Black Diamond, velour (norman) - to match

existing.

c. Type E (Accent Brick): Manufacturer: Belden

Color: Alaskan White, velour (norman) - to match

existing.

3. ASTM C216, Grade SW, Type FBX as applicable.

- B. For sills, caps and similar applications resulting in exposure of brick surfaces which otherwise would be concealed from view, provide uncored or unfrogged units with all exposed surfaces finished.
- C. Provide special shapes and profiles as indicated.

2.3 CONCRETE MASONRY UNITS

- A. General: Comply with referenced standards and other requirements indicated below applicable to each form of concrete masonry unit required.
 - 1. Provide special shapes where required for lintels, corners, jambs, sash, control joints, headers, bonding and other special conditions.
 - Provide bullnose units for outside corners unless otherwise indicated.
 - b. Provide CMU Bond Beam units where indicated.
 - c. Supply standard open-end units and open-end bond beam units to facilitate placement of vertical reinforcement. Units shall comply with the material specification of adjacent construction.
 - Water-Repellent Admixture: All concrete masonry exposed to the exterior shall be manufactured with a liquid water-repellent block admixture intended for use with concrete masonry.
 - a. Products: Dry-Block Block Admixture as manufactured by Grace Construction Products, a unit of W. R. Grace & Co. or approved equal.
- B. Concrete block: Provide units complying with characteristics indicated below for Grade, Type, face size, exposed face and, under each form of block included, for weight classification.
 - 1. Exposed Faces: Manufacturer's standard color and texture, unless otherwise indicated.

- a. Regular (Standard) Concrete Masonry Units using standard aggregate:
 - 1) Manufacturers: Subject to compliance with requirements provide products from one of the following:
 - a) Best Block Company
 - b) Fendt Builder's Supply, Inc.
 - c) National Block Company
 - d) Grand Blanc Cement Products

2. Grade N.

- a. Grade N except Grade S may be used above grade in exterior walls with weather protective coatings and in walls not exposed to weather.
- 3. Size: Manufacturer's standard units with nominal face dimensions of 16" long x 8" high (15-5/8" x 7-5/8" actual) x thicknesses indicated.
 - a. Provide special shape concrete blocks as indicated on drawings.
- 4. Hollow Load bearing or Non-load bearing Block: ASTM C 90 and as follows:
 - Unit Compressive Strength: Provide units with minimum average net-area compressive strength specified under the Performance Requirements of Article 1.4.B above.
 - b. Exterior Walls: Normal or Medium weight Cavity/Veneer Walls Only
 - c. Exterior Walls: Normal weight Singly Wythe Walls
 - d. Interior Load or Non-Load Bearing Walls: Lightweight or Medium weight.
- 5. Solid Load bearing or Non-load bearing Block: ASTM C 145 and as follows:
 - a. Unit Compressive Strength: Provide units with minimum average net-area compressive strength specified under the Performance Requirements of Article 1.4 R above
 - b. Exterior Walls: Normal or Medium weight Cavity/Veneer Walls Only
 - c. Exterior Walls: Normal weight Singly Wythe Walls
 - d. Interior Load or Non-Load Bearing Walls: Lightweight or Medium weight.

2.4 EXTERIOR NON-LOAD BEARING REINFORCED MASONRY WALL SCHEDULE

- A. The following table shall apply to all exterior non-load bearing concrete block masonry unit walls as a minimum requirement unless exceeded by drawing requirements.
- B. All exterior load bearing concrete masonry walls will contain steel reinforcing. See structural drawings or contact the architect for additional information.

*WALL HEIGHT	CMU WALL WIDTH	VERTICAL REINFORCEMENT (FULL WALL HEIGHT)	As = IN ² /L.FT	MAXIMUM HORIZONTAL LOAD	REMARKS
9'-6"	8"	NO REINFORCEMENT	-	15 PSF	
12'-0"	8"	#4 @ 48" O.C.	0.05	20 PSF	

13'-4"	8"	#4 @ 48" O.C.	0.06	24 PSF	
16'-0"	8"	#5 @ 48" O.C.	0.0775	25 PSF	
18'-0"	8"	#5 @ 24" O.C.	0.155	30 PSF	
16'-0"	12"	#5 @ 48" O.C.	0.0775	25 PSF	
18'-0"	12"	#4 @ 32" O.C. OR #5 @ 48" O.C.	0.075 0.0775	32 PSF 32 PSF	
20'-0"	12"	#5 @ 40" O.C.	0.093	30 PSF	
24'-0"	12"	#5 @ 24" O.C.	0.155	32 PSF	
28'-0"	12"	#6 @ 24" O.C.	0.22	28 PSF	
30'-0"	12"	#6 @ 16" O.C.	0.33	27 PSF	
32'-0"	12"	#7 @ 16" O.C. OR 2 #6 @ 32" O.C.**	0.45 0.33	26 PSF 25 PSF	**EACH FACE
34'-0"	12"	#7 @ 8" O.C. OR 2 #7 @ 32" O.C.**	0.90 0.45	29 PSF 29 PSF	**EACH FACE

NOTE: 1. Assume Design Value f'm = 1,500 psi, Fs = 24,000 psi, M or S Mortar, Medium Weight CMU

- 2. *CMU Wall supported height start from foundation (dowels with scheduled reinforcement) and brace at each floor and/or roof level.
- 3. Grout cells solid at vertical reinforcements full height.
- 4. Vertical reinforcement to be placed in center of CMU wall U.N.O.
- 5. Increase wall reinforcement at the corner of all wall up to 10'-0" horizontally by 50% of scheduled reinforcement.
- 6. Place two (2) vertical bars of scheduled reinforcement at each side of each masonry opening (i.e. door, window, etc.).

2.5 INTERIOR NON-LOAD BEARING REINFORCED MASONRY WALL SCHEDULE

- A. The following table shall apply to all internal non-load bearing concrete block masonry unit walls as a minimum requirement unless exceeded by drawing requirements.
- B. All interior load bearing concrete masonry walls will contain steel reinforcing. See structural drawings or contact the architect for additional information.

*WALL HEIGHT	CMU WALL WIDT H	VERTICAL REINFORCEMENT (FULL WALL HEIGHT)	As = IN ² /L.FT	REMARKS
10'-0"	6"	NO REINFORCEMENT	-	
10'-0" TO 18'-0"	6"	* #3 @ 32" O.C.	0.0412	* REINFORCEMENT CAN BE ELIMINATED IF WALL

				SUPPORTED 10'-0" HORIZONTALLY
16'-0"	8"	NO REINFORCEMENT	-	
20'-0"	8"	#3 @ 48" O.C.	0.0275	
24'-0"	8'"	#3 @ 48" O.C.	0.0275	
20'-0"	10"	NO REINFORCEMENT	-	
24'-0"	10"	#3 @ 48" O.C.	0.0275	
28'-0"	10"	#4 @ 56" O.C.	0.0433	
30'-0"	10"	#4 @ 48" O.C.	0.05	
22'-8"	12"	NO REINFORCEMENT	-	
32'-0"	12"	#4 @ 72" O.C.	0.0333	
36'-0"	12'	#4 @ 64" O.C.	0.0375	

NOTE: 1. Assume Design Value f'm = 1,500 psi, Fs = 24,000 psi, N Mortar, Light Weight CMU.

- 2. All masonry wall design for lateral load = 5 PSF (Wind Load).
- 3. *CMU wall supported height start from foundation (dowels with scheduled reinforcement) and brace at floor or roof level with minimum 1" space.
- 4. Grout cells solid at vertical reinforcements full height.
- 5. Vertical reinforcement to be placed in center of CMU wall U.N.O.
- 6. Place one (1) vertical bar of scheduled reinforcement at each side of each masonry opening (i.e.door)

2.6 CONCRETE AND MASONRY LINTELS

- A. General: Provide either concrete or masonry lintels, at Contractor's option, complying with requirements below.
- B. Concrete Lintels: Formed-in-place concrete lintels complying with requirements in Division 03 Section "Cast-in-Place Concrete" with the same reinforcing as scheduled Masonry Lintels. Use in hidden or un-exposed conditions only. Temporarily support built-in-place lintels until cured.
- C. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam concrete masonry units with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.7 MORTAR AND GROUT MATERIALS

- A. Portland Cement: ASTM C 150, Type I, except Type III may be used for cold weather construction. Provide natural color or white cement as required to produce required mortar color.
- B. Masonry Cement: ASTM C 91.

- 1. For colored pigmented mortar use premixed colored masonry cements of formulation required to produce color(s) indicated. Subject to compliance with requirements provide products of Solomon Grind-Chem Services, Inc.
 - a. Color:
 - 1) Architect shall select up to two (2) colors from manufacturer's standards.
 - 2) For Brick Type E Alaskan White, color to be "WHITE" for joints adjacent to match existing.
- C. Hydrated Lime: ASTM C 207, Type S.
- D. Aggregate for Mortar: ASTM C 144, except for joints less than 1/4" use aggregate graded with 100% passing the No. 16 sieve.
- E. Aggregate for Grout: ASTM C 404.
- F. Water: Clean and potable.
- G. Water-Repellent Admixture: Liquid water-repellent mortar admixture intended for use with concrete masonry units.
 - 1. Products: Dry-Block Mortar Admixture as manufactured by Grace Construction Products, a unit of W. R. Grace & Co. or approved equal.

2.8 JOINT REINFORCEMENT, TIES AND ANCHORING DEVICES

- A. Materials: Comply with requirements indicated below for basic materials and with requirements indicated under each form of joint reinforcement, tie and anchor for size and other characteristics:
 - Hot-Dip Galvanized Steel Wire: ASTM A 82 for uncoated wire and with ASTM A 153, Class B-2 (1.5 oz. per sq. ft. of wire surface) for zinc coating applied after prefabrication into units.
- B. Joint Reinforcement: Provide welded-wire units prefabricated with deformed continuous side rods and plain cross rods into straight lengths of not less than 10', with prefabricated corner and tee units, and complying with requirements indicated below:
 - 1. Width: Fabricate joint reinforcement in units with widths of approximately 2" less than nominal width of walls and partitions as required to provide mortar coverage of not less than 5/8" on joint faces exposed to exterior and 1/2" elsewhere.
 - 2. Wire Size for Side Rods: 0.1483" diameter.
 - Wire Size for Cross Rods: 0.1483" diameter.
 - 4. For single-wythe masonry provide type as follows with single pair of side rods:
 - a. Ladder design with perpendicular cross rods spaced not more than 16" o.c.
 - 5. For multi-wythe masonry provide type as follows:
 - a. Ladder design with perpendicular cross spaced not more than 16" o.c. and number of side rods as follows: One side rod for each face shell of concrete masonry back-up and one rod for brick wythe.

- b. Number of side rods for Composite Construction: One side rod for each face shell of concrete masonry back-up and one rod for brick wythe.
- c. Use units with adjustable 2-piece rectangular ties where horizontal joints of facing wythe do not align with those of back-up.
 - 1) Products: Subject to compliance with requirements, provide the following:
 - a) "Series 800 Hook and Eye"; Wire Bond.
 - b) "AA525" Adjustable Econo-Eye-Lok", AA Wire Products.
 - c) "Ladur-Eye"; Dur-O-Wal, Inc.
 - d) "Lox-All Adjustable Eye-Wire"; Hohman & Barnard, Inc.
- C. Flexible Anchors: Where flexible anchors are indicated for connecting masonry to structural framework, provide 2-piece anchors as described below which permit vertical or horizontal differential movement between wall and framework parallel to, but resist tension and compression forces perpendicular to, plane of wall.
 - 1. For anchorage to steel framework provide manufacturer's standard anchors which fasten thru exterior sheathing and extent thru rigid insulation.
 - a. Wire Size: 0.1875" diameter.
 - b. Products: Subject to compliance with requirements, provide the following:
 - "HCL-911", Wire-Bond as distributed by Masonpro. Phone No. 800-659-4731
 - 2) RAP-TIE, Fero Corporation as distributed by Masonpro Phone No. 800-659-4731
 - Joint Stabilizing Anchors: Single-piece assembly with sliding rods held in receiver which allows vertical and horizontal movement but resists tension and compression forces perpendicular to plane of wall.
 - a. Receiver Section: Fabricated with stainless steel 1/32 inch sheet steel sleeves, one side embedded in masonry, the other connected to the steel frame with self tapping screws for full capacity of the anchor assembly.
 - b. Tie Section: Two 8 gauge stainless wires encased in plastic sleeves held in the receiver section.
 - 1) Dur-O-Wal # D/A 2200 or approved equal.
- D. Adjustable Anchors for Connecting to Structure: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 - 1. Anchor Section for Welding to Steel Frame: Crimped 1/4-inch- (6.4-mm-) diameter, hot-dip galvanized steel.
 - Tie Section for Steel Frame: Triangular-shaped wire tie, sized to extend within 1 inch (25 mm) of masonry face, made from 0.188-inch- (4.8-mm-) diameter, hot-dip galvanized steel.
- E. Masonry Veneer Anchors (Interior use only): Not less than 22 gauge and not less than 7/8 inch wide and 7 inches long, with one end crimped for attachment to substrate. Size to extend within 3/4" of face of masonry veneer.
- F. Galvanized steel channel slot anchors for anchoring new masonry to existing.

- 1. Provide Heckmamn No. 133/133-P continuous channel and mounting plate, with standard triangular type wire tie.
- G. Rigid Anchors: Provide straps of form and length indicated, fabricated from metal strips 1-1/2 inches wide x 1/4 inch thick (12 inches long) unless other sizes indicated.
- H. Un-coated Steel Reinforcing Bars: ASTM A 615/A 615M or ASTM A 996/A 996M, Grade 60.
- I. INTERSECTING WALL ANCHORS
 - 1. Exterior Walls and Interior Bearing Walls: Fabricate steel bars as follows:
 - a. 1-1/2 inches wide by 1/4 inch thick by 24 inches long, with ends turned up 2 inches or with cross pins.
 - b. Finish: Hot-dip galvanized to comply with ASTM A 153.
 - c. Lay-up in alternate courses between adjacent intersection walls which are not interlocked or at control joint locations.
 - 2. Interior Non-Bearing Walls and Interior Partitions:
 - a. Provide continuity with masonry joint reinforcement by using prefabricated T-shaped units.

2.9 CONCEALED FLASHING MATERIALS

- A. Sheet Metal Flashing: Fabricate from the following metal complying with requirements specified in Division 7 Section "Sheet Metal Flashing and Trim" and below:
 - Stainless Steel: 0.015" thick.
- B. Solder and Sealants for Sheet Metal Flashings: As specified in Division 07 Section "Sheet Metal Flashing and Trim."
- C. Bituthene Sheet Flashing (Rubberized Asphalt): Flexible sheet flashing especially formulated from modified bituthene flexible and waterproof in concealed masonry applications, black in color and of thickness indicated below:
 - 1. Thickness: 40 mils.
 - 2. Manufacturer: W.R. Grace & Co.
 - 3. Provide stainless steel drip under flexible sheet flashing at lintels and where indicated.
 - 4. Form end dams at lintel ends.
- D. Single-Wythe CMU Flashing System: System of CMU cell flashing pans and interlocking CMU web covers made from high-density polyethylene incorporating chemical stabilizers that prevent UV degradation. Cell flashing pans have integral weep spouts that are designed to be built into mortar bed joints and weep collected moisture to the exterior of CMU walls and that extend into the cell to prevent clogging with mortar.
 - 1. Product: Subject to compliance with requirements, provide Blok-Flash as manufactured by Eben LLC and distributed by the following:
 - a. Advanced Building Products Inc.
 - b. MASONPRO, Inc.

2.10 MISCELLANEOUS MASONRY ACCESSORIES

- A. Reinforcing Bars: Deformed steel, ASTM A 615, Grade 60 for bars No. 3 to No. 18.
- B. Control Joint Strips: Premolded, flexible cellular neoprene rubber filler strips complying with ASTM D 1056, Grade RE41E1, capable of compression up to 35%, of width and thickness indicated.
- C. Bond Breaker Strips: Asphalt-saturated organic roofing felt complying with ASTM D 226, Type I (No. 15 asphalt felt).
- D. Steel Column Isolation Material: 1/2 inch thickness asphalt impregnated fiberboard.
- E. Weepholes: Provide full open head joints with Duro-W-Wall "Cell Vent Weep Hole Ventilator" inserts. Color to be selected by Architect from manufacturer's standards. Spacing shall be as follows:
 - 1. At Concrete Masonry Units: Provide 2-1/2 inch high weepholes at 32 inches on center.
 - And as indicated on Drawings.
- F. Cavity Drainage Material: Provide and install "Mortar Net" as distributed by Belden Brick.
 - 1. Size 10" high x thickness of cavity unless noted otherwise.
- G. Compressible Joint Fillers: For use between the top of unrated masonry walls and the underside of structural steel or roof deck: Closed cell neoprene conforming to the requirements of ASTM D 1056, Grade SCE-42, board stock of sufficient thickness to be under compression when in the joint.
- H. Column Wrap: Wrap steel columns with "Boxboard" 1/4 inch corrugated, asphalt impregnated, cardboard as manufactured by Williams Products.
- I. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells with loops for holding reinforcing bars in center of cells. Units are formed from 0.187-inch steel wire, hot-dip galvanized after fabrication.
 - 1. Provide self-positioning units with either two loops or four loops as needed for number of bars indicated recessed downward into core a minimum of 1-1/4".
 - 2. Reinforcing Bar Positioners Manufacturer:
 - Wire-Bond: Core-Lock Seated Rebar Positioner.

2.11 INSULATION

- A. Extruded Polystyrene Board Insulation: Rigid cellular polystyrene thermo insulation with closed cells and integral high density skin, formed by the expansion of polystyrene base resin in an extrusion process to comply with ASTM C 578, Type IV; 5-year aged r-value of 5 Btu/(hr x sf x °F) at 75°F (24°C); in manufacturer's standard lengths and widths; thicknesses as indicated.
 - 1. Available Products: Subject to compliance with requirements, products which may be incorporated in the work include, but are not limited to, the following:
 - a. "Styrofoam Cavitymate Plus"; Dow Chemical USA.
 - b. "Foamular 250": UC Industries.
 - c. "Certifoam", Minnesota Diversified Products, Inc.
 - d. "Tuff-RC", Celotex
- B. Adhesive: Type recommended by insulation board manufacturer for application indicated.

2.12 MASONRY CLEANERS

- A. Job-mixed Detergent Solution: Solution of trisodium phosphate (1/2 cup dry measure) and laundry detergent (1/2 cup dry measure) dissolved in one gallon of water.
 - 1. Available Products: Subject to compliance with requirements, a product which may be used to clean unit masonry surfaces includes, but is not limited to, the following:
 - a. "Sure Klean" No. 600 Detergent; ProSoCo, Inc.

2.13 MORTAR AND GROUT MIXES

- A. General: Do not add admixtures including coloring pigments, air-entraining agents, accelerators, retarders, water repellent agents, anti-freeze compounds or other admixtures, unless otherwise indicated.
 - 1. Water-Repellent Admixture: Provide at all mortar joints in concrete masonry exposed to the exterior.
- B. Mixing: Combine and thoroughly mix cementitious, water and aggregate in a mechanical batch mixer; comply with referenced ASTM standards for mixing time and water content.
- C. Pre-blended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a pre-blended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.
- D. Mortar for Unit Masonry: Comply with ASTM C 270, Proportion Specifications, for types of mortar required, unless otherwise indicated.
 - 1. Limit cementitious materials in mortar to Portland cement-lime.
 - 2. Use Type M mortar for masonry below grade and in contact with earth, and where indicated.
 - 3. Use Type M or S mortar for reinforced masonry and where indicated.
 - 4. For interior non-load-bearing partitions; and for other applications where another type is not indicated, use Type N.

- 5. For veneers, use Type N. Coordinate with other architectural requirements specified herein for veneer mortars.
- E. Colored Pigmented Mortar: Select and proportion pigments with other ingredients to produce color required. Do not exceed pigment-to-cement ratio of 1-60-10 by weight.
- F. Grout for Unit Masonry: Comply with ASTM C 476.
 - Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with Table 7 of the MSJC Code for dimensions of grout spaces and pour height. Fine grout shall not be used unless absolutely necessary to comply with Table 7.
 - 2. Proportion grout in accordance with ASTM C 476, Paragraph 4.2.2 for specified 28-day compressive strength indicated by Article 1.4.B Performance Requirements of this specification, but not less than 2000 psi.
 - 3. Provide grout with a slump of 8 to 11 inches as measured according to ASTM C 143.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of work.
 - 1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of work.
 - 2. Verify that foundations are within tolerances specified.
 - 3. Verify that reinforcing dowels are properly placed.
- B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping connections.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.
- D. Wetting Clay Brick: Wet brick made from clay or shale which have ASTM C 67 initial rates of absorption (suction) of more than 30 grams per 30 sq. in. per minute. Use wetting methods which ensure each clay masonry unit being nearly saturated but surface dry when laid.
- E. Do not wet concrete masonry units.
- F. Cleaning Reinforcing: Before placing, remove loose rust, ice and other coatings from reinforcing.
- G. Thickness: Build cavity and composite walls, floors and other masonry construction to the full thickness shown. Build single-wythe walls (if any) to the actual thickness of the masonry units, using units of nominal thickness indicated.
- H. Build chases and recesses as shown or required for the work of other trades. Provide not less than 8" of masonry between chase or recess and jamb of openings, and between adjacent chases and recesses.
- I. Leave openings for equipment to be installed before completion of masonry work. After installation of equipment, complete masonry work to match work immediately adjacent to the opening.

- J. Cut masonry units using motor-driven saws to provide clean, sharp, unchipped edges. Cut units as required to provide continuous pattern and to fit adjoining work. Use full-size units without cutting where possible.
 - 1. Use dry cutting saws to cut concrete masonry units.
- K. Matching Existing Masonry Work: Match coursing, bonding, color and texture of new masonry work with existing work. Tooth masonry infill into existing masonry coursing.
- L. Bond Break: Provide a continuous bond breaker strip in all mortar joints between clay masonry and concrete masonry.
- 3.2 CONCRETE MASONRY UNIT (CMU) WALL SHALL BE PREPARED AS FOLLOWS TO ACCEPT THE AIR & VAPOR BARRIER:
 - Surfaces shall be free of contaminants such as grease, oil and wax on surfaces to receive membrane
 - B. The CMU surfaces shall be free from projections.
 - C. Strike all mortar joints flush to the face of the concrete block.
 - D. Fill all voids and holes greater than ¼ inch across at any point with mortar, sealant or other approved fill material.
 - E. Surface irregularities exceeding ¼ inch in height or sharp to touch shall be ground flush or made smooth.
 - F. Fill around all penetrations with mortar, sealant or other approved fill material and strike flush.
 - G. If the surfaces cannot be made smooth to the satisfaction of the Architect, it will be the responsibility of the trade to alternatively apply a parge coat (typically one part cement to three parts sand) over the entire surface to receive Air & Vapor Barrier Membrane
 - H. Remove mortar droppings on brick ties, shelf angles, brick shelves or other horizontal obstructions.

3.3 CONSTRUCTION TOLERANCES

- A. Variation From Plumb: For vertical lines and surfaces of columns, walls and arises do not exceed 1/4" in 10', or 3/8" in a story height not to exceed 20', nor 1/2" in 40' or more. For external corners, expansion joints, control joints and other conspicuous lines, do not exceed 1/4" in any story or 20' maximum, nor 1/2" in 40' or more. For vertical alignment of head joints do not exceed plus or minus 1/4" in 10', 1/2" maximum.
- B. Variation From Level: For bed joints and lines of exposed lintels, sills, parapets, horizontal grooves and other conspicuous lines, do not exceed 1/4" in any bay or 20' maximum, nor 1/2" in 40' or more. For top surface of bearing walls do not exceed 1/8" between adjacent floor elements in 10' or 1/16" within width of a single unit.
- C. Variation of Linear Building Line: For position shown in plan and related portion of columns, walls and partitions, do not exceed 1/2" in any bay or 20' maximum, nor 3/4" in 40' or more.
- D. Variation in Cross-Sectional Dimensions: For columns and thickness of walls, from dimensions shown, do not exceed minus 1/4" nor plus 1/2".

E. Variation in Mortar Joint Thickness: Do not exceed bed joint thickness indicated by more than plus or minus 1/8", with a maximum thickness limited to 1/2". Do not exceed head joint thickness indicated by more than plus or minus 1/8".

3.4 LAYING MASONRY WALLS:

- A. Layout walls in advance for accurate spacing of surface bond patterns with uniform joint widths and to accurately locate openings, movement-type joints, returns and offsets. Avoid the use of less-than-half-size units at corners, jambs and wherever possible at other locations.
- B. Lay-up walls to comply with specified construction tolerances, with courses accurately spaced and coordinated with other work.
- C. Pattern Bond: Lay exposed masonry in the bond pattern shown or, if not shown, lay in running bond with vertical joint in each course centered on units in courses above and below. Lay concealed masonry with all units in a wythe in running bond or bonded by lapping not less than 2". Bond and interlock each course of each wythe at corners. Do not use units with less than nominal 4" horizontal face dimensions at corners or jambs.
 - 1. Grind miter internal corner to match intersection of bullnose.
- D. Stopping and Resuming Work: Rack back 1/2-unit length in each course; do not tooth. Clean exposed surfaces of set masonry, wet units lightly (if required) and remove loose masonry units and mortar prior to laying fresh masonry.
- E. Built-in Work: As the work progresses, build-in items specified under this and other sections of these specifications. Fill in solidly with masonry around built-in items.
 - 1. Fill space between hollow metal frames and masonry solidly with mortar, unless otherwise indicated.
 - 2. Column Wrap: Wrap steel columns with corrugated, asphalt impregnated, cardboard prior to grouting or building into masonry surrounds.
 - Where built-in items are to be embedded in cores of hollow masonry units, place a layer
 of metal lath in the joint below and rod mortar or grout into core.
 - 4. Fill cores in hollow concrete masonry units with grout 3 courses (24") under bearing plates, beams, lintels, posts and similar items, unless otherwise indicated.
- F. Masonry walls indicated to extend to the roof deck shall terminate 1" below the underside of the deck and resulting space shall be filled with a firestop joint assembly suitable for permanent placement and complying with Division 7 Section "Firestop Joint Systems". Provide a 4 x 4 x 12 gauge x 8" long angle at 5'-0" (+ or -) o.c. at each face of wall.
 - 1. Where run of wall is parallel to deck flutes, provide a supplemental 12 gauge plate to link both opposing angles. Width of plate and angles is to be 8".
 - Where run of wall is perpendicular to the deck flutes, the supplemental plate can be omitted and length of angle sized to bridge two flutes. Secure assembly to metal deck with two #12 tech screws per side. Do not weld.

3.5 MORTAR BEDDING AND JOINTING

- A. Lay solid brick size masonry units with completely filled bed and head joint; butter ends with sufficient mortar to fill head joints and shove into place. Do not slush head joints.
- B. Lay hollow concrete masonry units with full mortar coverage on horizontal and vertical face shells. Bed webs in mortar in starting course on footings and in all courses of piers, columns and pilasters, and where adjacent to cells or cavities to be reinforced or filled with concrete or grout. For starting course on footings where cells are not grouted, spread out full mortar bed including areas under cells.
- C. Maintain joint widths shown, except for minor variations required to maintain bond alignment. If not shown, lay walls with 3/8" joints.
- D. Cut joints flush for masonry walls which are to be concealed or to be covered by other materials, unless otherwise indicated.
- E. Tool exposed joints slightly concave for brick and slightly concave for block including scored joint using a jointer larger than joint thickness, unless otherwise indicated.
- F. Remove masonry units disturbed after laying; clean and reset in fresh mortar. Do not pound corners or jambs to shift adjacent stretcher units which have been set in position. If adjustments are required, remove units, clean off mortar and reset in fresh mortar.
- G. Set stone trim units in full bed of mortar with full vertical joints. Fill dowel, anchor, and similar holes.
 - Clean soiled surfaces with fiber brush and soap powder and rinse thoroughly with clear water.
 - 2. Wet joint surfaces thoroughly before applying mortar.

3.6 STRUCTURAL BONDING OF MULTI-WYTHE MASONRY

- A. Use continuous horizontal joint reinforcement installed in horizontal mortar joints for bond tie between wythes. Install at not more than 16" o.c. vertically.
 - 1. For horizontally reinforced masonry, provide continuity at corners with prefabricated "L" units, in addition to masonry bonding.
- B. Exterior Walls and Intersecting or Abutting Interior Bearing Walls: Unless vertical expansion or control joints are shown at juncture:
 - 1. Provide rigid metal anchors not more than 24 inches o.c. If used with hollow masonry units, embed ends in mortar-filled cores.
 - 2. Lay-up in alternate courses between adjacent intersection walls which are not interlocked or at control joint locations.
- C. Intersecting or Abutting Interior, Non-Bearing Walls and Interior Partitions:
 - 1. Provide continuity with masonry joint reinforcement by using prefabricated T-shaped units laid up in alternate courses.

3.7 CAVITY WALLS

- A. Keep cavity clean of mortar droppings and other materials during construction. Strike joints facing cavity flush.
- B. Tie exterior wythe to back-up with continuous horizontal joint reinforcing, installed in mortar joints at not more than 16" o.c. vertically.
- C. Provide weep holes (2-1/2" high open head joints) in exterior wythe of cavity wall located immediately above ledges and flashing, spaced 24" o.c., unless otherwise indicated.
- D. Provide 10" depth of cavity drainage material located immediately above all lintels, flashings and ledges.

3.8 CAVITY WALL INSULATION

- A. On units of plastic insulation, install small pads of adhesive spaced approximately 1'-0" o.c. both ways on inside face. Fit courses of insulation between wall ties and other confining obstructions in cavity, with edges butted tightly both ways. Press units firmly against inside wythe of masonry or other construction as shown.
 - 1. Fill all cracks and open gaps in insulation with crack sealer compatible with insulation and masonry.

3.9 HORIZONTAL JOINT REINFORCEMENT

- A. General: Provide continuous horizontal joint reinforcement as indicated. Install longitudinal side rods in mortar for their entire length with a minimum cover of 5/8" on exterior side of walls, 1/2" elsewhere. Lap reinforcing a minimum of 6".
- B. Cut or interrupt joint reinforcement at control and expansion joints, unless otherwise indicated.
- Reinforce walls with continuous horizontal joint reinforcing unless specifically noted to be omitted.

3.10 ANCHORING MASONRY WORK:

- A. General: Provide anchor devices of type specified.
 - 1. Anchor masonry to structural members where masonry abuts or faces structural members.

3.11 REINFORCED UNIT MASONRY INSTALLATION

- A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 - Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
 - 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other temporary loads that may be placed on them during construction.

- B. Placing Reinforcement: Comply with requirements in the MSJC Code.
 - 1. Install reinforcing bar positioners in locations coordinated with the vertical reinforcement spacing. Positioners shall be located accurately to install reinforcement bars in the center of the unit core or offset as specified on the Drawings.
 - a. Based on the size of the vertical wall reinforcement, do not exceed the following maximum vertical spacing of positioners:

1) #3 Bar: 6'-3" 2) #4Bar: 8'-4" 3) #5 Bar: 10'-0" 4) #6 Bar: 12'-6" 5) #7 Bar: 14'-7" 6) #8 Bar: 16'-8"

- C. At lap splices, the upper reinforcement bar shall be held within the positioner adjacent to the lower bar being spliced.
- D. Reinforcement Splices:
 - 1. The following lap splice requirements shall supersedes the MSCJ Code requirements. Specified wall heights refer to the distance from the top of foundation or slab support to the upper joist or beam bearing or slab/deck tie-in elevation. For wall heights which equal the specified limit, the lesser provision may apply. As a minimum, reinforcing bars shall be lapped according to the following:

Wall Configuration	#4 Bar	#5 Bar	#6 Bar	#7 Bar	#8 Bar
8" Walls less than 12 ft. high	20"	32	32	40	40"
8" Walls greater than 12 ft. high	40	48	56	64	72"
10" Walls less than 15 ft. high	20"	32	32	40	40"
10" Walls greater than 15 ft. high	40	48	56	64	72"
12" Walls less than 18 ft. high	20"	32	32	40	40"
12" Walls greater than 18 ft. high	40	48	56	64	72"

E. Grouting:

- Grouting may not proceed until the grout cavity is inspected, vertical reinforcement spacing and position and lap dimensions are confirmed, and anchor size, spacing and position are confirmed.
- 2. Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
- 3. General: Grout the cores of all masonry at all locations of reinforcement, bond beams, bearing plates, anchors and embedded items.

- 4. Comply with requirements in the MSJC Code for cleanouts and for grout placement, including minimum grout space, maximum lift and pour height, vibration and consolidation.
- 5. Unless previously approved, limit height of vertical grout lifts to not more than 60 inches.
- 6. Stop grout placement 1.5 inches lower than top of masonry to form a grout key between successive lifts.

7.

3.12 CONTROL AND EXPANSION JOINTS:

- A. General: Install control and expansion joints in unit masonry where indicated in Drawings but not spaced more than 20'-0" apart. Build-in related items as masonry progresses. Do not form a continuous span through movement joints. Verify control joint locations with Architect.
- B. Form control joints in concrete masonry as follows using one of the following methods:
 - 1. Fit bond-breaker strips into hollow contour in ends of concrete masonry units on one side of control joint. Fill resultant core with grout and rake out joints in exposed faces for application of sealant.
 - 2. Install preformed control-joint gaskets designed to fit standard sash block.
 - 3. Install interlocking units designed for control joints. Install bond-breaker strips at joint. Keep head joints free and clear of mortar or rake out joint for application of sealant.
 - 4. Location and spacing of control joints shall comply with industry standards.
 - 5. Interrupt joint reinforcing each side of joint.
- C. Form expansion joints in brick made from clay or shale as follows:
 - 1. Build flanges of factory-fabricated, expansion-joint units into masonry.
 - 2. Form open joint of width indicated, but not less than 3/8 inch for installation of sealant and backer rod specified in Division 07 Section "Joint Sealants."
- D. Build in horizontal, pressure-relieving joints where required and indicated; construct joints by either leaving an air space or inserting a compressible filler of width required."
 - 1. Locate horizontal, pressure-relieving joints beneath shelf angles supporting masonry veneer and attached to structure behind masonry veneer.

3.13 LINTELS:

- A. Provide steel lintels where shown and wherever openings of more than 1'-0" for brick size units and 2'-0" for block size units are shown without structural steel or other supporting lintels. Refer to Metal Fabrications specification section additional information.
- B. Provide minimum bearing of 8" at each jamb, unless otherwise indicated.
- C. One end of lintel shall remain un-connected to allow for movement. The choice of which end to remain free is arbitrary, but if possible, it end should located adjacent to the nearest control joint.

3.14 FLASHING OF MASONRY WORK:

- A. General: Provide concealed flashing in masonry work at, or above, shelf angles, lintels, ledges and other obstructions to the downward flow of water in the wall so as to divert such water to the exterior. Prepare masonry surfaces smooth and free from projections which could puncture flashing. Place through-wall flashing on sloping bed of mortar and cover with mortar. Seal penetrations in flashing with mastic before covering with mortar. Extend flashings through exterior face of masonry and turn down to form drip. Do not allow any penetrations in flashing.
- B. Extend flashing the full length of lintels and shelf angles and minimum of 4" into masonry each end. Extend flashing from exterior face of outer wythe of masonry, through the outer wythe, turned up a minimum of 4", and through the inner wythe to within 1/2" of the interior face of the wall in exposed work. Where interior surface of inner wythe is concealed by furring, carry flashing completely through the inner wythe and turn up approximately 2". At heads and sills turn up ends not less than 2" to form a pan/end dam.
- C. Fabricate through-wall metal flashings embedded in masonry with ribs formed in sawtooth pattern at 3-inch intervals along length of flashing to provide a 3-way integral mortar bond and weep hole drainage as indicated.
- D. Interlock end joints of deformed metal flashings by over-lapping deformations not less than 1-1/2" and seal lap with elastic sealant.
- E. Install flashing to comply with manufacturer's instructions.
- F. Install single-wythe CMU flashing system to comply with manufacturer's instructions.
- G. Provide weep holes as specified.
- H. Install reglets and nailers for flashing and other related work where shown to be built into masonry work.

3.15 FIELD QUALITY CONTROL

- A. Inspectors: Construction Manager/Owner will engage a qualified, independent agency to perform field inspections and prepare inspection reports.
- B. Testing: Construction Manager/Owner will engage a qualified, independent agency to perform field tests indicated below and prepare test reports.
- C. Quality Assurance Level and Frequency:
 - 1. Testing Frequency for Non-Essential Facilities Level B Quality Assurance:
 - a. Assurance level to be in accordance with Table 4 of the MSJC Specification for Masonry Structures.
 - b. Frequency level for Category I, II or III buildings to be in accordance with Table 1704.5.1 Level 1 Special Inspections of the Michigan Building Code.
 - c. Note: The MSJC and Michigan Building Codes require inspectors to observe all grouting operations continuously. Communication with inspector is the contractor's responsibility. Grouting shall not proceed until the inspector is onsite and has made the required pre-grouting observations.
 - d. Allow inspectors access to scaffolding and work areas, as needed to perform inspections.
 - e. Place grout only after inspectors have verified compliance of grout spaces and grades, sizes, locations and position of reinforcement.

- D. Clay Masonry Unit Test: For each type of unit provided, per ASTM C 67.
- E. Concrete Masonry Unit Test: For each type of unit provided, per ASTM C 140.
- F. Mortar Test (Property Specification): For each mix provided, per ASTM C 780.
- G. Grout Test (Compressive Strength): For each mix provided, per ASTM C 1019.
- H. Testing agency will report results of tests and inspections promptly, in detail and in writing to Contractor, Architect and authorities having jurisdiction.
- I. Remove and replace work that does not comply with specified requirements.
- J. Retesting of materials failing to comply with specified requirements shall be done at Contractor's expense.

3.16 REPAIR, POINTING AND CLEANING:

- A. Remove and replace masonry units which are loose, chipped, broken, stained or otherwise damaged, or if units do not match adjoining units as intended. Provide new units to match adjoining units and install in fresh mortar or grout, pointed to eliminate evidence of replacement.
- B. Pointing: During the tooling of joints, enlarge any voids or holes, except weep holes, and completely fill with mortar. Point-up all joints including corners, openings and adjacent work to provide a neat, uniform appearance, prepared for application of sealants.
- C. Final cleaning: After mortar is thoroughly set and cured, clean masonry as follows:
 - Remove large mortar particles by hand with wooden paddles and non- metallic scrape hoes or chisels.
 - Test cleaning methods on sample wall panel; leave 1/2 panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
 - 3. Saturate wall surfaces with water prior to application of cleaners; remove cleaners promptly by rinsing thoroughly with clear water.
 - a. Detergent.
 - b. Acidic Cleaner; apply in compliance with directions of cleaner manufacturer.
 - 4. Clean concrete unit masonry to comply with masonry manufacturer's directions and applicable NCMA "Tek" bulletins.
 - 5. Clean stone trim to comply with stone supplier's written instructions.
 - Clean limestone units to comply with recommendations in ILI's "Indiana Limestone Handbook."
- D. Protection: Provide final protection and maintain conditions in a manner acceptable to Installer, which ensures unit masonry work being without damage and deterioration at time of substantial completion.

END OF SECTION

STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes fabrication and erection of structural steel work, as shown on drawings including schedules, notes, and details showing size and location of members, typical connections, and types of steel required.
 - Structural steel is that work defined in American Institute of Steel Construction (AISC)
 "Code of Standard Practice" and as otherwise shown on drawings.
- B. Related Sections: The following Sections contain requirements that relate to this Section:
 - 1. Division 03 Section "Cast-in-Place Concrete" for anchor bolt installation in concrete.
 - 2. Division 04 Section "Unit Masonry" for anchor bolt installation in masonry.
 - 3. Division 05 Section "Metal Fabrication" for miscellaneous metal fabrications.

1.3 SUBMITTALS

- A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.
- B. Product data or manufacturer's specifications and installation instructions for following products. Include laboratory test reports and other data to show compliance with specifications (including specified standards).
 - 1. Structural steel (each type), including certified copies of mill reports covering chemical and physical properties.
 - 2. High-strength bolts (each type), including nuts and washers.
 - a. Include Direct Tension Indicators if used.
 - Structural steel primer paint.
 - 4. Shrinkage-resistant grout.
- C. Shop drawings prepared under supervision of a licensed Structural Engineer, including complete details and schedules for fabrication and assembly of structural steel members, procedures, and diagrams.
 - 1. Include details of cuts, connections, camber, holes, and other pertinent data. Indicate welds by standard AWS symbols and show size, length, and type of each weld.

- 2. Provide setting drawings, templates, and directions for installation of anchor bolts and other anchorages to be installed as work of other sections.
- D. Test reports conducted on shop- and field-bolted and welded connections. Include data on type(s) of tests conducted and test results.
- E. Certified copies of each survey conducted by a licensed Land Surveyor, showing elevations and locations of base plates and anchor bolts to receive structural steel and final elevations and locations for major members. Indicate discrepancies between actual installation and contract documents.

1.4 QUALITY ASSURANCE

- A. Codes and Standards: Comply with provisions of following, except as otherwise indicated:
 - 1. American Institute of Steel Construction (AISC) "Code of Standard Practice for Steel Buildings and Bridges."
 - a. Paragraph 4.4 of the above code is hereby modified to allot 15 business days for Shop Drawing review in accordance with Specification Section 01330.
 - b. Paragraph 4.4.1(b) of the above code is hereby modified as follows:
 - "Confirmation that the Owner's designated representative for Design has reviewed the Connection details shown on the Shop and Erection Drawings and submitted in accordance with Section 3.1.2, if applicable."
 - 2. AISC "Specifications for Structural Steel Buildings," including "Commentary."
 - 3. AISC "Specifications for the Design of Steel Hollow Structural Sections."
 - 4. "Specifications for Structural Joints using ASTM A 325 or A 490 Bolts" approved by the Research Council on Structural Connections.
 - 5. American Welding Society (AWS) D1.1 "Structural Welding Code Steel."
 - 6. ASTM A 6 "General Requirements for Delivery of Rolled Steel Plates, Shapes, Sheet Piling and Bars for Structural Use."
- B. Qualifications for Welding Work: Qualify welding procedures and welding operators in accordance with AWS "Qualification" requirements.
 - 1. Provide certification that welders to be employed in work have satisfactorily passed AWS qualification tests.
 - 2. If recertification of welders is required, retesting will be Contractor's responsibility.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials to site at such intervals to ensure uninterrupted progress of work.
- B. Deliver anchor bolts and anchorage devices, which are to be embedded in cast-in-place concrete or masonry, in ample time to not to delay work.

- C. Store materials to permit easy access for inspection and identification. Keep steel members off ground by using pallets, platforms, or other supports. Protect steel members and packaged materials from erosion and deterioration. If bolts and nuts become dry or rusty, clean and relubricate before use.
 - Do not store materials on structure in a manner that might cause distortion or damage to members or supporting structures. Repair or replace damaged materials or structures as directed.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Metal Surfaces, General: For fabrication of work that will be exposed to view, use only materials that are smooth and free of surface blemishes including pitting, rust and scale seam marks, roller marks, rolled trade names, and roughness. Remove such blemishes by grinding, or by welding and grinding, prior to cleaning, treating, and applying surface finishes.
- B. Structural Steel Wide Flange Shapes: ASTM A992, Grade 50; ASTM A572, Grade 50.
- C. Angles, Channels, Plates and Bars: ASTM A36.
- D. Cold-Formed HSS Square and Rectangular: ASTM A 500, Grade B.
- E. Hot-Formed Round HSS: ASTM A 501.
- F. Round HSS: ASTM A 53, Type E or S, Grade B.
 - 1. Finish: Black, except where indicated to be galvanized.
- G. Anchor Bolts: ASTM A 307, nonheaded type unless otherwise indicated.
- H. Unfinished Threaded Fasteners: ASTM A 307, Grade A, regular low-carbon steel bolts and nuts.
 - 1. Provide hexagonal heads and nuts for all connections.
 - 2. Provide either hexagonal or square heads and nuts, except use only hexagonal units for exposed connections.
- I. High-Strength Threaded Fasteners: Heavy hexagon structural bolts, heavy hexagon nuts, and hardened washers, as follows:
 - Quenched and tempered medium-carbon steel bolts, nuts, and washers, complying with ASTM A 325.
 - 2. Where indicated as galvanized, provide units that are zinc coated, either mechanically deposited complying with ASTM B 695, Class 50, or hot-dip galvanized complying with ASTM A 153.
 - Quenched and tempered alloy steel bolts, nuts, and washers, complying with ASTM A 490.
- J. Electrodes for Welding: Comply with AWS Code.

- K. Nonmetallic Shrinkage-Resistant Grout: Premixed, nonmetallic, noncorrosive, nonstaining product containing selected silica sands, Portland cement, shrinkage compensating agents, plasticizing and water-reducing agents, complying with CE-CRD-C621.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Euco N.S.: Euclid Chemical Co.
 - b. Crystex; L & M Construction Chemicals, Inc.
 - c. Masterflow 713; Master Builders.
 - d. Sealtight 588 Grout; W.R. Meadows.

2.2 FABRICATION

- A. Shop Fabrication and Assembly: Fabricate and assemble structural assemblies in shop to greatest extent possible. Fabricate items of structural steel in accordance with AISC Specifications and as indicated on final shop drawings. Provide camber in structural members where indicated.
 - 1. Properly mark and match-mark materials for field assembly. Fabricate for delivery sequence that will expedite erection and minimize field handling of materials.
 - 2. Where finishing is required, complete assembly, including welding of units, before start of finishing operations. Provide finish surfaces of members exposed in final structure free of markings, burrs, and other defects.
- B. Connections: Weld or bolt shop connections.
- C. Bolt field connections, except where welded connections or other connections are indicated.
 - 1. Provide high-strength threaded fasteners for all bolted connections.
- D. High-Strength Bolted Construction: Install high-strength threaded fasteners in accordance with AISC "Specifications for Structural Joints using ASTM A 325 or A 490 Bolts."
- E. Welded Construction: Comply with AWS Code for procedures, appearance and quality of welds, and methods used in correcting welding work.
- F. Assemble and weld built-up sections by methods that will produce true alignment of axes without warp.
- G. Holes for Other Work: Provide holes required for securing other work to structural steel framing and for passage of other work through steel framing members, as shown on final shop drawings.
- H. Provide threaded nuts welded to framing and other specialty items as indicated to receive other work.
- I. Cut, drill, or punch holes perpendicular to metal surfaces. Do not flame-cut holes or enlarge holes by burning. Drill holes in bearing plates.

2.3 SHOP PAINTING

A. General:

- 1. Shop-paint exposed structural steel, except those members or portions of members to be embedded in concrete or mortar. Paint embedded steel that is partially exposed on exposed portions and initial 2 inches of embedded areas only.
 - Do not paint surfaces to be welded or high-strength bolted with friction-type connections.
 - b. Do not paint surfaces scheduled to receive sprayed-on fireproofing.
 - Apply two (2) coats of paint to surfaces that are inaccessible after assembly or erection. Change color of second coat to distinguish it from first.
 - d. Interior steel not exposed to view may be left unpainted.
 - e. Do not paint top flange of composite beams.
- 2. No coatings shall be applied until approved by the Architect and Owner's Representative.
- 3. Intermediate and finish coats shall be applied by the painting contractor per Division 9 Section "Painting."
- 4. Inspection and Testing: During the shop painting process and prior to shipping steel, the fabricator shall have the primer manufacturer representative inspect structural steel for proper dry film thickness in accordance with specifications.
 - a. Fabricator shall use testex tape to keep a permanent and verifiable record of the surface profile. A minimum of three (3) random tests shall be taken per ton of steel.

B. Exterior – Exposed:

1. Surface Preparation: SSPC-SP6 Commercial Blast Cleaning removing mill scale, rust, paint and other foreign matter except for staining, by use of abrasives. All surfaces must be clean, dry and free of oil, grease, dust, dirt or contaminants detrimental to the coating system.

2. Primer:

- a. TNEMEC: One (1) coat TNEMEC Series 90-97 Tneme-Zinc @ 2.5 to 3.5 mil
- b. Wasser: One (1) coat of Wasser MC-Zinc @ 3.0-5.0 mils DFT.
- 3. For warranty purposes, the Contractor shall insure that the intermediate and finish coats specified in Division 9 "Painting" and the applied primer specified above are from the same manufacturer.
- C. Preparation and Coating over Galvanized Steel:
 - Preparation: All galvanized metal receiving additional coats shall be tested by use of a copper sulfate test. This includes using a 10% solution of copper sulfate dissolved in water and applied to the galvanized surface. The reaction time between the copper sulfate and zinc should result in turning the galvanized area black within 15 seconds or less. If the reaction takes longer than 15 seconds, further cleaning is required as follows:

- a. Preparation for TNEMEC paints: Apply Oakite CrysCoat 747 or 747 LTS as recommended by manufacturer. Allow to dry and air chuck entire prepared area removing excess materials.
- b. Preparation for Wasser paints: Apply Great Lakes Clean and Etch or Oakite 747 as recommended by manufacturer followed by a thorough rinse.

2. Primer:

- a. TNEMEC: One (1) coat TNEMEC Series N 27 S.T. Typoxy @ 2.0 to 4.0 mil DFT.
- b. Wasser: One (1) coat of Wasser MC-CR @ 3.0-4.0 mils DFT.
- 3. For warranty purposes, the Contractor shall insure that the intermediate and finish coats specified in Division 9 "Painting" and the applied primer specified above are from the same manufacturer.

D. Pool Environment:

1. Surface Preparation: SSPC-SP6 Commercial Blast Cleaning, removing mill scale, rust, paint and other foreign matter except for staining, by use of abrasives. All surfaces must be clean, dry and free of oil, grease, dust, dirt or contaminants detrimental to the coating system.

Primer:

- a. TNEMEC: One (1) coat TNEMEC Series N 90-97 Tneme-Zinc @ 2.5 to 3.5 mil DFT.
- b. Wasser: One (1) coat of Waaer MC-Zinc @ 3.0-5.0mils DFT.
- 3. For warranty purposes, the Contractor shall insure that the intermediate and finish coats specified in Division 9 "Painting" and the applied primer specified above are from the same manufacturer.

E. Interior – Exposed:

- 1. Surface Preparation: After inspection and before shipping, clean steelwork to be painted. Remove loose rust, loose mill scale, and spatter, slag, or flux deposits. Clean steel in accordance with Steel Structures Painting Council (SSPC) as follows:
 - a. SP-1 "Solvent Cleaning".
 - b. SP-2 "Hand Tool Cleaning".
 - c. SP-3 "Power Tool Cleaning".
- 2. Primer: Manufacturer's standard rust-inhibiting primer.

2.4 SOURCE QUALITY CONTROL

- A. General: Materials and fabrication procedures are subject to inspection and tests in mill, shop, and field, conducted by a qualified inspection agency. Such inspections and tests will not relieve Contractor of responsibility for providing materials and fabrication procedures in compliance with specified requirements.
 - 1. Promptly remove and replace materials or fabricated components that do not comply.

- B. Design of Members and Connections: Details shown are typical; similar details apply to similar conditions, unless otherwise indicated. Verify dimensions at site whenever possible without causing delay in the work.
 - 1. Promptly notify Architect whenever design of members and connections for any portion of structure are not clearly indicated.

PART 3- EXECUTION

3.1 ERECTION

- A. Surveys: Employ a licensed land surveyor for accurate erection of structural steel. Check elevations of concrete and masonry bearing surfaces, and locations of anchor bolts and similar devices, before erection work proceeds, and report discrepancies to Architect. Do not proceed with erection until corrections have been made or until compensating adjustments to structural steel work have been agreed upon with Architect.
- B. Temporary Shoring and Bracing: Provide temporary shoring and bracing members with connections of sufficient strength to bear imposed loads. Remove temporary members and connections when permanent members are in place and final connections are made. Provide temporary guy lines to achieve proper alignment of structures as erection proceeds.
- C. Temporary Planking: Provide temporary planking and working platforms as necessary to effectively complete work.
- D. Setting Bases and Bearing Plates: Clean concrete and masonry bearing surfaces of bond-reducing materials and roughen to improve bond to surfaces. Clean bottom surface of base and bearing plates.
 - 1. Set leveling plates for structural columns on a bed of shrinkage resistant grout and level to proper elevation.
 - 2. Tighten anchor bolts after supported members have been positioned and plumbed.
 - 3. For proprietary grout materials, comply with manufacturer's instructions.
- E. Field Assembly: Set structural frames accurately to lines and elevations indicated. Align and adjust various members forming part of complete frame or structure before permanently fastening. Clean bearing surfaces and other surfaces that will be in permanent contact before assembly. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.
- F. Level and plumb individual members of structure within specified AISC tolerances.
- G. Establish required leveling and plumbing measurements on mean operating temperature of structure. Make allowances for difference between temperature at time of erection and mean temperature at which structure will be when completed and in service.
- H. Splice members only where indicated and accepted on shop drawings.
- I. Erection Bolts: On exposed welded construction, remove erection bolts, fill holes with plug welds, and grind smooth at exposed surfaces.
 - 1. Comply with AISC Specifications for bearing, adequacy of temporary connections, alignment, and removal of paint on surfaces adjacent to field welds.

- 2. Do not enlarge unfair holes in members by burning or by using drift pins, except in secondary bracing members. Ream holes that must be enlarged to admit bolts.
- J. Gas Cutting: Do not use gas cutting torches in field for correcting fabrication errors in primary structural framing. Cutting will be permitted only on secondary members that are not under stress, as acceptable to Architect. Finish gas-cut sections equal to a sheared appearance when permitted.
- K. Touch-Up Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas of shop paint. Apply paint to exposed areas using same material as used for shop painting.
 - 1. Apply by brush or spray to provide minimum dry film thickness of 1.5 mils.
- L. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.

3.2 QUALITY CONTROL

- A. Owner will engage an independent testing and inspection agency to inspect high-strength bolted connections and welded connections and to perform tests and prepare test reports.
- B. Testing agency shall conduct and interpret tests, state in each report whether test specimens comply with requirements, and specifically state any deviations therefrom.
- C. Provide access for testing agency to places where structural steel work is being fabricated or produced so that required inspection and testing can be accomplished.
- D. Testing agency may inspect structural steel at plant before shipment.
- E. Correct deficiencies in structural steel work that inspections and laboratory test reports have indicated to be not in compliance with requirements. Perform additional tests, at Contractor's expense, as necessary to reconfirm any noncompliance of original work and to show compliance of corrected work.
- F. Shop-Bolted Connections: Inspect or test in accordance with AISC specifications.
- G. Field-Bolted Connections: Inspect in accordance with AISC specifications.
- H. Field Welding: Inspect and test during erection of structural steel as follows:
 - 1. Conduct inspections and tests as required. Record types and locations of defects found in work. Record work required and performed to correct deficiencies.
 - 2. Perform visual inspection of all welds to AWS D1.1/D1.1M.
 - 3. Perform tests of welds as follows:
 - a. Liquid Penetrant Inspection: ASTM E 165.
 - b. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration not acceptable.

- c. Radiographic Inspection: ASTM E 94 and ASTM E 142; minimum quality level "2-2T."
- d. Ultrasonic Inspection: ASTM E 164.

END OF SECTION

STEEL DECKING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - Steel roof deck.
 - 2. Acoustical steel roof deck.
 - 3. Noncomposite steel form deck.
 - Composite steel floor deck.
- B. Related Sections: The following Sections contain requirements that relate to this Section:
 - 1. Division 03 Section "Cast-in-Place Concrete" for concrete fill and reinforcing steel.

1.3 SUBMITTALS

- A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.
- B. Product data for each type of deck, accessory, and product specified.
- C. Shop drawings showing layout and types of deck panels, anchorage details, reinforcing channels, pans, deck openings, special jointing, accessories, shear connector layout, and attachments to other construction.
 - 1. For steel deck indicated to comply with certain design loadings, include structural analysis data sealed and signed by the qualified professional engineer who was responsible for its preparation.
- D. Product certificates signed by manufacturers of steel deck certifying that their products comply with specified requirements.
- E. Welder certificates signed by Contractor certifying that welders comply with requirements specified under the "Quality Assurance" Article.
- F. Product test reports from qualified independent testing agencies evidencing compliance with requirements of the following based on comprehensive testing:
 - 1. Mechanical fasteners.
 - 2. Acoustic roof deck.
- G. Research reports or evaluation reports of the model code organization acceptable to authorities having jurisdiction that evidence steel deck's compliance with the building code in effect for the Project.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experienced Installer who has completed steel deck similar in material, design, and extent to that indicated for this Project and with a record of successful in-service performance.
- B. Testing Agency Qualifications: To qualify for acceptance, an independent testing agency must demonstrate to Architect's satisfaction, based on evaluation of agency-submitted criteria conforming to ASTM E 699, that it has the experience and capability to satisfactorily conduct the testing indicated without delaying the Work.
- C. Welding Standards: Comply with applicable provisions of AWS D1.1 "Structural Welding Code--Steel" and AWS D1.3 "Structural Welding Code--Sheet Steel."
 - 1. Certify that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.
- D. Fire-Test-Response Characteristics: Where indicated, provide steel deck panels identical to those tested as part of an assembly for fire resistance per ASTM E 119 by a testing and inspection agency performing testing and follow-up services, that is acceptable to authorities having jurisdiction.
 - 1. Fire-Resistance Ratings: As indicated by design designations listed in UL "Fire Resistance Directory," or by Warnock Hersey or another testing and inspecting agency.
 - 2. Labeling: Identify steel deck with appropriate markings of applicable testing and inspecting agency.
- E. FM Listing: Provide steel roof deck evaluated by Factory Mutual and listed in Factory Mutual "Approval Guide" for Class 1 fire rating and Class 1-60 windstorm ratings.
- F. Engineer Qualifications: A professional engineer legally authorized to practice in the jurisdiction where Project is located and experienced in providing engineering services of the kind indicated that have resulted in the installation of steel deck similar to this Project in material, design, and extent and that have a record of successful in-service performance.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Protect steel deck from corrosion, deformation, and other damage during delivery, storage, and handling.
- B. Stack steel deck on platforms or pallets and slope to provide drainage. Protect with a waterproof covering and ventilate to avoid condensation.

1.6 COORDINATION

A. Coordinate installation of sound-absorbing insulation strips in acoustic deck ribs with related units of Work specified in other Sections to ensure that the insulation is protected against damage from effects of the weather and other causes.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated in the Work include, but are not limited to, the following:

- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Bowman Metal Deck Armco, Inc.
 - 2. Consolidated Systems, Inc.
 - Epic Metals Corp.
 - 4. Vulcraft Div. of Nucor Corp.
 - 5. Wheeling Corrugating Co., Div. of Wheeling-Pittsburgh Steel Corp.

2.2 ROOF DECK

- A. Steel Roof Deck: Fabricate panels without top-flange stiffening grooves conforming to SDI Publication No. 28 "Specifications and Commentary for Steel Roof Deck" and the following:
 - Galvanized-Steel Sheet: ASTM A 653-94, Structural Quality, Grade 33. Galvanizing shall conform to ASTM A 924-94 with a minimum coating class of G60 (Z180) as defined in A 653-94.
 - a. Use where not exposed to view in finished construction.
 - Galvanized and Shop-Primed Steel Sheet: ASTM A 653-94, Structural Quality, Grade 33. Galvanizing shall conform to ASTM A 924-94 with a minimum coating of G60 (Z180) as defined in A 653-94; cleaned, pretreated, and primed with manufacturer's baked-on, lead- and chromate-free rust-inhibitive primer.
 - a. Use where exposed to view in finished construction.
- B. Acoustical Steel Roof Deck: Fabricate panels without top-flange stiffening grooves conforming to SDI Publication No. 28 "Specifications and Commentary for Steel Roof Deck" and the following:
 - Galvanized and Shop-Primed Steel Sheet: ASTM A 653-94, Structural Quality, Grade 33. Galvanizing shall conform to ASTM A 924-94 with a minimum coating of G60 (Z180) as defined in A 653-94; cleaned, pretreated, and primed with manufacturer's baked-on, lead- and chromate-free rust-inhibitive primer.
 - Acoustical Perforations and Sound Insulation: Deck panels with manufacturer's standard perforated vertical webs.

2.3 FLOOR DECK

- A. Composite Steel Floor Deck: Fabricate panels with integrally embossed or raised pattern ribs and interlocking side laps, conforming to SDI Publication No. 28 "Specifications and Commentary for Composite Steel Floor Deck," the minimum section properties indicated, and the following:
 - Galvanized-Steel Sheet: ASTM A 653-94, Structural Quality, Grade 33. Galvanizing shall conform to ASTM A 924-94 with a minimum coating class of G60 (Z180) as defined in A 653-94.
 - a. Use where not exposed to view in finished construction.

- Galvanized and Shop-Primed Steel Sheet: ASTM A 653-94, Structural Quality, Grade 33. Galvanizing shall conform to ASTM A 924-94 with a minimum coating of G60 (Z180) as defined in A 653-94; cleaned, pretreated, and primed with manufacturer's baked-on, lead and chromate-free rust inhibitive primer.
 - a. Use where exposed to view in finished construction.

2.4 FORM DECK

- A. Noncomposite Steel Form Deck: Fabricate ribbed-steel sheet noncomposite form deck panels conforming to SDI Publication No. 28 "Specifications and Commentary for Noncomposite Steel Form Deck," the minimum section properties indicated, and the following:
 - Galvanized-Steel Sheet: ASTM A 653-94, Structural Quality, Grade 33. Galvanizing shall conform to ASTM A 924-94 with a minimum coating class of G60 (Z180) as defined in A 653-94.

2.5 ACCESSORIES

- A. General: Provide accessory materials for steel deck that comply with requirements indicated and recommendations of the steel deck manufacturer.
- B. Mechanical Fasteners: Manufacturer's standard, corrosion-resistant, low-velocity, powder-actuated or pneumatically driven carbon steel fasteners; or self-drilling, self-threading screws.
- C. Side Lap Fasteners: Manufacturer's standard, corrosion-resistant, hexagonal washer head; self-drilling, carbon steel screws, No. 10 (4.8 mm) minimum diameter.
- D. Rib Closure Strips: Manufacturer's standard vulcanized, closed-cell, synthetic rubber.
- E. Sound-Absorbing Insulation: Manufacturer's standard premolded roll or strip glass fiber or mineral fiber.
- F. Miscellaneous Roof Deck Accessories: Steel sheet, 0.0359-inch- (0.91-mm-) thick minimum ridge and valley plates, finish strips, and reinforcing channels, of same material as roof deck.
- G. Pour Stops and Girder Fillers: Steel sheet, of same material as deck panels, and of thickness and profile indicated.
- H. Column Closures, End Closures, Z-Closures, and Cover Plates: Steel sheet, of same material and thickness as deck panels, unless otherwise indicated.
- I. Weld Washers: Manufacturer's standard uncoated-steel sheet weld washers, shaped to fit deck rib, 0.0598 inch (1.5 mm) thick with 3/8-inch (9.5-mm) minimum diameter prepunched hole.
- J. Shear Connectors: ASTM A 108, Grade 1010 through 1020 headed stud type, cold finished carbon steel, AWS D1.1, Type B.
- K. Steel Sheet Accessories: ASTM A 446, G 60 (ASTM A 446M, Z 180) coating class, galvanized according to ASTM A 525 (ASTM A 525M).
- L. Galvanizing Repair Paint: SSPC-Paint 20 or DOD-P-21035, with dry film containing a minimum of 94 percent zinc dust by weight.

2.6 SHOP PAINTING FOR DECK EXPOSED TO POOL ENVIRONMENT

A. General:

- 1. No coatings shall be applied until approved by the Architect and Owner's Representative.
- 2. Intermediate and finish coats shall be applied by the painting contractor per Division 9 Section "Painting."
- B. All types of deck exposed to view in a pool environment shall be prepared and shop prime painted as follows.
 - 1. Preparation: All galvanized metal receiving additional coats shall be tested by use of a copper sulfate test. This includes using a 10% solution of copper sulfate dissolved in water and applied to the galvanized surface. The reaction time between the copper sulfate and zinc should result in turning the galvanized area black within 15 seconds or less. If the reaction takes longer than 15 seconds, further cleaning is required as follows:
 - a. Preparation for TNEMEC paints: Apply Oakite CrysCoat 747 or 747 LTS as recommended by manufacturer.
 - b. Preparation for Wasser paints: Apply Great Lakes Clean and Etch or Oakite 747 as recommended by manufacturer followed by a thorough rinse.
 - 2. Primer: Prime coat should be applied at company performing galvanization.
 - a. TNEMEC: One (1) coat TNEMEC Series N 27 S.T. Typoxy @ 2.0 to 4.0 mil DFT.
 - b. Wasser: One (1) coat of Wasser MC-CR @ 3.0-4.0 mils DFT.
 - 3. For warranty purposes, the Contractor shall insure that the intermediate and finish coats specified in Division 9 "Painting" and the applied primer specified above are from the same manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine supporting framing and field conditions for compliance with requirements for installation tolerances and other conditions affecting performance of steel deck.

3.2 PREPARATION

- A. Do not place deck panels on concrete supporting structure until concrete has cured and is dry.
- B. Locate decking bundles to prevent overloading of supporting members.

3.3 INSTALLATION, GENERAL

- A. Install deck panels and accessories according to applicable specifications and commentary of SDI Publication No. 28, manufacturer's recommendations, and requirements of this Section.
- B. Install temporary shoring before placing deck panels when required to meet deflection limitations.

- C. Place deck panels on supporting framing and adjust to final position with ends accurately aligned and bearing on supporting framing before being permanently fastened. Do not stretch or contract side lap interlocks.
 - 1. Align cellular deck panels for entire length of run of cells and align cells at ends of abutting panels.
- D. Place deck panels flat and square and fasten to supporting framing without warp or deflection.
- E. Cut and neatly fit deck panels and accessories around openings and other work projecting through or adjacent to the decking.
- F. Provide additional reinforcement and closure pieces at openings as required for strength, continuity of decking, and support of other work.
- G. Comply with AWS requirements and procedures for manual shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work.
- H. Mechanical fasteners may be used in lieu of welding to fasten deck. Locate mechanical fasteners and install according to deck manufacturer's instructions.

3.4 ROOF DECK INSTALLATION

- A. Fasten roof deck panels to steel supporting members by arc spot (puddle) welds of the surface diameter indicated or arc seam welds with an equal perimeter, but not less than 1-1/2 inches (38 mm) long, and as follows:
 - 1. Weld Diameter: 5/8 inch (16 mm), nominal.
 - 2. Weld Spacing: Weld edge ribs of panels at each support. Space welds an average of 12 inches (305 mm) apart, with a minimum of two welds per unit at each support.
- B. Side Lap and Perimeter Edge Fastening: Fasten side laps and perimeter edges of panels between supports, at intervals not exceeding 36 inches (910 mm), using one of the following methods:
 - Mechanically fasten with self-drilling No. 10- (4.8-mm-) diameter or larger carbon steel screws.
 - 2. Mechanically clinch or button punch.
 - 3. Fasten with 1-1/2-inch- (38-mm-) long minimum welds.
- C. End Bearing: Install deck ends over supporting framing with a minimum end bearing of 1-1/2 inches (38 mm), with end joints as follows:
 - 1. End Joints: Lapped 2 inches (51 mm) minimum.
- D. Miscellaneous Roof Deck Accessories: Install ridge and valley plates, finish strips, cover plates, end closures, and reinforcing channels according to deck manufacturer's recommendations. Weld to substrate to provide a complete deck installation.
- E. Flexible Closure Strips: Install flexible closure strips over partitions, walls, and where indicated. Install with adhesive according to manufacturer's instructions to ensure complete closure.

F. Sound-Absorbing Insulation: Install premolded, roll or strip sound-absorbing insulation according to deck manufacturer's instructions.

3.5 FLOOR DECK INSTALLATION

- A. Fasten floor deck panels to steel supporting members by arc spot (puddle) welds of the surface diameter indicated and as follows:
 - 1. Weld Diameter: 5/8 inch (16 mm), nominal.
 - 2. Weld Spacing: Weld edge ribs of panels at each support. Space additional welds an average of 12 inches (305mm) apart, but not more than 18 inches (457 mm) apart..
- B. Side lap and Perimeter Edge Fastening: Fasten side laps and perimeter edges of panels between supports, or at intervals not exceeding 36 inches (910 mm), using one of the following methods:
 - 1. Mechanically fasten with self-drilling No. 10 (418 mm diameter) or larger carbon steel screws.
- C. End Bearing: Install deck ends over supporting framing with a minimum end bearing of 1 ½ inches (38mm), with end joints as follows:
 - 1. End Joints: Butted.
- D. Shear Connectors: Weld shear connectors through deck to support framing according to AWS D1.1 and manufacturer's instructions. Butt end joints of deck panels; do not overlap.
- E. Pour Stops and Girder Fillers: Weld steel sheet pour stops and girder fillers to supporting structure according to SDI recommendations, unless otherwise indicated.
- F. Floor Deck Closures: Weld steel sheet column closures, cell closures, and Z-closures to deck according to SDI recommendations to provide tight-fitting closures at open ends of ribs and sides of decking. Weld cover plates at changes in direction of floor deck panels, unless otherwise indicated.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: A qualified independent testing agency employed and paid by Owner will perform field quality-control testing.
- B. Field welds will be subject to inspection.
- C. Shear Connector welds will be inspected and tested according to the requirements of AWS D1.1 for stud welding and as follows:
 - 1. Shear connector welds will be visually inspected.
 - 2. Bend tests will be performed when visual inspections reveal either less than a continuous 360 degree flash or welding repairs to any shear connector.
 - 3. Tests will be conducted on additional shear connectors when weld fracture occurs on shear connectors already tested, according to the requirements of AWS D1.1.
- D. Testing agency will report test results promptly and in writing to Contractor and Architect.
- E. Remove and replace work that does not comply with specified requirements.

F. Additional testing will be performed to determine compliance of corrected work with specified requirements.

3.7 REPAIRS AND PROTECTION

- A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on both surfaces with galvanized repair paint according to ASTM A 780 and the manufacturer's instructions.
- B. Touchup Painting: Wire brush, clean, and paint scarred areas, welds, and rust spots on both surfaces of installed deck panels.
 - 1. Touch up painted surfaces with same type of shop paint used on adjacent surfaces.
 - 2. Where shop-painted surfaces are exposed in-service, apply touchup paint to blend into adjacent surfaces.
- C. Provide final protection and maintain conditions to ensure steel decking is without damage or deterioration at time of Substantial Completion.

END OF SECTION

METAL FABRICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Joist or Beam Reinforcement.
 - 2. Steel framing and supports for mechanical and electrical equipment.
 - 3. Steel framing and supports for applications where framing and supports are not specified in other Sections.
 - 4. Shelf angles.
 - 5. Metal bar gratings.
 - 6. Loose bearing and leveling plates.
 - 7. Metal floor plate and supports.
 - 8. Swing Gate
 - 9. Pipe Bollards
- B. Products furnished, but not installed, under this Section include the following:
 - 1. Loose steel lintels.
 - 2. Anchor bolts, steel pipe sleeves, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.
- C. Related Sections include the following:
 - 1. Division 03 Section "Cast-in-Place Concrete" for installing anchor bolts, steel pipe sleeves, wedge-type inserts and other items indicated to be cast into concrete.
 - 2. Division 04 Section "Unit Masonry" for installing loose lintels, anchor bolts, and other items indicated to be built into unit masonry.

1.3 DEFINITIONS

- A. Action Submittals: Mandatory submittals by the Sub-Contractor which require action on the part of the General Contractor, Construction Manager and Design Professional.
 - 1. General Contractor and Construction Manager: Review, Stamp and Forward to the Design Professional.
 - 2. Design Professional: Review, Stamp and Return to the General Contractor or Construction Manager.

B. Informational Submittals: Mandatory submittals by the Sub-Contractor to the General Contractor, Construction Manager and Design Professional which are not returned but kept by each for their project record.

1.4 ACTION SUBMITTALS

- A. General: Submit each item in this Article according to the Conditions of the Contract and Division 01 Specification Sections.
- B. Shop Drawings: Show fabrication and installation details for metal fabrications.
 - 1. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items.
 - 2. Provide templates for anchors and bolts specified for installation under other Sections.

1.5 INFORMATIONAL SUBMITTALS

- A. General: Submit each item in this Article according to the Conditions of the Contract and Division 01 Specification Sections.
- B. Product Data: For the following:
 - 1. Paint products.
 - 2. Grout.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - 2. AWS D1.3, "Structural Welding Code--Sheet Steel."
- B. Fabricator Qualifications: Firms experienced in successfully producing metal fabrications similar to that indicated for this Project, with sufficient production capacity to produce required units without causing delay in the Work.
- C. Installer Qualifications: Arrange for installation of metal fabrications specified in this section by same firm that fabricated them.
- D. Qualify welding processes and welding operators in accordance with AWS D1.1 "Structural Welding Code Steel," D1.3 "Structural Welding Code Sheet Steel", and D1.2 "Structural Welding Code Aluminum."
- E. Certify that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.

1.7 PROJECT CONDITIONS

- A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication and indicate measurements on Shop Drawings.
 - Established Dimensions: Where field measurements cannot be made without delaying the Work, establish dimensions and proceed with fabricating metal fabrications without field measurements. Coordinate wall and other contiguous construction to ensure that actual dimensions correspond to established dimensions.
 - 2. Provide allowance for trimming and fitting at site.

1.8 COORDINATION

- A. Coordinate installation of anchorages for metal fabrications. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
- B. Coordinate installation of steel weld plates and angles for casting into concrete that are specified in this Section but required for work of another Section. Deliver such items to Project site in time for installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 METALS, GENERAL

A. Metal Surfaces, General: Provide materials with smooth, flat surfaces, unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.

2.3 FERROUS METALS

- A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- B. Rolled-Steel Floor Plate: ASTM A 786/A 786M, rolled from plate complying with ASTM A 36/A 36M or ASTM A 283/A 283M, Grade C or D.

- C. Steel Tubing: ASTM A 500, cold-formed steel tubing.
- D. Steel Pipe: ASTM A 53/A 53M, standard weight (Schedule 40), unless another weight is indicated or required by structural loads.
- E. Slotted Channel Framing: Cold-formed metal channels with continuous slot complying with MFMA-3.
 - 1. Size of Channels: 1-5/8
 - 2. Depth of Channels: As required by field and framing conditions.
 - 3. Material: Galvanized steel complying with ASTM A 653/A 653M, commercial steel, Type B, with G90 coating.
 - 4. Nominal thickness: As required by field and framing conditions.

2.4 FASTENERS

- A. General: Unless otherwise indicated, provide Type 304 or 316 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633, Class Fe/Zn 5, at exterior walls. Provide stainless-steel fasteners for fastening aluminum. Select fasteners for type, grade, and class required.
- B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A; with hex nuts, ASTM A 563; and, where indicated, flat washers.
- C. Anchor Bolts: ASTM F 1554, Grade 36.
 - 1. Provide hot-dip or mechanically deposited, zinc-coated anchor bolts where item being fastened is indicated to be galvanized.
- D. Lag Bolts: ASME B18.2.1.
- E. Wood Screws: Flat head, ASME B18.6.1.
- F. Plain Washers: Round, ASME B18.22.1.
- G. Lock Washers: Helical, spring type, ASME B18.21.1.
- H. Undercut or Adhesive Anchors: Anchor bolt and sleeve assembly with capability to sustain, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488, conducted by a qualified independent testing agency.
 - 1. Material for Anchors in Interior Locations: Carbon-steel components zinc-plated to comply with ASTM B 633, Class Fe/Zn 5.
 - 2. Material for Anchors in Exterior Locations: Alloy Group 1 or 2 stainless-steel bolts complying with ASTM F 593 and nuts complying with ASTM F 594.

2.5 GROUT AND ANCHORING CEMENT

- Α. Nonshrink Metallic Grout: Premixed, factory-packaged, ferrous aggregate grout complying with CE CRD-C 621, specifically recommended by manufacturer for heavy duty loading applications of type specified in this section.
- B. Nonshrink Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with CE CRD-C 621. Provide grout specifically recommended by manufacturer for interior and exterior applications of type specified in this section.
- C. Erosion-Resistant Anchoring Cement: Factory-prepackaged, nonshrink, nonstaining, hydraulic controlled expansion cement formulation for mixing with water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without need for protection by a sealer or waterproof coating and is recommended for exterior use by manufacturer.
- D. Products: Subject to compliance with requirements, provide one of the following:
 - 1. Nonshrink Nonmetallic Grouts:
 - "Bonsal Construction Grout." W.R. Bonsal Co. a.
 - b. "Diamond-Crete Grout," Concrete Service Materials Co.
 - "Euco N-S Grout," Euclid Chemical Co.
 - "Kemset," Chem-Masters Corp. d.
 - "Crystex," L & M Construction Chemicals, Inc. e.
 - "Masterflow 713," Master Builders. f.
 - "Sealtight 588 Grout," W.R. Meadows, Inc. g.
 - "Sonogrout," Sonneborn Building Products Div., Rexnord Chemical Products, Inc. h.
 - i.
 - "Stoncrete NM1,," Stonhard, Inc. "Five Star Grout," U.S. Grout Corp. j.
 - "Vibropruf #11," Lambert Corp. k.
 - 2. Erosion-Resistant Anchoring Cement:
 - a. "Super Por-Rok"; Minwax Construction Products Division.

MISCELLANEOUS MATERIALS 2.6

- Α. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.
- B. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79.
 - 1. Use primer with a VOC content of 420 g/L (3.5 lb/gal.) or less when calculated according to 40 CFR 59. Subpart D (EPA Method 24).
 - Use primer containing pigments that make it easily distinguishable from zinc-rich primer. 2.
- C. Galvanizing Repair Paint: High-zinc-dust-content paint for regalvanizing welds in steel, complying with SSPC-Paint 20.
- D. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

E. Non-shrink, Nonmetallic Grout: Factory-packaged, non-staining, non-corrosive, non-gaseous grout complying with ASTM C 1107. Provide grout specifically recommended by manufacturer for interior and exterior applications.

2.7 PAINT

- A. Shop Primer for Ferrous Metal: Manufacturer's or fabricator's standard, fast-curing, lead-free, universal modified alkyd primer selected for good resistance to normal atmospheric corrosion, for compatibility with finish paint systems indicated, and for capability to provide a sound foundation for field-applied topcoats despite prolonged exposure complying with performance requirements of FS TT-P-664D.
- B. Galvanizing Repair Paint: High zinc dust content paint for regalvanizing welds in galvanized steel, with dry film containing not less than 94 percent zinc dust by weight, and complying with DOD-P-21035 or SSPC-Paint-20.
- C. Bituminous Paint: Cold-applied asphalt mastic complying with SSPC-Paint 12 except containing no asbestos fibers.
- D. Zinc Chromate Primer: FS TT-P-645

2.8 FABRICATION, GENERAL

- A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.
- B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch, unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.
- C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- D. Form exposed work true to line and level with accurate angles and surfaces and straight edges.
- E. Weld corners and seams continuously to comply with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) screws or bolts, unless otherwise indicated. Locate joints where least conspicuous.

- G. Fabricate seams and other connections that will be exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.
- H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.
- I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.
 - 1. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches, with a minimum 6-inch embedment and 2-inch hook, not less than 8 inches from ends and corners of units and 24 inches o.c., unless otherwise indicated.

2.9 JOIST OR BEAM REINFORCEMENT

- A. General: Fabricate material in lengths manageable at the site. Splices of material shall be made with full penetration welds or other as reviewed in advance by the Engineer of Record.
 - 1. Coordinate material lengths with access logistics. Headroom or other access limitations may require Substitutions of plates or shapes with other plates or shapes of nominally equal weight. The Engineer of Record prior to fabrication must review substitutions.
- B. Field verify web and chord configurations of existing joists to be reinforced. Configurations indicated on the Drawings are diagrammatic only, which indicate only the extent of web and chord reinforcement. Other configurations may exist, i.e. panel dimensions may be different and there may be more verticals and diagonals than shown on the Drawings, but nonetheless all web members within the zone indicated are to be reinforced.
 - 1. The shape of the existing chords or web members may require Substitutions of plates or shapes with other plates or shapes of nominally equal weight. The Engineer of Record prior to fabrication must review substitutions.

2.10 METAL BAR GRATINGS

- E. General: Produce metal bar gratings of description indicated per NAAMM marking system that comply with the following:
 - 1. Metal Bar Grating Standard "Standard Specifications for Metal Bar Grating and Metal Bar Grating Treads" published in ANSI/NAAMM A201 "Metal Bar Grating Manual."
 - 2. Heavy Duty Metal Bar Grating Standard: "Guide Specifications for Heavy Duty Metal Bar Grating" published in NAAMM "Heavy Duty Metal Bar Grating Manual."
- F. Fabricate welded heavy duty steel gratings to comply with requirements indicated below:
 - 1. Mark/Size: W-19-4 (welded with bearing bars 1-3/16 inch o.c. and cross bars 4 inches o.c.)/bearing bar sizes as indicated, but not less than required to comply with structural performance requirements.
- G. Surface for Steel Bar Gratings: As follows:

- 1. Plain.
- H. Steel Finish: As follows:
 - 1. Shop prime paint applied in accordance with manufacturer's standard practice.
- I. Furnish toe plates for attachment in field.
 - 1. Toe plate height: 4 inches, unless a greater height indicated.
- J. Fabricate cutouts in grating sections for penetrations indicated. Arrange layout of cutouts to permit grating removal without disturbing items penetrating gratings.
 - 1. Edge band openings in grating that interrupt 4 or more bearing bars with bars of same size and material as bearing bars.
 - 2. Do not notch bearing bars at supports to maintain elevation.
- K. Manufacturers: Subject to compliance with requirements, provide metal bar gratings by one of the following:
 - 1. Alabama Metal Industries Corp.
 - 2. Barnett/Bates Corp.
 - 3. Blaw-Knox Grating Div., Blaw-Knox Corp.
 - 4. IKG Industries
 - 5. Klemp Corp.
 - 6. Ohio Gratings, Inc.
 - 7. Reliance Steel Products, Inc.
 - 8. Seidelhuber Metal Products, Inc.
 - 9. Trueweld, Inc.
- L. Steel Floor Plate Treads and Platforms: Provide raised pattern steel floor plate in pattern indicated or, if not indicated, as selected from manufacturer's standard patterns.
 - 1. Form treads of 1/4-inch thick raised pattern steel floor plate with integral nosing and back edge stiffener. Weld steel supporting brackets to stringers and treads to brackets.
 - Fabricate platforms of raised pattern steel floor plate of thickness indicated. Provide nosing matching that on treads at all landings. Secure to platform framing members with welds.
- M. Floor Grating Treads and Platforms: Provide patterns, spacing, and bar sizes indicated; fabricate to comply with NAAMM "Metal Bar Grating Manual."
 - 1. Finish: Shop prime paint.
 - 2. Finish: Painted.

- N. Fabricate grating treads with steel plate nosing on one edge and with steel angle or steel plate carrier at each end for stringer connections. Secure treads to stringers with bolts.
- O. Fabricate grating platforms, with nosing matching that on grating treads, at all landings. Provide toe plates at open-sided edges of grating platform. Secure grating to platform frame with welds.

2.11 MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.
- B. Fabricate units from steel shapes, plates, and bars of welded construction, unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction retained by framing and supports. Cut, drill, and tap units to receive hardware, hangers, and similar items.
 - 1. Fabricate units from slotted channel framing where indicated.
 - 2. Furnish inserts if units are installed after concrete is placed.
- C. Fabricate supports for ceiling-hung toilet compartments from continuous steel beams or channels of sizes indicated with attached bearing plates, anchors, and braces as indicated.
- D. Fabricate frames for overhead doors from continuous steel channels and beams of sizes indicated with attached bearing plates, anchors, and braces as indicated.
- E. Fabricate supports for operable partitions from continuous steel beams of sizes indicated with attached bearing plates, anchors, and braces as indicated. Drill bottom flanges of beams to receive partition track hanger rods; locate holes where indicated on operable partition Shop Drawings.
- F. Fabricate steel girders for wood frame construction from continuous steel shapes of sizes indicated.
 - 1. Provide bearing plates welded to beams where indicated.
 - 2. Drill girders and plates for field-bolted connections where indicated.
 - 3. Where wood nailers are attached to girders with bolts or lag screws, drill holes at 24 inches o.c.
- G. Fabricate steel pipe columns for supporting wood frame construction from steel pipe with steel baseplates and top plates as indicated. Drill baseplates and top plates for anchor and connection bolts and weld to pipe with fillet welds all around. Make welds the same size as pipe wall thickness, unless otherwise indicated.
 - 1. Unless otherwise indicated, fabricate from Schedule 40 steel pipe.
 - 2. Unless otherwise indicated, provide 1/2-inch baseplates with four 5/8-inch anchor bolts and 1/4-inch top plates.
- H. Galvanize miscellaneous framing and supports where exposed to the elements such at the Building Exterior as well as interior locations which are humid or corrosive.
- I. Prime miscellaneous framing and supports with zinc-rich primer where indicated.

2.12 LOOSE STEEL LINTELS

- A. Fabricate loose steel lintels from steel angles and shapes of size indicated for openings and recesses in masonry walls and partitions at locations indicated. Weld adjoining members together to form a single unit where indicated.
- B. Size loose lintels to provide bearing length at each side of openings equal to 1/12 of clear span but not less than 8 inches, unless otherwise indicated.
- C. Galvanize loose steel lintels located in exterior walls.

2.13 SHELF ANGLES

- A. Fabricate shelf angles from steel angles of sizes indicated and for attachment to concrete framing. Provide horizontally slotted holes to receive 3/4-inch bolts, spaced not more than 6 inches from ends and 24 inches o.c., unless otherwise indicated.
 - 1. Provide mitered and welded units at corners.
 - 2. Provide open joints in shelf angles at expansion and control joints. Make open joint approximately 2 inches larger than expansion or control joint.
- B. For cavity walls, provide vertical channel brackets to support angles from backup masonry and concrete.
- C. Galvanize shelf angles located in exterior walls.
- D. Furnish wedge-type concrete inserts, complete with fasteners, to attach shelf angles to cast-inplace concrete.

2.14 LOOSE BEARING AND LEVELING PLATES

- A. Provide loose bearing and leveling plates for steel items bearing on masonry or concrete construction. Drill plates to receive anchor bolts and for grouting.
- B. Galvanize plates after fabrication.

2.15 PIPE BOLLARDS

- A. Fabricate pipe bollards from Schedule 80 steel pipe. Cap bollards with 1/4-inch minimum thickness steel base plate.
- B. Fabricate sleeves for bollard anchorage from steel pipe with 1/4-inch thick steel plate welded to bottom of sleeve.

2.16 SWING GATES

A. General: Fabricate as indicated for gate posts and single swing gate types.

- 1. Gate Leaf Width: As indicated.
- B. Tubing and angles:
 - 1. Galvanized in sizes indicated and prepped for field painting. All surfaces shall be smooth without roughness.
- C. Frame Construction: Welded.
- D. Hardware:
 - 1. Hinges: Exterior heavy-duty commercial grade five-knuckle design with 180-degree swing in direction indicated on Drawings.
 - 2. Latch: Permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate.
 - 3. Provide a ground pin for non-operable gate to latch operable gate into.

2.17 METAL FLOOR PLATE

- A. Fabricate from rolled-steel floor plate of thickness indicated below:
 - 1. Thickness: As indicated.
- B. Provide steel angle supports as indicated.
- C. Include steel angle stiffeners, and fixed and removable sections as indicated.

2.18 FINISHES, GENERAL

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Finish metal fabrications after assembly.

2.19 STEEL AND IRON FINISHES

- A. Galvanizing: Hot-dip galvanize items as indicated to comply with applicable standard listed below:
 - 1. ASTM A 123/A 123M, for galvanizing steel and iron products.
 - 2. ASTM A 153/A 153M, for galvanizing steel and iron hardware.
- B. Preparation for Shop Priming: Prepare uncoated ferrous-metal surfaces to comply with minimum requirements indicated below for SSPC surface preparation specifications and environmental exposure conditions of installed metal fabrications:
 - 1. Exteriors (SSPC Zone 1B): SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 - 2. Interiors (SSPC Zone 1A): SSPC-SP 3, "Power Tool Cleaning."

- C. Shop Priming: Apply shop primer to uncoated surfaces of metal fabrications, except those with galvanized finishes and those to be embedded in concrete, sprayed-on fireproofing, or masonry, unless otherwise indicated. Comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.
 - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.

D. Pool Environment:

 Surface Preparation: SSPC-SP6 Commercial Blast Cleaning, removing mill scale, rust, paint and other foreign matter except for staining, by use of abrasives. All surfaces must be clean, dry and free of oil, grease, dust, dirt or contaminants detrimental to the coating system.

Primer:

- a. TNEMEC: One (1) coat TNEMEC Series N 90-97 Tneme-Zinc @ 2.5 to 3.5 mil DFT.
- b. Wasser: One (1) coat of Waaer MC-Zinc @ 3.0-5.0mils DFT.
- 3. For warranty purposes, the Contractor shall insure that the intermediate and finish coats specified in Division 9 "Painting" and the applied primer specified above are from the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.
- B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
- C. Field Welding: Comply with the following requirements:
 - Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for

- use with concrete and masonry inserts, toggle bolts, through bolts, lag bolts, wood screws, and other connectors.
- E. Corrosion Protection: Coat concealed surfaces of aluminum that will come into contact with grout, concrete, masonry, wood, or dissimilar metals with a heavy coat of bituminous paint.

3.2 INSTALLING JOIST AND BEAM REINFORCEMENT

- A. General: Install reinforcement material to comply with the strengthening requirements indicated on the Design Drawings.
- B. Prior to welding new material to existing surfaces, thoroughly clean all surfaces to remove rust, paint, dirt, mill scale or other foreign matter in the weld area.
- C. All field welds shall be cleaned of slag and scale and inspected by the site quality assurance inspector.
- D. Prime paint welds after welding passes inspection.

3.3 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.
- B. Support steel girders on solid grouted masonry, concrete, or steel pipe columns. Secure girders with anchor bolts embedded in grouted masonry or concrete or with bolts through top plates of pipe columns.
 - 1. Where grout space under bearing plates is indicated for girders supported on concrete or masonry, install as specified in "Installing Bearing and Leveling Plates" Article.
- C. Install pipe columns on concrete footings with grouted baseplates. Position and grout column baseplates as specified in "Installing Bearing and Leveling Plates" Article.
 - Grout baseplates of columns supporting steel girders after girders are installed and leveled.

3.4 INSTALLING BEARING AND LEVELING PLATES

- A. Clean concrete and masonry bearing surfaces of bond-reducing materials, and roughen to improve bond to surfaces. Clean bottom surface of plates.
- B. Set bearing and leveling plates on wedges, shims, or leveling nuts. After bearing members have been positioned and plumbed, tighten anchor bolts. Do not remove wedges or shims but, if protruding, cut off flush with edge of bearing plate before packing with grout.
 - 1. Use non-shrink grout, either metallic or nonmetallic, in concealed locations where not exposed to moisture; use non-shrink, nonmetallic grout in exposed locations, unless otherwise indicated.

2. Pack grout solidly between bearing surfaces and plates to ensure that no voids remain.

3.5 INSTALLATION OF STEEL PIPE RAILINGS AND HANDRAILS

- A. Adjust railings prior to anchoring to ensure matching alignment at abutting joints. Space posts at spacing indicated, or if not indicated, as required by design loadings. Plumb posts in each direction. Secure posts and railing ends to building construction as follows:
 - 1. Anchor posts in concrete by means of pipe sleeves preset and anchored into concrete. After posts have been inserted into sleeves, fill annular space between post and sleeve solid with the following anchoring material, mixed and placed to comply with anchoring material manufacturer's directions.
 - 2. Anchor posts in concrete by core drilling holes not less than 5 inches deep and 3/4 inch greater than outside diameter of post. Clean holes of all loose material, insert posts and fill annular space between post and concrete with the following anchoring material, mixed and placed to comply with anchoring material manufacturer's directions.
 - a. Nonshrink, nonmetallic grout.
 - b. Nonshrink, nonmetallic grout or anchoring cement.
 - c. Cover anchorage joint with a round steel flange attached to post as follows:
 - 1) Welded to post after placement of anchoring material.
 - 2) By set screws.
 - d. Leave anchorage joint exposed, wipe off surplus anchoring material, and leave 1/8-inch build-up, sloped away from post. For installations exposed on exterior, or to flow of water, seal anchoring material to comply with grout manufacturer's directions.
 - 2. Anchor posts to steel with steel oval flanges, angle type or floor type as required by conditions, welded to posts and bolted to steel supporting members.
 - 3. Anchor rail ends into concrete and masonry with steel round flanges welded to rail ends and anchored into wall construction with lead expansion shields and bolts.
 - 4. Anchor rail ends to steel with steel oval or round flanges welded to rail ends and bolted to structural steel members, unless otherwise indicated.
 - 5. Install removable railing sections where indicated in slip-fit metal sockets cast into concrete. Accurately locate sockets to match post spacing.
- B. Secure handrails to wall with wall brackets and end fittings. Provide bracket with not less than 1-1/2 inch clearance from inside face of handrail and finished wall surface. Locate brackets as indicated, or if not indicated, at spacing required to support structural loads. Secure wall brackets and wall return fittings to building construction as follows:
 - 1. Use type of bracket with flange tapped for concealed anchorage to threaded hanger bolt.
 - 2. Use type of bracket with pre-drilled hole for exposed bolt anchorage.

- 3. For concrete and solid masonry anchorage, use drilled-in expansion shield and either concealed hanger bolt or exposed lag bolt, as applicable.
- 4. For hollow masonry anchorage, use toggle bolts having square heads.
- 5. For wood stud partitions, use lag bolts set into wood backing between studs. Coordinate with stud installations for accurate location of backing members.
- For steel framed gypsum board assemblies, fasten brackets directly to steel framing or concealed anchors using self-tapping screws of size and type required to support structural loads.
- C. Expansion Joints: Provide expansion joints at locations indicated, or if not indicated, at intervals not to exceed 40 feet. Provide slip joint with internal sleeve extending 2 inches beyond joint on either side; fasten internal sleeve securely to one side; locate joint within 6 inches of post.

3.6 GATE INSTALLATION

A. Install gates level, plumb, and secure for full opening without interference. Attach hardware using tamper-resistant or welded means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation. All side reveals to be equal.

3.7 INSTALLATION OF BOLLARDS

A. Anchor bollards in concrete by means of pipe sleeves preset and anchored into concrete. After bollards have been inserted into sleeves, fill annular space between bollard and sleeve solid with nonshrink, nonmetallic grout, mixed and placed to comply with grout manufacturer's directions.

3.8 ADJUSTING AND CLEANING

- A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Apply by brush or spray to provide a minimum 2.0-mil dry film thickness.
- B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780.

END OF SECTION

ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS:

A. Drawings and General Provisions of Contract, including General and Supplementary Conditions and Division 01 Specification sections, apply to work of this section.

1.2 SUMMARY:

- A. Types of work in this section include rough carpentry for the following:
 - 1. Wood grounds, nailers and blocking
 - 2. Framing with dimension lumber.

1.3 DEFINITIONS:

A. Rough carpentry includes carpentry work not specified in other sections and not exposed to view, except as otherwise indicated.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 - Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 - 3. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D 5664.
 - 4. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.
 - 5. Include copies of warranties from chemical treatment manufacturers for each type of treatment.
- B. Fastener Patterns: Full-size templates for fasteners in exposed framing.

1.5 INFORMATIONAL SUBMITTALS

- A. Material Certificates: For dimension lumber specified to comply with minimum allowable unit stresses. Indicate species and grade selected for each use and design values approved by the ALSC Board of Review.
- B. Evaluation Reports: For the following, from ICC-ES:
 - Wood-preservative-treated wood.

Fire-retardant-treated wood.

1.6 QUALITY ASSURANCE

A. Single source responsibility for Fire-Retardant-Treated wood: Obtain each type of fire-retardant-treated wood product from one source and by a single producer.

1.7 DELIVERY, STORAGE AND HANDLING

- A. Keep materials under cover and dry. Protect against exposure to weather and contact with damp or wet surfaces. Stack lumber as well as plywood and other panels, provide for air circulation within and around stacks and under temporary coverings including polyethylene and similar materials.
- B. For lumber and plywood pressure treated with waterborne chemicals, place spacers between each bundle to provide air circulation.

1.8 PROJECT CONDITIONS:

A. Coordination: Fit carpentry work to other work; scribe and cope as required for accurate fit. Correlate location of furring, nailers, blocking, grounds and similar supports to allow attachment of other work.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Wood Preservative-Treated materials:
 - a. Baxter: J.H. Baxter Co.
 - b. Chemical Specialties, Inc.
 - c. Continental Wood Preservers, Inc.
 - d. Hickson Corp.
 - e. Hoover Treated Wood Products, Inc.
 - f. Osmose Wood Preserving, Inc.
 - 2. Fire-Retardant-Treated Materials, Exterior Type:
 - a. American Wood Treaters, Inc.
 - b. Hoover Treated Wood Products, Inc.

2.2 LUMBER, GENERAL:

- A. Lumber Standards: Manufacture lumber to comply with DOC PS 20 "American Lumber Standard" and with applicable grading rules of inspection agencies certified by American Lumber Standards Committee's (ALSC) Board of Review.
- B. Inspection Agencies: Inspection agencies and the abbreviations to reference them, include the following:
 - 1. NELMA Northeastern Lumber Manufacturers Association

- RIS Redwood Inspection Service.
- 3. SPIB Southern Pine Inspection Bureau.
- 4. WCLIB West Coast Lumber Inspection Bureau.
- 5. WWPA Western Wood Products Association.
- 6. APA American Plywood Association.
- C. Grade Stamps: Factory-mark each piece of lumber with grade stamp of inspection agency evidencing compliance with grading rule requirements and identifying grading agency, grade, species, moisture content at time of surfacing, and mill.
 - Provide seasoned lumber with 19 percent maximum moisture content at time of dressing and shipment for sizes 2 inches or less in nominal thickness, unless otherwise indicated.
 - 2. For exposed lumber, furnish pieces with grade stamps applied to ends or back of each piece, or omit grade stamps and provide grade-compliance certificates issued by the inspection agency.
- D. Where nominal sizes are indicated, provide actual sizes required by DOC PS 20 for moisture content specified. Where actual sizes are indicated, they are minimum dressed sizes for dry lumber.
- E. Plywood Standards: Comply with PS1 "U.S. Product standard for Construction and Industrial Plywood" for plywood construction panels and, for products not manufactured under PS1 provision, with APA PRP-108. Furnish panels factory marked with APA trademarks evidencing compliance with grade requirements.

2.3 MISCELLANEOUS LUMBER AND PLYWOOD:

- A. Provide wood for support or attachment of other work including rooftop equipment curbs and support bases, cant strips, bucks, nailers, blocking, furring, grounds, stripping and similar members. Provide lumber of sizes indicated, worked into shapes shown, or as required, and as follows:
- B. Moisture content: 19 percent maximum for lumber items not specified to receive wood preservative treatment.
- C. Grade: Standard Grade light framing size lumber of any species or board size lumber as required. No. 3 Common or Standard grade boards per WCLIB or WWPA rules or No. 3 boards per SPIB rules.
- D. Plywood Grade: APA C-D PLUGGED EXTERIOR, with minimum space rating to suit support spacing and plywood thickness indicated.

2.4 MISCELLANEOUS MATERIALS:

A. Fasteners and Anchorages: Provide size, type, material and finish as indicated and as recommended by applicable standards, complying with applicable Federal Specifications for nails, staples, screws, bolts, nuts, washers and anchoring devices. Provide metal hangers and framing anchors of the size and type recommended by the manufacturer for each use including recommended nails. Where rough carpentry work is exposed to weather, in ground contact, or in area of high relative humidity, provide fasteners and anchorages with a hot-dip zinc coating (ASTM A 153).

2.5 PRESERVATIVE WOOD TREATMENT BY PRESSURE PROCESS:

- A. General: Where lumber or plywood is indicated as preservative- treated wood or is specified herein to be treated, comply with applicable requirements of AWPA Standards C2 (Lumber) and C9 (Plywood). Mark each treated item with the AWPB or SPIB Quality Mark Requirements.
 - 1. Do not use chemicals containing chromium or arsenic.
- B. Pressure-treat above-ground items with water-borne preservatives to a minimum retention of 0.25 pcf. For interior uses, after treatment, kiln-dry lumber and plywood to a maximum moisture content, respectively, of 19% and 15%. Treat indicated items and the following:
 - 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 - 2. Wood sills, sleepers, blocking, furring, stripping, and similar concealed members in contact with masonry or concrete.
- C. Complete fabrication of treated items prior to treatment, where possible. If cut after treatment, coat cut surfaces to comply with AWPA M4. Inspect each piece of lumber or plywood after drying and discard damaged or defective pieces.

2.6 FIRE-RETARDANT TREATMENT BY PRESSURE PROCESS:

- A. General: Where fire-retardant-treated wood is indicated, pressure impregnate lumber and plywood with fire-retardant chemicals to comply with AWPA C20 and C27, respectively, for treatment type indicated; identify "fire-retardant-treated wood" with appropriate classification marking of Underwriters Laboratories, Inc. (UL), U.S. Testing, Timber Products Inspection, Inc. or other testing and inspecting agency acceptable to authorities having jurisdiction.
 - Current Evaluation/Research Reports: Provide fire-retardant- treated wood for which a
 current model code evaluation/research report exists that is acceptable to authorities
 having jurisdiction and that evidences compliance of fire-retardant- treated wood for
 application indicated.
- B. Exterior Type: Use for exterior locations and where indicated.
- C. Inspect each piece of treated lumber or plywood after drying and discard damaged or defective pieces.

2.7 DIMENSION LUMBER

- A. General: Provide dimension lumber of grades indicated according to the ALSC National Grading Rule (NGR) provisions of the inspection agency indicated.
 - 1. Grade: Construction, Stud, or No.3
 - 2. Species:
 - a. Douglas fir-larch; WCLIB or WWPA
 - b. Hem-fir; WCLIB or WWPA

- c. Southern Pine: SPIB
- d. Douglas fir south; WWPA
- e. Any species above

PART 3 - EXECUTION

3.1 INSTALLATION GENERAL:

- A. Discard units of material with defects which might impair quality of work, and units which are too small to use in fabricating work with minimum joints or optimum joint arrangement.
- B. Set carpentry work to required levels and lines, with members plumb and true and accurately cut and fitted.
- C. Securely attach carpentry work to substrate by anchoring and fastening as shown and as required by recognized standards.
- D. Countersink nail heads on exposed carpentry work and fill holes.
- E. Use common wire nails, except as otherwise indicated. Use finishing nails for finish work. Select fasteners of size that will not penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting of wood; pre-drill as required.
- F. Apply field treatment complying with AWPA M4 to cut surfaces of preservative treated lumber and plywood.

3.2 WOOD GROUNDS, NAILERS, BLOCKING AND SLEEPERS:

- A. Provide wherever shown and where required for screeding or attachment of other work. Form to shapes as shown and cut as required for true line and level of work to be attached. Coordinate location with other work involved.
- B. Attach to substrates as required to support applied loading. Countersink bolts and nuts flush with surfaces, unless otherwise indicated. Build into masonry during installation of masonry work. Where possible, anchor to form work before concrete placement.
- C. Provide permanent grounds of dressed, preservative treated, key-beveled lumber not less than 1-1/2" wide and of thickness required to bring face of ground to exact thickness of finish material involved. Remove temporary grounds when no longer required.

3.3 WOOD FURRING:

A. Install plumb and level with closure strips at edges and openings. Shim with wood as required for tolerance of finished work.

3.4 WOOD FRAMING, GENERAL:

A. Provide framing members of sizes and on spacings shown, and frame openings as shown, or if not shown, comply with recommendations of "Manual for House Framing" of National Forest Products Association (N.F.P.A.). Do not splice structural members between supports.

END OF SECTION

INTERIOR / EXTERIOR FINISH SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to work of this section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Exterior finish systems applied over a substrate of glass-fiber-surfaced gypsum board or exterior cement board sheathing.
 - Locations: Soffits and as indicated on Drawings.
 - 2. Interior finish systems applied over a substrate of cementitious backer units.
 - a. Locations: Shower ceilings and as indicated on Drawings.
- B. Related Sections: The following Sections contain requirements that relate to this Section:
 - Division 06 Section "Rough Carpentry" for glass-fiber-surfaced gypsum board sheathing for exterior substrates.
 - Division 06 Section "Rough Carpentry" for cement board sheathing for exterior substrates.
 - Division 09 Section "Gypsum Board" for cementitious backer units for interior substrates.

1.3 DEFINITIONS

A. Interior/exterior finish system that consists of an integrally reinforced weather-resistant base coat and a weather-resistant textured protective finish coat applied to a substrate of either cement board or glass-fiber-surfaced gypsum board.

1.4 PERFORMANCE REQUIREMENTS

- A. General: Provide systems that comply with the following performance requirements:
 - 1. Bond Integrity: Free from bond failure within system components or between system and supporting wall construction, resulting from exposure to fire, wind loads, weather, or other in-service conditions.
 - 2. Weathertightness: Resistant to water penetration from exterior into system and assemblies behind it or through them into interior of building that results in deterioration or degradation of system and assemblies behind it, including substrates, supporting wall construction, and interior finish.
- B. Physical Properties Finish System: Provide system whose physical properties and structural performance comply with the following when tested per methods referenced:

- 1. Abrasion Resistance: Showing no cracking, checking, or loss of film integrity after exposure to 528 quarts (500 L) of sand when tested per ASTM D 968, Method A.
- 2. Accelerated Weathering Characteristics: Showing no cracking, checking, crazing, erosion, blistering, peeling, or delamination after testing for 2000 hours when viewed under five times magnification per the following:
 - a. Either ASTM G 23, Method 1 or ASTM G 53.
- 3. Mildew Resistance: Showing no growth when tested per ASTM D 3273 after 28 days.
- 4. Salt-Spray Resistance: Showing no cracking, checking, crazing, erosion, blistering, peeling, or delamination after testing for 300 hours per ASTM B 117.
- 5. Tensile Adhesion: No failure in the adhesive, base coat, or finish coat. Minimum 5-psi (34.5-kPa) tensile strength before and after freeze-thaw and accelerated weathering tests per EIMA 101.03.
- Water Resistance: Showing no cracking, checking, crazing, erosion, blistering, peeling, or delamination after testing for 14 days per ASTM D 2247.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type and component of EIFS indicated.
- B. LEED Submittals:
 - 1. Product Data for Credit IEQ 4.1: For adhesives and sealants used inside the weatherproofing system, documentation including printed statement of VOC content.
 - Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants used inside the
 weatherproofing system, documentation indicating that products comply with the testing
 and product requirements of the California Department of Health Services' "Standard
 Practice for the Testing of Volatile Organic Emissions from Various Sources Using
 Small-Scale Environmental Chambers."
- C. Shop Drawings: For EIFS. Include plans, elevations, sections, details of components, details of penetration and termination, flashing details, joint locations and configurations, fastening and anchorage details including mechanical fasteners, and connections and attachments to other work.
- D. Samples for Initial Selection: For each type of finish-coat color and texture indicated.
 - Include similar Samples of joint sealants and exposed accessories involving color selection.
- E. Samples for Verification: 24-inch- (600-mm-) square panels for each type of finish-coat color and texture indicated, prepared using same tools and techniques intended for actual work including a typical control joint filled with sealant of color selected.
 - Include sealants and exposed accessory Samples to verify color selected.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, fabricator/erector, and testing agency.

- B. Manufacturer Certificates: Signed by manufacturers certifying that EIFS and joint sealants comply with requirements.
- C. Material or Product Certificates: For[cementitious materials and aggregates and for each joint sealant, from manufacturer.
- D. Compatibility and Adhesion Test Reports: For joint sealants from sealant manufacturer indicating the following:
 - 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
 - 2. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion.
- E. Evaluation Reports: For ,exterior cement-board sheathing, fasteners, and EIFS (including insulation), from <Insert applicable model code organization>.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For EIFS to include in maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experienced installer who is certified in writing by system manufacturer as qualified to install manufacturer's system.
- B. Manufacturer Qualifications: Engage a firm experienced in manufacturing systems similar to those indicated for this Project and with a record of successful in-service performance.
- C. Testing Agency Qualifications: An independent testing agency with the experience and capability to conduct the testing indicated, as documented according to ASTM E 548.
- D. Source Limitations: Obtain materials for system from one source and by a single manufacturer or by manufacturers approved by Finish System manufacturer as compatible with other system components.
- E. Fire-Test-Response Characteristics: Provide system assemblies and components with the following fire-test-response characteristics as determined by testing identical products per test method indicated below by UL or another testing and inspecting agency acceptable to authorities having jurisdiction. Identify products with appropriate markings of applicable testing and inspecting agency.
 - 1. Flame Spread of Insulation Board and Finish Coats: 25 or less when tested individually per ASTM E 84.
 - 2. Smoke Developed of Insulation Board and Finish Coats: 450 or less when tested individually per ASTM E 84.
- F. Mockups: Before installing system, construct mockups for each form of construction and finish required to verify selections made under Sample submittals and to demonstrate aesthetic effects and qualities of materials and execution. Build mockups to comply with the following requirements, using materials indicated for completed Work:
 - 1. Locate mockups in the location and of the size indicated or, if not indicated, as directed by Architect.

- Notify Architect seven days in advance of the dates and times when mockups will be constructed.
- 3. Demonstrate the proposed range of aesthetic effects and workmanship.
- 4. Obtain Architect's approval of mockups before starting fabrication of work.
- 5. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - a. Approved mockups in an undisturbed condition at the time of Substantial Completion may become part of the completed Work.
- G. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials in original, unopened packages with manufacturer's labels intact and clearly identifying products.
- B. Store materials inside and under cover; keep them dry and protected from the weather, direct sunlight, surface contamination, aging, corrosion, damaging temperatures, construction traffic, and other causes.

1.10 PROJECT CONDITIONS

- A. Environmental Limitations: Do not install system when ambient outdoor air and substrate temperatures are 40°F (4.4°C) and falling unless temporary protection and heat are provided to maintain ambient temperatures above 40°F (4.4°C) during installation of wet materials and until they have dried thoroughly and become weather resistant, but for at least 24 hours after installation.
- B. Field Measurements: Verify actual dimensions required for prefabricated panels by field measurements before fabrication and indicate measurements on Shop Drawings.
 - Established Dimensions: Where field measurements cannot be made without delaying the Work, establish dimensions and proceed with fabricating panels without field measurements. Coordinate construction to ensure that actual dimensions correspond to established dimensions.

1.11 COORDINATION AND SCHEDULING

- A. Supply anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, templates, instructions, and directions, as required, for installation.
- B. Coordinate installation of Finish System with related Work specified in other Sections to ensure that wall assemblies, including sheathing, flashing, trim, joint sealers, windows, and doors, are protected against damage from the effects of weather, age, corrosion, moisture, and other causes. Do not allow water to penetrate behind Finish System.

1.12 WARRANTY

A. General Warranty: Warranties specified in this article shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and shall be in

- addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents.
- B. Finish System shall be guaranteed against defects in materials and workmanship for a period of five (5) years from the date of substantial completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide interior / exterior finish systems by one of the following:
 - 1. Dryvit Systems, Inc.
 - 2. Parex Incorporated.
 - 3. Senergy Div.; of Harris Specialty Chemicals, Inc.
 - Sto Corp.; Sto Finish Systems Div.

2.2 MATERIALS

- A. Compatibility: Provide substrates, reinforcing meshes, base- and finish-coat materials, sealants, and accessories that are compatible with one another and approved for use by system manufacturer for Project.
- B. Colors, Textures, and Patterns of Finish Coat: Comply with the following requirements:
 - 1. Provide Architect's selections from system manufacturer's full range of colors, textures, and patterns for type of finish coat indicated.
- C. Primer-Sealer: System manufacturer's standard substrate conditioner designed to seal substrates from moisture penetration and to improve the bond between substrate of type indicated and adhesive used for application of insulation.
- D. Reinforcing Mesh: Balanced, alkali-resistant, open-weave glass-fiber mesh treated for compatibility with other system materials, made from continuous multiend strands with retained mesh tensile strength of not less than 120 lbf/in. (21 dN/cm) per EIMA 105.01, complying with ASTM D 578 and the following requirements for minimum weight:
 - 1. Standard Reinforcing Mesh: Not less than 4.0 oz./sq. yd. (136 g/sq. m).
- E. Base-Coat Materials: System manufacturer's standard mixture complying with the following requirements for material composition and method of combining materials:
 - 1. Job-mixed formulation of portland cement complying with ASTM C 150, Type I, white or natural color; and manufacturer's standard polymer-emulsion adhesive designed for use indicated.
- F. Finish-Coat Materials: System manufacturer's standard mixture complying with the following requirements for material composition and method of combining materials:
 - 1. Factory-mixed formulation of polymer-emulsion binder, colorfast mineral pigments, sound stone particles, and fillers.

- G. Water: Potable.
- H. Trim Accessories: Type as designated or required to suit conditions indicated and to comply with system manufacturer's written requirements, manufactured from vinyl plastic and complying with ASTM C 1063.
 - 1. Special aluminum trim modified "R" Extrusion shall be as manufactured by AFS Specialty Metal Products in profile as indicated on Drawings.

2.3 ELASTOMERIC SEALANTS

- A. Elastomeric Sealant Products: Provide system manufacturer's listed and recommended chemically curing, elastomeric sealant that is compatible with joint fillers, joint substrates, and other related materials, and complies with requirements for products and testing indicated in "EIMA Guide for Use of Sealants with Exterior Insulation and Finish Systems, Class PB" and with requirements in Division 7 Section "Joint Sealants" for products corresponding to description indicated below:
 - 1. Low-modulus silicone sealant.
- B. Preformed Foam Sealant Products: Provide sealant compatible with adjacent materials and complying with requirements in Division 7 Section "Joint Sealants."
- C. Sealant Color: Comply with the following requirements:
 - 1. Match finish-coat color of system.

2.4 MIXING

A. General: Comply with system manufacturer's requirements for combining and mixing materials. Do not introduce admixtures, water, or other materials except as recommended by system manufacturer. Mix materials in clean containers. Use materials within time period specified by system manufacturer or discard.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of system. Proceed with installation of system only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Protect contiguous work from moisture deterioration and soiling caused by application of systems. Provide temporary covering and other protection needed to prevent spattering of exterior finish coats on other work.
- B. Protect system, substrates, and wall construction behind them from inclement weather during installation. Prevent infiltration of moisture behind system and deterioration of substrates.
- C. Prepare and clean substrates to comply with system manufacturers written requirements to obtain optimum bond between substrate and adhesive for insulation.
 - 1. Apply primer-sealer over substrates where required by system manufacturer for improving adhesion or for protecting substrates from degradation.

3.3 INSTALLATION

- A. Comply with ASTM PS 49 and system manufacturer's written instructions for installation of system as applicable to each type of substrate indicated.
- B. Install trim accessories at locations indicated according to system manufacturer's written instructions.
- C. Apply base coat to substrate in minimum thickness recommended in writing by system manufacturer, but not less than 1/16-inch (1.6-mm) dry-coat thickness.
- D. Embed reinforcing mesh of type indicated below in wet base coat to produce wrinkle-free installation with mesh continuous at corners and overlapped not less than 2-1/2 inches (64 mm) or otherwise treated at joints to comply with ASTM PS 49 and system manufacturer's written requirements. Do not lap reinforcing mesh within 8 inches (204 mm) of corners. Completely embed mesh, applying additional base-coat material if necessary, so reinforcing-mesh color and pattern are not visible.
 - 1. Standard reinforcing mesh, unless otherwise indicated.
- E. Additional Reinforcing Mesh: Apply strip reinforcing mesh around openings extending 4 inches (100 mm) beyond perimeter. Apply additional 9-by-12-inch (230-by-305-mm) strip reinforcing mesh diagonally at corners of openings (re-entrant corners). Apply 8-inch- (200-mm-) wide strip reinforcing mesh at both inside and outside corners, unless base layer of mesh is lapped not less than 4 inches (100 mm) on each side of corners.
 - 1. At aesthetic reveals, apply strip reinforcing mesh not less than 8 inches (200 mm) wide.
 - Embed strip reinforcing mesh in base coat before applying first layer of reinforcing mesh.
- F. Shapes: Fully embed reinforcing mesh in base coat.
- G. Apply finish coat over dry base coat, maintaining a wet edge at all times for uniform appearance, in thickness required by system manufacturer to produce a uniform finish of color and texture matching approved sample.

3.4 INSTALLATION OF JOINT SEALANTS

- A. Prepare joints and apply sealants, of type and at locations indicated, to comply with applicable requirements in Division 7 Section "Joint Sealants" and in "EIMA Guide for Use of Sealants with Exterior Insulation and Finish Systems."
 - Clean surfaces to receive sealants to comply with indicated requirements and system manufacturer's written instructions.
 - Apply primer recommended in writing by sealant manufacturer for surfaces to be sealed.
 - 3. Install sealant backing to control depth and configuration of sealant joint and to prevent sealant from adhering to back of joint.
 - 4. Apply masking tape to protect areas adjacent to sealant joints. Remove tape immediately after tooling joints, without disturbing joint seal.

- 5. Recess sealant sufficiently from surface of system so an additional sealant application, including backing rod, can be installed without protruding beyond system surface.
- 6. Apply joint sealants after base coat has cured but before applying finish coat.

3.5 CLEANING AND PROTECTING

- A. Remove temporary covering and protection of other work. Promptly remove coating materials from window and door frames and other surfaces outside areas indicated to receive system coatings.
- B. Provide final protection and maintain conditions, in a manner acceptable to Installer and system manufacturer that ensure system is without damage or deterioration at the time of Substantial Completion.

END OF SECTION

FLUID-APPLIED MEMBRANE AIR & VAPOR BARRIERS

PART 1 GENERAL

1.01 SECTION INCLUDES

- A. A fluid-applied membrane and accessory products for use as an air barrier in exterior walls.
- B. Materials and installation to bridge and seal the following air leakage pathways and gaps:
 - 1. Connections of the walls to the roof air barrier
 - 2. Connections of the walls to the foundations
 - 3. Seismic and expansion joints
 - 4. Openings and penetrations of window frames, door frames, store front, curtain wall
 - 5. Barrier pre-cast concrete and other envelope systems
 - 6. Door frames Piping, conduit, duct and similar penetrations
 - 7. Masonry ties, screws, bolts and similar penetrations
 - 8. All other air leakage pathways through the walls

1.02 RELATED SECTIONS

- A. Section 04 20 00 Unit Masonry Assemblies
- B. Section 07 11 00 Damp Proofing.
- C. Section 07 21 00 Thermal Insulation
- D. Section 07 62 00 Sheet Metal Flashing and Trim: Metal through-wall flashings
- E. Section 07 90 00 Joint Protection: Joint sealant materials and installation.
- F. Section 08 12 00 Metal Door Frames
- G. Section 08 43 00 Storefronts

1.03 REFERENCES

- A. American Association of Textile Chemists and Colorists (AATCC) Test Method 127. "Water Resistance – Hydrostatic Pressure Test"
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010 "Energy Standard for Buildings Except Low-Rise Residential Buildings"
- C. ASTM C 920 Standard Specification for Elastomeric Joint Sealants
- D. ASTM D 1970 Standard Specification for Self-Adhering Polymer Modifed Bituminous Sheet Materials Used as Steep slope roofing Underlayment for Ice Dam Protection.
- E. ASTM D 4541 Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers
- F. ASTM E 96 Standard Test Methods for Water Vapor Transmission of Materials.

- G. ASTM E 783 Standard Test Method for Field Measurement of Air Leakage Through Installed Exterior Windows and Doors
- H. ASTM E 1105 Standard Test Method for Field Determination of Water Penetration of Installed Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform or Cyclic Static Air Pressure Difference
- I. ASTM E 2178 Standard Test Method for Air Permeance of Building Materials
- J. ASTM E 2357 Standard Test Method for Determining Air Leakage of Air Barrier Assemblies
- K. Canadian General Standards Board (CGSB) 71-GP-24M Standard for: Adhesive, Flexible, for Bonding Cellular Polystyrene Insulation

1.04 PERFORMANCE REQUIREMENTS

- A. Installed product and accessories constitute a continuous air barrier, as described in ASHRAE Standard 90.1-2010 Section 5.4.3.1
- B. Installed product and accessories shall perform as a liquid water drainage plane flashed to discharge to the exterior any incidental condensation or water penetration.
- C. Installed product and accessories shall exhibit an air leakage rate, infiltration and exfiltration modes, measured after pressure cycling, not to exceed 0.2 L/s*m² at 75 Pa (0.040 CFM/ft² at 1.57 PSF) according to ASTM E 2357.
- D. Product shall be a nominal 0.040 inch (40 mils) thickness membrane, with dry film thickness of installed product measuring a minimum of 0.030 inch (30 mils) with a comb gauge.

E. Product shall meet the following requirements:

REQUIREMENT	RESULT	TEST METHOD
Air Permeance – on Porous Substrate	Not more than 0.02 L/s*m² at 75 Pa (0.004 CFM/ft² at 1.57 PSF)	ASTM E-2178, mod sprayed on CMU
Air Permeance – Free Film	Not more than 0.02 L/s*m² at 75 Pa (0.004 CFM/ft² at 1.57 PSF)	ASTM E-2178
Low Temperature Flexibility	No cracking at minus 20 degrees F, 180 degree bend over 1 inch mandrel	ASTM D 1970
Fastener Sealability No water leaking through nail penetration after 24 h.		ASTM D 1970
Water Resistance	Product spray-applied to CMU and gypsum sheathing with joint shall resist a 55 cm (22 inch) column of water for 5 hours, no leaking or wet through.	AATCC-127 - mod, static head generated with 5"diameter PVC pipe sealed to specimen
Pull Adhesion	Not less than 16 lb _f per square inch (or report value at substrate failure) on glass-faced gypsum sheathing and concrete masonry unit (CMU)	ASTM D 4541, modified 4 inch wood puck
Water Vapor Permeance	Not more than 1 Perm	ASTM E-96, Method B

1.05 SUBMITTALS

- A. Provide submittals in accordance with Section 01 33 00
- B. Shop drawings showing locations and extent of air barrier and details of all typical conditions.
- C. Manufacturer's technical data sheets and material safety data sheets for product and accessories.
- D. Manufacturer's installation instructions.
- E. Certification of compatibility by manufacturer, listing all materials on the project with which the product and accessories may come into contact.
- F. Free film sample of product at representative cured thickness, minimum 2 inch by 3 inch size.
- G. Sample of detail flashing and transition membrane, minimum 2 inch by 3 inch size.

1.06 QUALITY ASSURANCE

- A. Installer Qualifications: Shall be experienced in applying the same or similar materials and shall be specifically approved in writing by Manufacturer.
- B. Single-Source Responsibility: Obtain product and accessories from single manufacturer.

- C. Product and Accessories shall comply with all state and local regulations controlling use of volatile organic compounds (VOCs).
- D. Field-Constructed Mock-Ups: Prior to installation on Project, apply product and accessories on mock-up to verify details under shop drawing submittals, to demonstrate tie-ins with adjoining construction and other termination conditions and to become familiar with properties of materials in application:
 - 1. Apply in field-constructed mockups of
- E. Allow full cure of product and test in accordance with ASTM E 783 and ASTM E1105 for air and water infiltration
- F. Cooperate and coordinate with the Owner's inspection and testing agency. Do not cover any installed product unless it has been inspected, tested and approved.

1.07 DELIVERY, STORAGE AND HANDLING

- A. Deliver materials to Project site in original packages with seals unbroken, labeled with manufacturer's name, product, lot number and directions for storage.
- B. Store materials in their original undamaged packages in a clean, dry, protected location and within temperature range required by manufacturer.
- C. Avoid spillage. Immediately notify Owner and Construction Manager if spillage occurs and start clean up procedures. Clean spills and leave area as it was prior to spill.

1.08 WASTE MANAGEMENT AND DISPOSAL

- A. Place materials defined as hazardous or toxic waste in designated containers.
- B. Ensure emptied containers are stored safely for disposal away from children.

1.09 PROJECT CONDITIONS

- A. Do not apply product or accessories during rain or accumulating snowfall.
- B. Apply product and accessories within approved ambient and substrate temperature range stated in manufacturer's literature.
- C. Do not apply product or accessories over incompatible materials.
- D. Observe safety and environmental measures indicated in manufacturer's MSDS, and mandated by federal, state and local regulations.
- 1.10 WARRANTIES: Provide the manufacturer's minimum five year material warranty under provisions of Section 01 78 36 Warranties.

PART 2 PRODUCTS

2.01 PRODUCTS: Basis of design - Carlisle Coatings & Waterproofing, Incorporated. 900 Hensley Lane, Wylie, TX 75098. Phone 1-800-527-7092. Website http://www.carlisle-ccw.com : or equal product from

- A. Spray Applied: Barriseal-S + Barricure, Carlisle Coatings & Waterproofing, Incorporated
- B. Perm-A-Barrier Liquid, W.R. Grace & Co.
- C. Tyvek Fluid Applied WB System, Dupont
- D. R-Guard VB Fluid Applied Air and Water Resistive Barrier and Water Vapor Barrier, PROSOCO
- 2.02 ACCESSORIES: Provide as manufactured by Carlisle Coatings & Waterproofing, Incorporated.
 - A. Detail Flashing: CCW-705. 40 mil thickness, self-adhering flashing consisting of polymeric film laminated with modified asphalt adhesive. Provided in rolls of various widths
 - B. Sheathing Joint Tape: Barritape. 20 mil thickness, self-adhering flashing consisting of polymeric film laminated with modified asphalt adhesive. Provided in 4 inch X 100 foot rolls.
 - C. Foil-Faced Tape: AlumaGRIP-701. 30 mil thickness, self-adhering flashing consisting of 0.020 inch [2 mil] aluminum foil laminated with non-asphalt butyl adhesive. Provided in rolls of various widths
 - D. Contact Adhesive, select any:
 - 1. CCW-702 Solvent-Based
 - 2. CCW-702 LV VOC Compliant, Solvent-Based
 - 3. CCW-702 WB Water-Based
 - 4. CAV-GRIP™ Aerosol Spray
 - E. Detail Mastic: LM 800 XL
 - F. Transition Membrane: CCW SURE-SEAL Pressure-Sensitive Elastoform. 90 mil composite membrane consisting of 60 mils un-cured EPDM laminated with 30 mils of synthetic rubber pressure-sensitive adhesive.
 - G. Transition Membrane Primer, select any:
 - 1. SURE-SEAL HP-250 Primer
 - 2. SURE-SEAL EP-95 Splicing Cement
 - 3. SURE-SEAL Low VOC EPDM Primer
 - H. Reinforcing Fabric: DCH Reinforcing Fabric. Woven polyester fabric offered in rolls of various widths
 - I. Glass Mat: LiquiFiber-W. Randomly-oriented glass strands held in water-soluble binder. Offered in rolls of various widths.
 - J. Fill Compound, select either:
 - 1. CCW-703 V Modified polyurethane, 2-part
 - 2. CCW-201 Polyurethane, 2-part
- 2.03 RELATED MATERIALS BY OTHERS
 - A. Paintable Sealant, select any:
 - 1. Sonneborn NP-1 1-part polyurethane sealant

- 2. Sikaflex 2C NS 2-part polyurethane sealant by Sika Corporation
- 3. Other product approved by air barrier manufacturer
- B. Silicone Sealant, select any:
 - 1. Dow 790, 791, 795
 - 2. Pecora 890, 891, 895
 - 3. GE Silpruf, Silpruf LM
 - 4. Other product approved by air barrier manufacturer
- C. Polyurethane Foam Sealant, select any:
 - 1. Great Stuff by Dow Chemical Company
 - 2. Froth Pack by Dow Chemical Company
 - 3. Other product approved by air barrier manufacturer
- D. Insulation Adhesive, select any
 - 1. Sonneborn Premium Adhesive
 - 2. QB-300 Multi-Pupose Construction Adhesive by OSI
 - 3. PL-300 VOC Foamboard Adhesive by Loctite
 - 4. Other product approved by air barrier manufacturer

PART 3 EXECUTION

3.01 EXAMINATION

- A. Examine substrates, areas, and conditions affecting installation of the air & vapor barrier and accessory products for compliance with requirements. Verify that surfaces and conditions are suitable prior to commencing Work of this section. Do not proceed with installation until unsatisfactory conditions have been corrected.
- B. Verify that wall assemblies are dried in, such that water intrusion will not occur from above, behind or around the air barrier installation.
- C. Concrete shall be cured for a minimum of seven days. It shall be smooth, with sharp protrusions such as form joints ground flush. Honeycomb and holes/cracks exceeding ¼ inch across shall be filled with grout or mortar.
- Surfaces shall be sound, dry and free of oil, grease, dirt, excess mortar or other contaminants.
- E. Surfaces shall be supported and flush at joints without large voids or sharp protrusions.
- F. Mortar joints shall be struck flush and shall be free of voids exceeding ¼ inch across. Mortar droppings shall be removed from brick ties and all other surfaces accepting air barrier.
- G. Sheathing boards shall be flush at joints, with gaps between boards according to building code and sheathing manufacturer's requirements. Sheathing boards shall also be securely fastened to the structure with proper fastener type, technique and spacing according to building code and sheathing manufacturer's requirements. Sheathing boards shall be repaired or replaced if inspection reveals moisture damage, mechanical damage or if sheathing boards have exceeded the exposure duration or exposure conditions as required by the sheathing manufacturer.

- H. Plywood, OSB, lumber or pressure-treated wood moisture content, measured with a wood moisture meter in the core of the substrate, shall be below 20%.
- I. Inform Architect [Consultant] [Owner] in writing of
 - 1. Cracks in concrete and masonry.
 - 2. Gaps or obstructions such as steel beams, angles, plates and projections which cannot be spanned or covered by Product or Accessories.
 - 3. Anticipated problems applying product and accessories over substrate.

3.02 SURFACE PREPARATION

- A. Concrete masonry unit (CMU) wall shall be prepared as follows to accept the air & vapor barrier:
 - Surfaces shall be free of contaminants such as grease, oil and wax on surfaces to receive membrane
 - 2. The CMU surfaces shall be free from projections.
 - 3. Strike all mortar joints flush to the face of the concrete block.
 - 4. Fill all voids and holes greater than ¼ inch across at any point with mortar, sealant or other approved fill material.
 - 5. Surface irregularities exceeding ¼ inch in height or sharp to touch shall be ground flush or made smooth.
 - 6. Fill around all penetrations with mortar, sealant or other approved fill material and strike flush.
 - 7. If the surfaces cannot be made smooth to the satisfaction of the Architect, it will be the responsibility of the trade to alternatively apply a parge coat (typically one part cement to three parts sand) over the entire surface to receive Air & Vapor Barrier Membrane
 - 8. Remove mortar droppings on brick ties, shelf angles, brick shelves or other horizontal obstructions.
- B. Fill cracks, gaps and joints exceeding ¼ inch width with fill compound or paintable sealant.
- C. Fill rough gaps around pipe, conduit and similar penetrations with mortar, non-shrink grout, fill compound or polyurethane foam sealant shaved flush.
- D. Apply a ¾ inch cant of fill compound at the intersection of the base of the wall and the footing.

3.03 DETAILING

- A. Additional materials and installation are required at joints, transitions, openings, terminations, penetrations and similar surface irregularities. Perform detailing before or after product installation.
- B. Install product and accessories in details as directed in manufacturer's literature.
- C. Sheathing joints, use any of the following methods:
 - 1. Sheathing joint tape, centered over joint
 - 2. 4 inch foil-faced tape, centered over joint
 - 3. 4 inch detail flashing centered over joint.
 - 4. 4 inch reinforcing fabric imbedded in product and centered over joint.

- 5. Paintable sealant or fill compound, tooled as shown in details.
- D. Sheathing inside and outside corners. Flashing or reinforcement shall bear 3 inches minimum onto either side of angle change. Use any of the following methods:
 - 1. Minimum 9 inch detail flashing centered over angle change
 - 2. Minimum 9 inch foil-faced tape, centered over angle change
 - 12 inch reinforcing fabric centered over angle change and imbedded in roller-applied product
 - 12 inch glass mat centered over angle change and imbedded in roller-applied product
- E. Window openings. Flashing or reinforcement shall bear onto wall 3 inches minimum and shall return into window opening according to Project drawings. Use any of the following methods:
 - 1. Detail flashing
 - 2. Glass mat imbedded in roller-applied product
- F. Pipe or duct penetrations. Flashing or reinforcement shall bear onto wall 3 inches minimum and shall bear onto pipe or duct 3 inches, or according to Project drawings. Select any:
 - 1. Detail flashing
 - 2. Glass mat imbedded in roller-applied product
- G. Expansion or deflection joints. Flashing shall bear 3 inches minimum onto either side of joint. Select any:
 - 1. Detail flashing bellows or expansion bulb
 - 2. Transition membrane expansion bulb
- H. Interface of dissimilar substrates: Flashing or reinforcement shall bear 3 inches minimum onto either side of joint. Select any:
 - 1. Minimum 9 inch detail flashing
 - 2. 12 inch reinforcing fabric imbedded in roller-applied product
 - 3. 12 inch glass mat imbedded in roller-applied product

3.04 INSTALLATION

- A. Apply product over opaque wall surfaces as indicated in Project drawings.
- B. Spray or roller-apply product to achieve specified thickness in accordance with manufacturer's literature.

3.05 SCHEDULE

- A. Wall substrates and roof or temporary roof shall be in place, effectively enclosing interior space, before proceeding with air barrier installation.
- B. Seal penetrations made through installed product according to manufacturer's instructions and drawings.

- C. Seal fenestration to product with detail membrane, foil-faced tape, transition membrane, polyurethane sealant, silicone sealant or polyurethane foam sealant according to Project drawings
- D. Through-wall flashing may be installed before or after product. Seal termination of metal through-wall flashing to product with 6 inch width counter-flashing strip consisting of any of these:
 - 1. Detail flashing
 - 2. Reinforcing fabric imbedded in product
 - 3. Glass mat imbedded in product
- E. Cladding shall be installed after product.
- F. Rigid or semi-rigid insulation installed over product shall be attached with insulation adhesive and mechanical fastening according to insulation manufacturer and air barrier manufacturer's instructions.
- G. Sequence Work to enable air barrier continuity at wall-to-foundation, shelf angle, wall-to-roof, fenestration, different wall assemblies and other conditions providing challenges to air barrier continuity.

3.06 REPAIR AND PROTECTION

- A. Protect from damage during application and remainder of construction period.
- Inspect before covering. Repair or replace damaged material according to manufacturer's literature.
- C. Product and accessories are not designed for permanent exposure. Cover with insulation or exterior cladding as soon as schedule allows.
- D. Outdoor exposure of installed product and accessories shall not exceed 30 days.

END OF SECTION

BUILT-UP ROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SCOPE OF WORK

- A. Furnish and install specified roofing and related components to new construction, additions and existing construction to be re-roofed and reworked.
- B. Work includes:
 - 1. Installation of the following with new construction:
 - a. Roof insulation.
 - b. Hot applied built-up roofing system.
 - c. Gravel surfaced.
 - d. Specified flashings and accessories.
 - 2. Re-roofing and reworking exiting construction indirected and repair of roofing required by new construction.

1.3 QUALITY CONTROL

- A. Contractor shall:
 - 1. Be experienced in hot multi-ply roofing. Five (5) years minimum.
 - a. Be acceptable by Owner.
 - b. Has not been in Chapter 7 during the last ten (10) years.
 - c. Provide list of at least 5 projects available for inspection employing same system within 50 mile radius of Owner.
- B. Roofing material supplier shall:
 - 1. Be Associate Member in good standing with National Roofing Contractors' Association (NRCA) for at least five (5) years.
 - 2. Be approved by owner.
 - 3. Has not been in Chapter 11 during the last five (5) years.
 - 4. The building owner is desirous of working with a financially strong organization, which has the ability to protect and insulate the building owner from both product liability and warranty claims, relating to roofing, that could be brought before the building owner during the course of the roofing warranty period. As financial strength of suppliers are a requirement of the building owner proof of such must be shown. To this end, the following information is required by the building owner:

- a. The manufacturer must present to the building owner a certificate of insurance for product liability with minimum limits of \$100 million.
- b. The manufacturer must have a current net worth equivalent to 25% of yearly sales and demonstrate such with a financial statement supported by an affidavit from a corporate officer.
- 5. The building owner is desirous of quality performance in all areas of roofing construction and as a result is requiring a primary source of material from one company in order to insure consistent quality. The material manufacturer supplying material for the building owner's roofs must manufacture at least 70% of the materials, they supply, in facilities actually owned or solely leased by said manufacturer. The material manufacturer shall submit verification of the foregoing by affidavit of corporate officer.
- 6. Building owner, to assure that the manufacturer can consistently deliver quality materials, requires the Manufacturer to provide evidence of twenty (20) quarters of continuous plant inspections of roofing manufacturing sites over the past five (5) years by an independent Nationally Recognized Testing Laboratory (NRTL) as defined in 29 CFR Ch. XVII (7-1-93 Edition) from the Occupational Safety and Health Administration (OSHA).
- 7. Provide Owner names of at least 5 qualified applicators.
- 8. Employ full-time Field Technical Services Representative with a minimum of ten (10) years of hands on roofing experience, available for monitoring project work on a periodic basis.
- 9. Employ full-time Field Technical Services Representative available for final roof inspection.
- 10. Provide local Field Representative to make daily site visits, report work quality and job progress in writing with photographs.
- 11. Provide list of at least 5 projects available for inspection employing same roofing system within 50 mile radius of Owner.
- 12. The presence and activity of the manufacturer's/ specifier's representative and/or owner's representative shall in no way relieve the contractor of contractual responsibilities or duties.

C. Project Meetings:

- Pre-construction conference:
 - a. Will be scheduled by Owner within fifteen (15) days after notice of award.
 - b. Attendance:
 - 1) Roofing material supplier/specifier
 - 2) Contractor
 - c. Agenda:
 - 1) Designation of responsible personnel.
 - 2) Walkover inspection.

2. Progress Meetings:

- a. Will be scheduled by Owner rep as required.
- b. Attendance:
 - 1) Roofing material manufacturer/specifier/ contractor.
 - 2) Job superintendent.
- c. Minimum Agenda:
 - 1) Review of work progress.
 - 2) Field observations, problems, and decisions.

3. Final Inspection:

- Will be scheduled by roofing material manufacturer upon job completion with manufactures Technical Service rep.
- b. Attendance:
 - 1) Contractor.
 - 2) Roofing material manufacturer/specifier.
 - 3) Owner.
- c. Minimum agenda:
 - 1) Walkover inspection.
 - 2) Identification of problems which may impede issuance of warranty.
- D. Random Sampling:
 - 1. Roofing material:
 - a. During course of work, Owner's Representative may secure samples according to ASTM D140-88 of materials being used from containers at job site and submit them to an independent laboratory for comparison to specified material.
 - b. Should test results prove that a material is not functionally equal to specified material:
 - 1) Contractor shall pay for all testing.
 - 2) Roofing installed and found not to comply with the specifications shall be removed and replaced at no change in the contract price.
- E. Regulatory Requirements:
 - 1. BOCA National Building Code.
 - 2. UL 790.
 - a. Class A.
 - 3. FM 4470.
 - a. Class I, I-90 Windstorm.

F. Plans and Specifications:

- Contractor must notify owner and specifier of any omissions, contradictions or conflicts seven (7) days before bid date. Owner and specifier will provide necessary corrections or additions to plans and specifications by addendum. If contractor does not so notify owner and specifier of any such condition, it will be assumed that the contractor has included the necessary items in the bid to complete this specification.
- 2. It is the intent that this be a completed project as far as the contract documents set forth. It is not the intent that different phases of work on this project be delegated to various trades and subcontractors by the contract documents. Contractor must make own contracts with various subcontractors, setting forth the work these subcontractors will be held responsible for. Contractor alone will be held responsible by the owner for the completed project.
- If the contractor feels a conflict exists between what is considered good roofing practice
 and these specifications contractor shall state in writing all objections prior to submitting
 quotations.
- 4. It is the contractor's responsibility during the course of the work, to bring to the attention of the owner's representative any defective membrane, insulation or deck discovered where not previously identified.

1.4 REFERENCES

- A. ASTM American Society for Testing and Materials, Philadelphia, PA.
- B. FM Factory Mutual System, Norwood, MA.
- C. NRCA National Roofing Contractors Association, Chicago, IL.
- D. SMACNA Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.
- E. UL Underwriters Laboratories, Northbrook, IL.

1.5 SUBMITTALS

- A. Submit at Pre-Bid Conference:
 - 1. Product compatibility:
 - a. Written verification from roofing material supplier that major roofing components, including (but not limited to) coatings, cold process adhesives; roofing ply sheets; reinforcement fabric felts and mats; mastics; and sealants are all compatible with each other and existing construction where reworked and reroofed.

2. Test reports:

- a. Written verification from roofing material supplier that roofing system meets or exceeds regulatory agency/s requirements.
- Product data:
 - a. Product data sheets.
 - b. Material safety data sheets.

1.6 DELIVERY, STORAGE AND HANDLING

A. Delivery of materials:

- 1. Deliver materials to job-site in new, dry, unopened, and well-marked containers showing product and manufacturer's name.
- 2. Deliver materials in sufficient quantity to allow continuity of work.
- 3. Coordinate delivery with Owner.
- B. Do not order project materials or start work before receiving Owner's written approval.

C. Storage of Materials:

- 1. Store roll goods on ends only. Discard rolls which have been flattened, creased, or otherwise damaged. Place materials on pallets. Do not stack pallets.
- 2. Stack insulation on pallets.
- 3. Store materials marked "keep from freezing" in areas where temperatures will remain above 40°F (5°C).
- 4. Store metal roof deck on pallets with one end elevated to provide drainage.
- 5. For insulation, remove plastic packaging shrouds. For felt rolls, slit the top of the plastic shrink wrap only. Cover top and sides of all stored materials with tarpaulin, Secure tarpaulin.
- 6. Rooftop storage: Disperse material to avoid concentrated loading.
- 7. No materials may be stored in open or in contact with ground or roof surface.
- 8. Should Contractor be required to quickly cover material temporarily, such as during an unanticipated rain shower, all materials shall be stored on a raised platform covered with secured canvas tarpaulin (not polyethylene), top to bottom.
- Contractor shall assume full responsibility for the protection and safekeeping of products stored on premises.

D. Material Handling:

- 1. Handle materials to avoid bending, tearing, or other damage during transportation and installation.
- Material handling equipment shall be selected and operated so as not to damage
 existing construction or applied roofing. Do not operate or situate material handling
 equipment in locations that will hinder smooth flow of vehicular or pedestrian traffic.
- 3. Cold Process Trilaminate Ply Sheet: Do not remove packaging tubes until roll is ready for use.

1.7 SITE CONDITIONS

- A. Field measurements and material quantities:
 - 1. Applicator shall have SOLE responsibility for accuracy of all measurements, estimates of material quantities and sizes, and site conditions that will affect work.

B. Existing conditions:

- Building space directly under roof area covered by this specification will be utilized by on-going operations. Do not interrupt Owner operations unless prior written approval is received from Owner.
- 2. Access to roof shall be from exterior only.
- 3. Air-conditioning units and other equipment shall be moved as required to install roofing materials complete and in accordance with plans and specifications. When units and equipment are to be moved, they shall be carefully disconnected and removed to a protected area so as not to damage any part or component thereof, and shall be reconnected in such a way that they are restored to a prior work operating condition. Appropriate measures shall be taken to prevent dust, vapors, gases or odors from entering the building during roof removal, replacement or repair.
- 4. All disconnection and re-connection shall be performed by a mechanical an/or electrical company licensed to perform such work.
- 5. Contractor or owner shall perform appropriate inspections, surveys and file timely notifications to proper authorities prior to starting roof renovation or demolition activities. Inspectors, project planners, project managers, contractors and workers involved in the roof project shall have appropriate training, licenses and registrations. Contractor and owner shall be responsible for determining and implementing regulatory compliance activities, including but not limited to work practices, engineering controls, personal protection, air monitoring, testing, hazard communication, material handling, record retention, and arranging for waste disposal/handling.
- Contractor must file a Uniform Hazardous Waste Manifest from proper landfill site for each load of asbestos containing material removed. Copies must be sent to owner and material manufacturer/ specifier. Transportation of waste shall be in accordance with applicable Department of Transportation (DOT) requirements.

C. Safety Requirements:

- 1. All application, material handling, and associated equipment shall conform to and be operated in conformance with OSHA safety requirements.
- 2. Comply with federal, state, local and Owner fire and safety requirements.
- 3. Advise Owner whenever work is expected to be hazardous to Owner, employees, and/or operators.
- 4. Maintain a crewman as a floor area guard whenever roof decking is being repaired or replaced.
- 5. Maintain fire extinguisher within easy access whenever power tools, roofing kettles, and torches are being used.

D. Waste Disposal:

1. Do not re-use, re-cycle or dispose of material manufacturers product containers except in accordance with all applicable regulations. The user of manufactured products is responsible for proper use and disposal of product containers.

E. Environmental requirements:

- 1. Do not work in rain, snow, or in presence of water.
- 2. Do not work in temperatures below 40°F (4.44°C).
- 3. Do not install materials marked "keep from freezing" when daily temperatures are scheduled to fall below 40°F (4.44°C).
- 4. Do not perform masonry work below 40°F (4.44°C).
- 5. Remove any work exposed to freezing.
- 6. Advise Owner when volatile materials are to be used near air ventilation intakes so that they can be shut down or blocked as owner requires.

1.8 WARRANTY/GUARANTEE

A. Warranty:

 Upon project completion, Manufacturer acceptance, and once complete payment has been received by both Contractor and Manufacturer, Manufacturer shall deliver to Owner a ten (10) year manufacturer Roofing System Quality Assurance Warranty and Owner's Manual. Manufacturer will, during the second and fifth year of this warranty, inspect and provide a written Executive Summary.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Comply with quality control, references, specifications, and manufacturer's data. Products containing asbestos are prohibited on this project. Use only asbestos-free products.
- B. Use products with personal protection. User must read container label and material safety data sheets prior to use.

2.2 MANUFACTURERS

- A. Tremco Inc., Cleveland, OH
- B. Thermo Systems, Clawson, MI
- C. Garland Inc., Cleveland, OH

2.3 WOOD BLOCKING & CURBS

A. Lumber:

- 1. Southern Pine; No. 2 grade; free from warping and visible decay; pressure-treated with chromated copper arsenate (CCA) to meet AWPB, LP-22, 0.40 retention, and marked.
- 2. Free floating fascia cant: 2" x 4" (50 mm x 100 mm) cut on bias.

2.4 INSULATION

- A. Bottom layer:
 - 1. FS HH-I-1972/2(1), Class 1, isocyanurate.
- B. Top layer:
 - 1. ASTM C 208-72(1982), Asphalt coated fiberboard.
 - 2. Asphalt coated, Top surface.
- C. Bottom layer thickness: 4' x 8' x 1".
- D. Top layer thickness: 4' x 8' x .5".
- E. Insulation adhesive:
 - 1. ASTM D 312-84, Type III Asphalt.

2.5 MECHANICAL FASTENERS

- A. Insulation to steel deck:
 - 1. Deckfast #12 screw, plastic disc or metal plate by Construction Fasteners, Inc., Wyomissing, PA.
 - 2. Insul-Fixx #12, plastic disc or metal plate by Fabco RIF, Elyria, OH.
 - 3. Kwik-Deck screw, plastic disc or metal plate; Atlas Bolt & Screw, Ashland, OH.
 - 4. Olympic Fastener #12-10, plastic or metal plate by Olympic Manufacturing Group, Agawam, MA.
 - 5. Rawl Deck #12 Deck Screw, plastic or metal plate by The Rawlplug Co., Inc New Rochelle, NY.
 - 6. ROOFGRIP, plastic disc or metal plate by ITW Buildex, Itasca, IL.
 - 7. Length: Sufficient to penetrate steel deck 1/2 inch (12.7 mm).
- B. Wood to wood:
 - 1. Galvanized, common, annular ring nail.

2. Length: Sufficient to penetrate underlay blocking 1-1/4 inches (32 mm).

C. Wood to steel deck:

- Deckfast #12 screw, plastic disc or metal plate by Construction Fasteners, Inc., Wyomissing, PA.
- 2. Insul-Fixx #12, plastic disc or metal plate by Fabco RIF, Elyria, OH.
- 3. Kwik-Deck screw, plastic disc or metal plate; Atlas Bolt & Screw, Ashland, OH.
- 4. Olympic Fastener #12-10, plastic or metal plate by Olympic Manufacturing Group, Agawam, MA.
- 5. Rawl Deck #12 Deck Screw, plastic or metal plate by The Rawlplug Co., Inc.,New Rochelle, NY.
- 6. ROOFGRIP, plastic disc or metal plate by ITW Buildex, Itasca, IL.
- 7. Length: Sufficient to penetrate steel deck 1/2 inch (12.7 mm).
- 8. Aluminum sheet metal to wood blocking:
- 9. FS FF-N-105B(3) Type II, Style 20, roofing nails; 6061-T913 alloy wire, flat head, diamond point, round, barbed shank.
- 10. Length: Sufficient to penetrate wood blocking 1-1/4 inches (32 mm) minimum.

2.6 ROOFING MATERIALS

A. Adhesives:

- 1. Base ply adhesive:
 - a. ASTM D 312-84, Type III asphalt.
- 2. Interply adhesive:
 - a. Hot-melt SEBS modified bitumen with Shell Kraton polymer "G".
- 3. Surfacing adhesive:
 - a. Hot-melt SEBS modified bitumen with Shell Kraton polymer "G".
- B. Base ply:
 - 1. Trilaminate reinforced ply sheet.
- C. Ply sheet:
 - 1. ASTM D 2178, Type IV:

- D. Related materials:
 - 1. Asphalt mastic:
 - a. ASTM D 4586-86 fibrated asphalt mastic.
 - 2. Asphalt primer:
 - a. ASTM D 41-85.
 - 3. Flashing adhesive:
 - a. Hypalon flashing adhesive.
 - 1) Black.
 - 4. Flashing bitumen:
 - a. ASTM D 312-84, Type III asphalt.
 - 5. Flashing emulsion:
 - a. Self-reinforcing, polymer modified, asphalt emulsion.
 - 6. Flashing surfacing:
 - a. Ready-mixed aluminum coating.
 - 7. Flashing ply:
 - a. Trilaminate reinforced ply sheet.
 - 8. Flashing sheet:
 - a. Reinforced CSPE, 0.045 inches (1.1 mm) thick.
 - b. Color: black
 - 9. Roofing aggregate:
 - a. Hard, durable, opaque; washed free of clay, loam, sand or other foreign substances.
 - b. Do not use: Crushed gravel, white dolomite (marble chips), Joplin chats, scoria, limestone, volcanic rock, crushed oyster and clam shells, crushed brick tile, or cinders.
 - c. ASTM D 1863-86, size six (6).
 - 10. Stripping bitumen for metal flanges:
 - a. Hot melt SEBS modified bitumen with Shell Kraton polymer "G".
 - 11. Stripping ply:
 - a. ASTM D 2178, Type IV.

2.7 METAL FLASHINGS

- A. Free floating extruded aluminum fascia.
 - 1. Fascia width: 8 inches (203 mm).
 - 2. Elastomeric sheeting color: Black.
 - 3. Membrane width: Sufficient to extend onto horizontal roofing 6 inches (152 mm) minimum.
 - 4. Extended aluminum specified in Flashing and Sheet Metal Section.
- B. Counterflashing: Flashing and Sheet Metal Sectum: Another Division 7 Section.
- C. Stainless Steel Flashings:
 - 1. ISI Type 302/304, complying with ASTM A167, 2D annealed finish except where harder temper required, 0.0156" thick.
- D. Work shall be in accordance with Architectural Sheet Metal Manual, as issued by Sheet Metal and Air Conditioning Contractors' National Association, Inc., (SMACNA).

2.8 ACCESSORIES

- A. Walkway pads.
 - 1. Bitumen-impregnated mineral fiber boards with granular surfaces compatible with roofing materials.
 - 2. Size: As indicated.

2.9 TAPERED INSULATION

- A. Tapered Roof Insulation: Fabricate from perlite board roof insulation, factory cut to provide roof slopes and saddles.
 - 1. Provide undamaged insulation, free of fractures, dampaged edges and corners, and cap sheet punctures. Prevent damage to insulation during handling and roofing procedures. Discard damaged insulation and remove from the site.
 - 2. Install tapered roof insulation in accordance with the approved shop drawings, manufacture's instructions and as specified above. Provide 4" ridge at drainage saddles for slope to drains. Use licensed applicators as approved manufacturer.

2.10 SYSTEM PERFORMANCE REQUIREMENTS:

TRILAMINATE REINFORCED PLY SHEET A.

Property Typical Value Test Method

Weight 1.5 kg/m² ASTM D 228-69 (1978) (31 lb/100 ft²)

Breaking strength 23.6 N/mm MD ASTM D 146-78a (1986) (135 lbf/in.)

22.8 N/mm XD (130 lbf/in.)

Pliability, 12.7 mm No failures ASTM D 146-78a (1986) (1/2") radius bend

Mass of desaturated 0.12 kg/m² ASTM D 146-78a (1986) polyester/glass (2.2 lb/100 ft²) mat, min

Tear strength 62.3 N MD ASTM D 1117-80

(14 lbf) 40.0 N XD (9 lbf)

Surfacing & 65% ASTM D 146-78a (1986) stabilizer, max

Asphalt 0.49 kg/m² ASTM D 228-69 (1978) $(10 \text{ lb}/100 \text{ ft}^2)$

Resistance to 534 N (120 lbf) ASTM E 154-68 (1979)

puncture

B. NON-SHRINKING, NON-ROTTING WOVEN GLASS MESH

Property Typical Value Test Method

Weight 0.065 kg/m² ASTM D 146-78a (1986) (1.32 lb/100 ft²)

Moisture based on None ASTM D 146-78a (1986)

net weight

Average tensile strength @25°C (77°F)

Wrap threads 334 N (75 lbf) ASTM D 146-78a (1986) Filling threads 334 N (75 lbf) ASTM D 146-78a (1986)

Organic content Weight 18.7% ASTM D 579-83

Type PVC/acrylic water-

based

C. READY MIXED ALUMINUM COATING

Property Typical Value	Test Method
Asbestos content None Viscosity @25°C (77°C)13.5 s (Ford cup No. 4)	ASTM D 276-87 ASTM D 1200-82
Density @25°C (77°F) 0.90 kg/L (7.5 lb/gal)	ASTM D 1475-85
Nonvolatile Content 35.2%	ASTM D 1644-88

D. FIBRATED ASPHALT MASTIC

1 151 (11 125 7 (6) 1 17 (2) 17 (6) 116	
Property Typical Value	Test Method
Asbestos content None Viscosity @ 25°C 480 - 1000 Pa s (77°F) (480000-1000000 cP)	ASTM D 276-87 ASTM D 2196-86
Density @ 25°C 1.11 kg/L (77°F) (9.3 lb/gal)	ASTM D 1475-85
Nonvolatile Matter 80% Behavior at 140° F	ASTM D 4586-86
(Sag Resistance) 3.18 mm (1/8 in.)	ASTM D 4586-86
Moisture vapor 2 - 6 g/m2/24 hrs. ASTM E398-83 transmission rate @ 0.51 mm (0.10 - 0.40 g/100 in.²/24 hrs @ 0.020 in.) thickness	

E. FIBRATED ASPHALT MASTIC

Property Typical Value	Test Method	
Asbestos content None Viscosity @ 25°C 480 - 1000 Pa s (77°F) (480000-1000000 cP)	ASTM D 276-87 ASTM D 2196-86	
Density @ 25°C 1.11 kg/L (77°F) (9.3 lb/gal)	ASTM D 1475-85	
Nonvolatile Matter 80% Behavior at 140° F	ASTM D 4586-86	
(Sag Resistance) 3.18 mm (1/8 in.)	ASTM D 4586-86	
Moisture vapor 1.55 - 6.2 g/m²/24 transmission rate hrs. @ 0.51 mm (0.10 - 0.40 g/100 in.²/24 hrs @ 0.020 in.) thickness	ASTM E398-83	

F. HYPALON ELASTOMERIC SHEETING

Property Typical Value	Test Method
Thickness 1.14 mm (0.045 in.) Tensile strength 1000 N (225 lbf) Elongation @ fabric 25% break	ASTM D751-89 ASTM D751-89 ASTM D751-89
Tear resistance 423 N (95 lbf)	ASTM D751-89

Water absorption < 5% within 7 days ASTM D471-89 @ 22°C (72°F)

Dimensional stability

ASTM D1204-84

1 hr @ 100°C (212°F) 1.0 - 1.25% Low temperature -40°C to -43°C ASTM D2136-84(1989)

flexibility (-40°F to -45°F)

Ply adhesion 2.1 N/mm (12 lbf/in.) Water vapor transmission

 $2.87 \text{ ng/(Pa s m}^2) (0.05 \text{ perms)}$

ASTM D413-82(1988)

ASTM E96-88

G. ASTM D 312-84, TYPE III ASPHALT

Property Typical Value Test Method

Softening point 91 - 96°C **ASTM D 36-86**

(195 - 205°F)

Penetration @ 25°C 15 - 30 dmm

(77°F)

ASTM D 5-86

Flash point, min 274°C (525°F) **ASTM D 92-85** Ductility @ 25°C, 2.5 cm ASTM D 113-86 (77°F) min

Equiviscous temperature range

204 to 221°C (400 to 430°F) (125cP)

ASTM D 4402-87

Н. HOT MELT SEBS MODIFIED BITUMEN WITH SHELL KRATON POLYMER "G"

Property Typical Value Test Method

Softening point 91 - 96°C **ASTM D 36-86**

(195 - 205°F)

Elongation @ 38°C 1000% **ASTM D 412-87**

(77°F)

Density @ 38°C 0.99 kg/L ASTM D 70-82 (1986)

(77°F) (8.3 lb/gal)

274°C (525°F) ASTM D 92-85 Flash point

Penetration @ 38°C 25 - 40 dmm **ASTM** D 5-86

(77°F)

Penetration index 4.5 Calculated value

COMPOSITION FLASHING Ι.

Property Typical Value Test Method

Tensile strength @ 731 N (164.4 lbf) MD ASTM D2523-78 -18°C (0°F) 609 N (137.0 lbf) XD (1989) Elongation @ -18°C 2.6% MD ASTM D2523-78

(0°F) 1.6% XD (1989)

ASTM D146-90

Weight 2.42 kg/m² (49.55 lbs/100 sq ft)

Pliability 12.7 mm No failures

(1/2") rádius bend @25°C (77°F) Tear strength

ASTM D146-90

(Trapezoid) @ 25°C 57 N (12.7 lbf) MD ASTM D1117-80

(77°F) 54 N (12.2 lbf) XD

Asphalt coating weight 0.99 kg/m² (20.27 lbs/100 ft²) ASTM D146-90

Puncture strength 672 N @ 23 mm ASTM E154-88

(151 lbf @ 0.9 in.)

SELF-REINFORCING, POLYMER MODIFIED, ASPHALT EMULSION J.

Property Typical Value	Test Method
Asbestos content None Density @ 25°C 1.0 kg/L (77°F) (8.4 lb/gal)	ASTM D 276-87 ASTM D 1475-85
Residue by evaporation 50% Ash content 4.0% (total sample) Tensile strength 310 kPa (45 psi) @ 25°C (77°F), min	ASTM D 2939-78 ASTM D 2939-78 ASTM D 412-87
Elongation @ 25°C 200% (77°F), min	ASTM D 412-87
Moisture vapor 62 g/m2/24 hrs. @ transmission rate 0.51 mm (4.0 g/100 in.²/24 hrs @ 0.020 in.) thickness	ASTM E398-83

PART 3 - EXECUTION

3.1 **EXAMINATION**

- A. Verify conditions as satisfactory to receive work.
- B. Do not begin roofing until all unsatisfactory conditions are corrected. Beginning work constitutes acceptance of conditions.
- C. Verify that work of other trades penetrating roof deck or requiring men and equipment to traverse roof deck has been approved by Owner, manufacturer, and roofing contractor.
- D. Check projections, curbs, and deck for inadequate anchorage, foreign material, moisture, or unevenness that would prevent quality and execution of new roofing system.

3.2 **GENERAL WORKMANSHIP**

- Substrate: Free of foreign particles prior to laying roof membrane. A.
- В. Phased application: Not permitted. All plies shall be completed each day.
- C. Traffic and equipment: Kept off completed plies until adhesive has set.
- D. Wrapper and packaging materials: Not to be included in roofing system.
- E. Entrapped aggregate: Not permitted within new membrane. Its discovery is sufficient cause for rejection.
- F. Ply shall never touch ply, even at roof edges, laps, tapered edge strips, and cants.
- G. Fit plies into roof drain rims; install lead flashing and finishing plies; secure clamping collars; install domes.
- Н. Extend roofing membrane to top edge of cant at wall and projection bases.

- I. Cut out fishmouths/side laps which are not completely sealed; patch. Replace all sheets which are not fully and continuously bonded.
- J. Modified bitumen heating:
 - Use low burner flames during initial melt-downs, circulate modified bitumen after initial melt-down.
 - a. Maximum bitumen temperature: 525°F (274°C).
 - b. EVT: 415°F 465°F (213°C 241°C).
 - 2. Kettle: Free of contaminants (asphalt or coal tar pitch).
 - 3. Use separate kettle for asphalt bitumen heating.
 - Application rates: Bitumen quantities for waterstop/tie-offs, flashings, miscellaneous detail applications, and minimum kettle capacity are not included in application rates. To account for these factors, add approximately 25 percent additional bitumen on a total-job average basis.

K. Asphalt Heating:

- 1. Use low burner flames during initial melt-downs, circulate asphalt after initial melt-down.
 - a. Maximum bitumen temperature: 525°F (274°C).
 - b. EVT: 400°F 430°F (204°C 221°C).
- 2. Kettle: Free of contaminants.
- Application rates: Bitumen quantities for waterstop/tie-offs, flashings, miscellaneous detail applications, and minimum kettle capacity are not included in application rates. To account for these factors, add approximately 25 percent additional bitumen on a total-job average basis.

L. Mechanical Fasteners:

- 1. Seated firmly in discs with fastener heads flush or below disc's top surface.
- Length: Sufficient to accommodate roof insulation thickness and engage metal deck 1/2 inch (13 mm).

M. Insulation:

- 1. Install insulation boards in courses parallel to roof edges mopping surface up.
 - a. Firmly butt each insulation board to surrounding boards. Do not jam or deform boards.
 - b. Eliminate open joints and uneven surfaces.
- 2. Maximum insulation gap: 1/4 inch (6 mm).
- 3. Fill insulation board joint gaps larger than 1/4 inch (6 mm) with roof insulation.
- 4. Maximum elevation variation between boards at joints: 1/8 inch (3 mm).

- Cut and fit insulation boards where roof deck intersects vertical surfaces. Cut board 1/4 inch (6 mm) from vertical surface.
- 6. Stagger joints at least 6 inches (150 mm).
- 7. Filler size: 18 inches (460 mm) in length or width, minimum.
- N. Insulation: Form continuous insulation joints over deck flange. Do not cantilever insulation edges over deck ribs. Minimum bearing surface: 1-1/2 inches (38 mm).

3.3 PREPARATION

A. Protection:

- 1. Contractor shall be responsible for protection of property during course of work. Lawns, shrubbery, paved areas, and building shall be protected from damage. Repair damage at no extra cost to Owner.
- 2. Provide at site prior to commencing removal of debris, a dumpster or dump truck to be located adjacent to building where directed by Owner.
- 3. Roofing, flashings, membrane repairs, and insulation shall be installed and sealed in a watertight manner on same day of installation or before arrival of inclement weather.
- 4. At start of each work day drains within daily work area shall be plugged. Plugs to be removed at end of each work day or before arrival of inclement weather.
- 5. Preparation work shall be limited to those areas that can be covered with installed roofing material on same day and before arrival of inclement weather.
- Arrange work sequence to avoid use of newly constructed roofing for storage, walking surface, and equipment movement. Move equipment and ground storage areas as work progresses.
- 7. Protect building surfaces at set-up areas with tarpaulin. Secure tarpaulin. Remove dumpster from premises when full and empty at approved dumping or refuse area. Deliver empty dumpster to site for further use. Upon job completion, dumpster shall be removed from premises. Spilled or scattered debris shall be cleaned-up immediately. Removed material to be disposed from roof as it accumulates.
- 8. At end of each working day, removal areas shall be sealed with water stops along edges to prevent water entry.
- 9. Provide clean plywood walkways and take other precautions required to prevent tracking of aggregate/debris from existing membrane into new work area where aggregate/debris pieces can be trapped within new roofing membrane. Contractor shall instruct and police workmen to ensure that aggregate/debris is not tracked into new work areas on workmen's shoes or equipment wheels. Discovery of entrapped aggregate/debris within new membrane is sufficient cause for its rejection.

B. Surface preparation:

1. Sweep clean roof deck.

3.4 CARPENTRY

A. Roof Edge:

- Mechanically attach wood blocking. Offset blocking layers 12 inches (300 mm); weave corners.
 - a. Blocking thickness: Equal to final insulation thickness including tapered edge strips.
- 2. Fasteners shall be installed in two (2) rows staggered. Spacing in any 1 row shall not exceed 24 inches (610 mm). Within 8 feet (2.4 meter) of outside corners, spacing shall not exceed 12 inches (300 mm) in any one (1) row.
- Install wood cants over extruded aluminum fascia deck brackets. Nail two (2) rows at a spacing not to exceed 12 inches (300 mm) from each side of deck brackets. Miter corners.
- B. Wood blocking fastening pattern:

- C. Prefinished aluminum Fascia:
 - 1. Mechanically attach wood blocking with 3/8 inch (9.5 mm) diameter wedge anchors 4 feet o.c., minimum 2 fasteners per section of blocking. Countersink anchors flush with blocking surface.
 - a. Blocking thickness: 2 inches (50 mm) nominal.
 - b. Blocking width: Flush with edges.

3.5 THERMAL INSULATION

- A. Mechanically attach insulation to deck, unless otherwise recommended by roof manufacturer.
 - 1. Fastener density: 1 every 2 sq. ft. (1 every 0.19 sq. meter.) or per local Factory Mutual requirements.
 - 2. Install additional fasteners to ensure insulation is firm under foot.
- B. Drive mechanical fasteners flush to top surface.
- C. Filler insulation requires 2 fasteners per piece minimum.
- D. Adhere each layer(s) with a uniform and continuous application of asphalt at a rate of 30 lbs. per $100 \text{ sq. ft. } (1.5 \text{ kg/m2})) \pm 20 \text{ percent.}$
 - Immediately after placement, walk insulation boards into hot bitumen to achieve solid bond.
 - 2. Promptly spread any bitumen pools that may accumulate on insulation surface to achieve smooth surface for roofing installation.

3.6 ROOF SYSTEM APPLICATION

- A. Install base ply to roof and all wall, curb, and projection bases in a uniform and continuous mopping of asphalt.
- B. Ply laps: 4 inches (100 mm).
- C. Apply adhesive no more than 10 feet (3 meter) ahead of each roll being embedded.
- D. Broom ply before adhesive cools from unmopped side. Ensure complete and continuous seal and contact between bitumen and ply sheets, including ends, edges, and laps without wrinkles, fish mouths, or blisters. Broom width: 34 inches (860 mm) minimum. Avoid walking on plies until adhesive has set.
- E. Roofing ply shall never touch roofing ply, even at roof edges, laps, tapered edge strips, and cants.
- F. Cut out fishmouths/side laps which are not completely sealed; patch. Replace all sheets which are not fully and continuously bonded.
- G. Lap ply membrane ends 4 inches (100 mm). Stagger end laps 3 feet (910 mm) minimum.
 - 1. Adhesive application rate: 25 lbs. per 100 sq. ft. (1.2 kg/m2) average, tolerance \pm 20 percent.
- H. Install three (3) plies of ply sheet, shingle fashion. Overlap starter strips 26 inches (660 mm) with first ply, then overlap each succeeding ply 24-2/3 inches (630 mm). Place ply sheets to ensure water will flow over or parallel to, but never against exposed edges.
- I. Use 12, 24, 36 inch (305, 610, and 910 mm) wide plies to start and finish roof membrane along roof edges and termination's.
- J. Lap ply sheet ends 6 inches (150 mm). Stagger end laps 12 inches (305 mm) minimum.
- K. Apply adhesive no more than 10 feet (3 meter) ahead of each roll being embedded.
- L. Broom each ply before adhesive cools from unmopped side. Ensure complete and continuous seal and contact between bitumen and ply sheets, including ends, edges, and laps without wrinkles, fish mouths, or blisters. Broom width: 34 inches (860 mm) minimum. Avoid walking on plies until adhesive has set.
- M. Embed each ply in a uniform and continuous mopping of modified hot-melt adhesive.
 - 1. Interply mopping rate: 25 lbs. per 100 sq. ft. (1.2 kg/m2) average, tolerance \pm 20 percent.

3.7 FLASHINGS

- A. General flashing requirements:
 - 1. Elastomeric Flashing:
 - a. Adhere elastomeric sheeting completely to flashing surface, cant, and roofing with a continuous mopping of hot melt modified bitumen.
 - b. Ensure complete bond and continuity without wrinkles or voids. Lap sheeting ends 4 inches (100 mm). Adhere laps with Hypalon flashing adhesive.

- c. Elastomeric sheeting width: Sufficient to extend at least 6 inches (150 mm) beyond toe of cant onto new roof.
- d. Seal vertical and horizontal edges of sheeting with reinforcing membrane embedded in a base course of Modified Mastic and a top course Modified Mastic

2. Composition flashing (Two Plies):

- a. Cut flashing ply in lengths not to exceed 10 feet (3 meter).
- Adhere first flashing ply to flashing substrate in a continuous application of flashing bitumen. Remove wrinkles and voids. Overlap sections 4 inches (100 mm).
- c. Extend flashing ply 4 inches (100 mm) beyond toe of cant.
- d. Cut additional flashing ply in lengths not to exceed 10 feet (3.1 meter). Apply flashing bitumen to first flashing ply in a continuous application. Embed second flashing ply into bitumen. Lap flashing membrane ends 4 inches (100 mm); extend membrane 6 inches (150 mm) beyond toe of cant; press sheet firmly in place. Ensure complete bond and continuity without wrinkles or voids. Adhere laps with flashing bitumen.

3. Two-Ply Stripping:

a. Set flange in asphalt mastic. Seal flange with two (2) stripping plies embedded between alternate applications of stripping adhesive/bitumen. Extend first ply 4 inches (100 mm) beyond flange; second ply 2 inches (50 mm) beyond first ply.

B. At Perimeter Edges:

- 1. Install new roofing to blocking edge. Nail with spiral or annular shank nails, 8 inches (200 mm) o.c. Nails to have 1 inch (250 mm) integral cap.
- 2. Install extruded aluminum free-floating fascia system according to manufacturer's published instructions.
 - a. Use prefabricated corners.
 - b. Minimum fascia length: 24 inches (61 cm), 2 deck brackets minimum.
- 3. Elastomeric sheeting shall be of sufficient width that after being inserted and secured by fascia top cap, will extend at least 6 inches (15.2 cm) onto new roof.
- 4. Solidly adhere sheeting completely to cant and roofing in a uniform and continuous application of flashing adhesive.
- Seal horizontal and vertical edges of sheeting with reinforcing membrane embedded in a base course of hypalon flashing adhesive and a top course of modified asphalt mastic.

C. At Wood Curb Flashings:

- 1. Remove mechanical equipment from curb.
- 2. Install new roofing to top edge of cant. Nail 8 inches (200 mm) o.c. with spiral or annular nails, with a 1 inch (25 mm) cap.
- 3. Install composition base flashing as described in general flashing requirements section.
- 4. Secure top edge of flashing to substrate with spiral or annular shank nails, with a 1inch (2.54 cm) cap, 8 inches (20.3 cm) o.c.

- a. Fabricate and install counterflashing.
- 5. Reinstall mechanical equipment onto curb. Refasten.

D. At Plumbing Vents:

- 1. Wedge plumbing vent tight against deck.
- 2. Apply 1/16 inch (1.6 mm) uniformly thick layer of asphalt mastic to surface receiving metal flange.
- Fabricate and install plumbing vent flashing from lead. Flange: 4 inches (100 mm) wide minimum; extend completely around periphery of vent flashing. Set flange into mastic. Neatly dress flange with wood block.
- 4. Prime metal flange with asphalt primer.
 - a. Pipe outside diameter greater than 2 inches (50 mm): Bend lead inside pipe 1 inch (25 mm) minimum with pliers or rubber/plastic mallet; replace cracked lead.
 - b. Pipe outside diameter 2 inches (50 mm) or less: Cut lead at vent top; fabricate and install integral lead cap.
- 5. Install two (2) ply stripping described in general flashing requirements section.

E. At Fascias:

- 1. Installation of fascia.
 - a. Install wood blocking unless existing reused.
 - b. Install continuous bent plate on edge of wood blocking. Anchor 32 inches (800 mm).
 - c. Fabricate and install fascia. Connect fascia sections as recommended by manufacturer. Extend front and 2 inches (50 mm) beyond wood blocking. Bend lower edges out 45 degrees maximum to form drip edge. Attach outside edge to continuous cleat with 3/4 inch (19 mm) lock. Attach inside edge to wood blocking 24 inches (610 mm) o.c. At corners, form standing seam and miter.

F. At Roof Drains:

- Install tapered edge strip around drain to create approximate 48 x 48 inch (1220 x 1220 mm) sump. Miter corners. Seal toe of tapered edge to drain rim with reinforcing membrane embedded between alternate courses of asphalt mastic.
- 2. Install roofing system into sump and onto drain rim.
- 3. Plug drain to prevent water entry until service connection is completed.
- 4. Apply 1/16 inch (1.6 mm) uniformly thick layer of asphalt mastic to surface receiving lead flashing.
- 5. Set single piece stainless stool flashing in mastic centered over drain; extend lead 6 inches (150 mm) beyond drain rim. Neatly dress lead with wood block.
- 6. Clamp flashing collar to drain in bed of mastic.

- 7. Neatly cut stainless steel felts within drain at rim. Lead to extend 1 inch (25 mm) into bowl.
- 8. Prime lead with asphalt primer.
- 9. Install two (2) ply stripping described in general flashing requirements section. Stripping shall not extend under clamping ring.

3.8 SURFACING TREATMENT ON FLASHINGS

- A. Apply surfacing emulsion to flashing at 3 gallons per 100 sq. ft. (1.2 L/m2).
- B. Allow surfacing emulsion to set for 30 days, then coat flashing surface with 1 coat of aluminized heat reflective coating to flashing surface at approximate rate of 130 sq. ft. per gallon (3.2 m2/L).
- C. Coat elastomeric flashing with 1 coat of aluminized heat reflective coating applied at an approximate rate of 130 sq. ft. per gallon (3.2 m2/L).

3.9 SURFACING APPLICATION

A. Flood coat:

- 1. Prior to application of surface treatment system, contractor shall inspect roof with manufacturer's representative.
- 2. Over entire roof surface apply uniform and continuous flood coat of hot-melt SEBS modified bitumen with Shell Kraton polymer "G" at minimum rate of 50 lbs. per 100 sq. ft. (2.4 kg/m2) ± 20%.
- 3. Immediately broadcast minimum 400 lbs./100 sq. ft. (19.5 kg/m2) of new, clean roofing gravel. Cover flood coat material completely.

3.10 ADJUSTING AND CLEANING

- A. Repair of deficiencies:
 - 1. Installations of details noted as deficient during final inspection must be repaired and corrected by applicator, and made ready for reinspection, within five (5) working days.

B. Clean-up:

- 1. Immediately upon job completion, roof membrane and flashing surfaces shall be cleaned of debris.
- Clean gutters and downspouts of debris.

3.

STATEMENT OF ROOFING MANUFACTURER'S QUALIFICATIONS

submit w included comply v	vith their bid the data requested in the follow in and made part of each bid document ar	ons and drawings and the contract documents shall ving schedule of information. This data must be not contained in the sealed envelope. Failure to tification for rejecting the Contractor's Proposal.	
1.	Name of bidder		
2.	Name of Material Supplier		
3.	Number of years manufacturing this roof system		
4.	Location of wholly owned and operated manufacturing facilities.		
	Facility	Facility	
	Product	Product	
	Street	Street	
	City	City	
	State	State	
	% of product used mfg at this plant	% of product used mfg at this plant	
	Facility	Facility	
	Product	Product	
	Street	Street	
	City	City	
	State	State	
	% of product used mfg at this plant	% of product used mfg at this plant	
5.	Submit Material Safety Data Sheets on products to be used.		
6.	Submit current independent laboratory results on roofing system that is proposed, prior to award of contract.		
7.	The proposed roof system to be installed shall meet all local and state safety, health, fire and building code requirements.		

END OF SECTION

EPDM SINGLE-PLY MEMBRANE ROOFING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and General Provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.2 DESCRIPTION OF WORK:

- A. Extent of flexible sheet roofing (FSR) is indicated on drawings and is hereby defined to include non-traffic-bearing sheet membrane system intended for weather exposure as primary roofing. Similar membranes concealed by a wearing surface are excluded by definition and, if required, are specified elsewhere in Division 7 as waterproofing.
- B. Types of roofing systems specified in this section utilizing flexible sheet roofing membranes include the following:
 - 1. Totally adhered systems.
- C. Flexible sheet roofing membranes include the following:
 - 1. Ethylene Propylene Diene Monomer (EPDM)
- D. Section includes
 - 1. Substrate preparation
 - 2. Wood nailer installation
 - 3. Membrane flashing installation
 - 4. Roof insulation related to flexible sheet roofing.

1.3 QUALITY ASSURANCE:

- A. Manufacturer: Obtain primary flexible sheet roofing from a single manufacturer. Provide secondary materials as recommended by manufacturer of primary materials.
- B. Installer: A firm with not less than 5 years of successful experience in installation of roofing systems similar to those required for this project and which is acceptable to or licensed by manufacturer of primary roofing materials.
- C. Pre-Roofing Conference: Prior to installation of roofing and associated work, meet at project site, or other mutually agreed location, with Installer, roofing manufacturer, installers of related work, and other entities concerned with roofing performance, including (where applicable) Owner's insurer, test agencies, governing authorities, Architect, and Owner. Record discussions and agreements and furnish copy to each participant. Provide at least 72 hours advance notice to participants prior to convening pre-roofing conference. Include periodic onsite inspections by manufacturer to insure compliance with recommended installation procedures.
- D. UL Listing: Provide labeled materials which have been tested and listed by UL in "Building Materials Directory" for application indicated, with "Class A" rated materials/system for roof slopes shown.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For roofing system. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Base flashings and membrane terminations.
 - 2. Tapered insulation, including slopes.
 - 3. Roof plan showing orientation of steel roof deck and orientation of membrane roofing and fastening spacing and patterns for mechanically fastened membrane roofing.
 - 4. Insulation fastening patterns for corner, perimeter, and field-of-roof locations.
- C. Samples for Verification: For the following products, in manufacturer's standard sizes:
 - 1. Sheet roofing, of color specified, including T-shaped side and end lap seam.
 - 2. Roof insulation.
 - 3. Walkway pads or rolls.
 - Termination bars.
 - 5. Battens.
 - 6. Six insulation fasteners of each type, length, and finish.
 - 7. Six roof cover fasteners of each type, length, and finish.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer and manufacturer.
- B. Manufacturer Certificate: Signed by roofing manufacturer certifying that membrane roofing system complies with requirements specified in "Performance Requirements" Article.
 - 1. Submit evidence of complying with performance requirements.
- C. Product Test Reports: Based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified testing agency, for components of membrane roofing system.
- D. Field quality-control reports.
- E. Warranties: Sample of special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For membrane roofing system to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A qualified manufacturer that has FMG approvals for membrane roofing system identical to that used for this Project.
- B. Installer Qualifications: A qualified firm that is approved, authorized, or licensed by membrane roofing system manufacturer to install manufacturer's product and that is eligible to receive manufacturer's special warranty.
- C. Testing Agency Qualifications: An independent testing agency with the experience and capability to conduct the testing indicated, as documented according to ASTM E 548.
- D. Source Limitations: Obtain components including roof insulation fasteners for membrane roofing system from same manufacturer as membrane roofing or approved by membrane roofing manufacturer.
- Exterior Fire-Test Exposure: ASTM E 108, **Class A** for application and roof slopes indicated, as determined by testing identical membrane roofing materials by a qualified testing agency. Materials shall be identified with appropriate markings of applicable testing agency.
- F. Fire-Resistance Ratings: Where indicated, provide fire-resistance-rated roof assemblies identical to those of assemblies tested for fire resistance per ASTM E 119 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
- G. Preliminary Roofing Conference: Before starting roof deck construction, conduct conference at Project site.
 - Meet with Owner, Architect, Owner's insurer if applicable, testing and inspecting agency representative, roofing Installer, roofing system manufacturer's representative, deck Installer, and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.
 - Review methods and procedures related to roofing installation, including manufacturer's written instructions.
 - 3. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Review requirements for deck substrate conditions and finishes, including flatness and fastening.
 - 5. Review structural loading limitations of roof deck during and after roofing.
 - 6. Review base flashings, special roofing details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that will affect roofing system.
 - 7. Review governing regulations and requirements for insurance and certificates if applicable.
 - Review temporary protection requirements for roofing system during and after installation.
 - 9. Review roof observation and repair procedures after roofing installation. Manfacturer to perform two visits during construction with written reports giving narrative of site conditions, identify any concerns, photos documenting issues and/or progress.

- H. Pre-installation Roofing Conference: Conduct conference at Project site.
 - 1. Meet with Owner, Architect, Owner's insurer if applicable, testing and inspecting agency representative, roofing Installer, roofing system manufacturer's representative, deck Installer, and installers whose work interfaces with or affects roofing, including installers of roof accessories and roof-mounted equipment.
 - Review methods and procedures related to roofing installation, including manufacturer's written instructions.
 - 3. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Examine deck substrate conditions and finishes for compliance with requirements, including flatness and fastening.
 - 5. Review structural loading limitations of roof deck during and after roofing.
 - 6. Review base flashings, special roofing details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that will affect roofing system.
 - 7. Review governing regulations and requirements for insurance and certificates if applicable.
 - Review temporary protection requirements for roofing system during and after installation.
 - 9. Review roof observation and repair procedures after roofing installation.

1.8 JOB CONDITIONS:

A. Weather: Proceed with roofing work when existing and forecasted weather conditions permit work to be performed in accordance with manufacturer's recommendations and warranty requirements.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form, without monetary limitation, in which manufacturer agrees to repair or replace components of membrane roofing system that fail in materials or workmanship within specified warranty period. Failure includes roof leaks.
 - Special warranty includes roofing membrane, base flashings, roofing accessories, roof
 insulation, fasteners, walkway products and other components of membrane roofing
 system.
 - 2. Warranty Period: 20 years from date of Substantial Completion.
- B. Special Warranty: The Contractor shall warrant the roof application with respect to workmanship and proper application by the roofing manufacturer. Should any leaks covered under the warranty occur during this period, corrective action will be taken by the Contractor to repair the roof to the satisfaction of the Owner and roofing manufacturer. All corrective work will be done at no cost to the Owner.
 - 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL:

- A. Performance: Provide roofing materials recognized to be of generic type indicated and tested to show compliance with indicated performances, or provide other similar materials certified in writing by manufacturer to be equal or better than specified in every significant respect, and acceptable to Architect.
- B. Compatibility: Provide products which are recommended by manufacturers to be fully compatible with indicated substrates, or provide separation materials as required to eliminate contact between incompatible materials.

2.2 EPDM FSR MEMBRANE:

- A. Non-reinforced, cured, single ply Ethylene Propylene Diene Monomers formed into uniform, flexible sheets, complying with the following:
 - 1. Tensile Strength (ASTM D 412): 1400 psi.
 - 2. Ultimate Elongation (ASTM D 412): 300%.
 - 3. Brittleness Temperature (ASTM D 746): -75 deg.F (-59 deg.C).
 - 4. Tear Resistance (ASTM D 624): 125 lbs. per lin. inch.
 - 5. Resistance to Ozone Aging (ASTM D 1149): No cracks after 168 hours exposure of 50% elongated samples at 104 deg.F (40 deg.C) and 100 pphm ozone.
 - 6. Resistance to Heat Aging (ASTM D 573): Maximum reduction in elongation of 30% maximum loss of tensile strength of 15% (168 hours at 240 deg.F (116 deg.C).
 - 7. Thickness: 60 mils, nominal.
 - 8. Exposed Face Color: Black
- B. Fully Adhered EPDM Membrane:
 - 1. Manufacturers: Subject to compliance with requirements, provide products of one of the following:
 - a. Firestone Building Products Co.
 - b. Johns Mansville Roofing Systems.
 - c. Carlisle Systec Systems

2.3 MISCELLANEOUS MATERIALS FOR FSR:

- A. Sheet Seaming System: Manufacturer's standard 3" peal and stick seam tape for sealing lapped joints, including edge sealer to cover exposed spliced edges as recommended by manufacturer of FSR system.
- B. Cant Strips, Tapered Edge Strips and Flashing Accessories: Types recommended by manufacturer of FSR material, provided at locations indicated and at locations recommended by mfr., including adhesive tapes, flashing cements, and sealants.

- C. Slip Sheet: Type recommended by manufacturer of FSR material for protection of membrane from incompatible substrates.
- D. Membrane Adhesive: As recommended by FSR membrane manufacturer for particular substrate and project conditions, formulated to withstand min. 60 psf uplift force.
- E. Nailers Structural Grade No. 2 or better Southern Pine, Douglas Fir or Exterior Grade plywood. All wood shall be pressure treated for rot resistance. Minimum 3-1/2 in. (nominal) wide or as wide as the nailing flange of each roof accessory. Thickness of roof insulation.
- F. Pourable Sealer
 - 1. Description: 2-Part urethane, 2-color for reliable mixing
- G. Snow Guards: Basis of Design Alpine Snow Guards Model #115 2 pipe sytem.
 - 1. Bracket spacing to be recommended by snow guard manufacturer.
 - 2. Base Plate 11 gage 304 stainless steel with two 5/16" 304 stainless steel machine screws welded into countersinks
 - 3. Tubing: Stainless steel 304 alloy, 1" outside diameter and .120" wall thickness
 - 4. Couplings: Stainless Steel 304 Series,
 - a. Internal and concealed coupling 3" long.
 - b. External and exposed coupling which can also serve as an expansion mechanism 5" long.
 - 5. End Caps 304 Stainless Steel.
 - 6. End Collars: 304 Stainless Steel.
 - 7. Ice Flags: 304 Stainless Steel.
 - 8. Fasteners to be compatible with chosen roof application and meet specified pull out values as shown in load test data.
 - 9. Finish: Mill Finish
- H. Walkway: Rubber traffic pads as manufactured by Humane Equipment Co., Inc. or approved equal, for fully adhered roof area and "Lightweight Walkway Pavers" as manufactured by Hanover Architectural Products, Inc., or approved equal for ballasted roof areas (size 11-3/4" x 23-1/2" x 1-1/4"). Locate where indicated on drawings.

2.4 INSULATING MATERIALS:

- A. General: Provide insulating materials to comply with requirements indicated for materials and compliance with referenced standards; in sizes to fit applications indicated, selected from manufacturer's standard thicknesses, widths and lengths.
- B. Polyisocyanurate Board Roof Insulation: Rigid, cellular thermal insulation with polyisocyanurate closed-cell foam core and manufacturer's standard facing laminated to both sides; complying with FS HH-I-1972/2, Class 1; aged R-values as designated at mean temperatures indicated, after conditioning per RIC/TIMA Bulletin #281-1; and as follows:

- 1. Surface Burning Characteristics: Maximum flame spread of 25.
- 2. Thermal Resistivity:
 - a. Base layer of insulation to be installed in a minimum of two layers of two inch thick board with minimum aged R value of 5.5 per inch
 - b. Tapered insulation saddles or crickets shall be not be used in calculation of minimum R value.
- C. Nail Base Insulation: Composite board roof insulation consisting of closed-cell polyisocyanurate foam core laminated to a black glass reinforced mat facer on one side and 7/16" oriented strand board on the other side. Installation shall be with mechanical fasteners.
- D. Tapered Insulation: Provide factory-tapered insulation boards fabricated to slope of 1/4 inch per 12 inches unless otherwise indicated.
- E. Provide preformed saddles, crickets, tapered edge strips, and other insulation shapes where indicated for sloping to drain. Fabricate to slopes indicated.
- 2.5 MISCELLANEOUS INSULATION MATERIALS:
 - A. Insulation Adhesive: Cold fluid-applied, solvent-free, bituminous urethane adhesive formulated to adhere roof insulation to substrate.
 - 1. Fas-n-Free Adhesive by Tremco
 - a. Physical Properties:
 - 1) Asbestos content: None EPA 600/R-93/116
 - 2) Viscosity @ 77 deg F: 70,000 cP (70Pa..s) ASTM D 2556-93a
 - 3) Density @ 77 deg F: 8.5 lb/gal (1016 g/L) ASTM D 1875-95
 - 4) Nonviolatile content: 98% ASTM D 1644-88
 - 5) Violatile organic content: <20 g/L ASTM D 3960-98
 - 6) Tensile strength @ 77 deg F: 200 psi (1379 kPa) ASTM D 412-92
 - 7) Elongation @ 77 deg F: 1200% ASTM D 412-98a
 - 8) Adhesion strength in shear @ 77 deg F: 80 psi (552 kPa) ASTM D 816-82(1993)
 - 9) Average T-Peel strength @ 77 deg F: 15 lbf. (66N) ASTM D 1876-95
 - 10) Low temperature flexibility: Pass at –60 deg F (-51 deg C) ASTM D 816-82 (1993)
 - B. Low-VOC, water-based, adhesive substrate primer formulated for use with cold-applied insulation adhesive.
 - 1. Tremprime WB by Tremco.
 - C. Mastic Sealer: Type recommended by insulation manufacturer for bonding edge joints and filling voids.
 - D. Mechanical Anchors:
 - 1. Description: Heavy duty threaded fastener with 3-coat waterborne fluorocarbon polymer coating and drill point tip capable of penetrating 20 gauge steel. Fastener shall meet minimum thread size of .260" and a 13 threads per inch. Length shall be sufficient to penetrate deck a minimum of 3/4" for steel and 1" for wood and concrete. Structural

concrete decks must be pre-drilled with a 7/32" carbide drill bit to a depth $\frac{1}{2}$ " deeper than the fastener engagement.

2. Reference Standard: SAE 1022, Heat Treated

PART 3 - EXECUTION

3.1 PREPARATION OF SUBSTRATE:

- A. General: Comply with manufacturers' instructions for preparation of substrate to receive FSR system.
- B. Clean substrate of dust, debris, and other substances detrimental to FSR system work. Remove sharp projections.
- C. Install cant strips, flashings, and accessory items as shown, and as recommended by manufacturer even though not shown.

3.2 INSTALLATION:

A. General: Comply with manufacturer's instructions, except where more stringent requirements are indicated.

B. Examination

- Examine roof deck to determine that it is sufficiently rigid to support roofers and their mechanical equipment and that deflection will no strain or rupture roof components or deform deck.
- 2. Verify that surfaces and site conditions are ready to receive work. Correct defects in the substrate before commencing with roofing work.
- 3. Examine roof substrate to verify that it is properly sloped to drains.
- 4. Start work with sealants and adhesives at 60 degrees 80 degrees F.
- 5. Fumes from adhesive solvents may be drawn into the building during installation through rooftop intakes. Appropriate measures must be taken to assure that fumes from adhesive solvents are not drawn into the building through air intakes.
- 6. For reroofing applications only: remove existing roof system components as specified.
- 7. The surface must be clean, dry, smooth, free of sharp edges, fins, loose or foreign materials, oil, grease and other materials that may damage the membrane, all roughened surfaces, which could cause damage, shall be properly repaired before proceeding.
- 8. All surface voids of the immediate substrate greater than 1/4" wide must be properly filled with an acceptable insulation or suitable fill material

C. Protection of other work

- 1. Protect metal, glass, plastic, and painted surfaces from adhesives and sealants.
- 2. Protect neighboring work, property, cars, and persons from spills and overspray from adhesives, sealants and coatings and from damage related to roofing work.

- 3. Protect Server Room at Services Building with polyethelene sheet over entire room for dust protection during construction.
- 4. Protect finished areas of the roofing system from roofing related work traffic and traffic by other trade.

D. Material storage and handling

- 1. Keep all adhesives, sealants, primers and cleaning materials away from all sources of ignition.
- Consult container labels and material Safety Data Sheets (MSDS) for specific safety instructions.
- 3. Deliver materials to job site in their original containers as labeled by the manufacturer.
- E. Tie-in to existing roof as per drawing details and manufacturers recommendations.

3.3 INSULATION INSTALLATION:

- A. Mechanically Fastened and Adhered Insulation: Install each layer of insulation and secure first layer of insulation to deck using mechanical fasteners specifically designed and sized for fastening specified board-type roof insulation to deck type.
 - 1. Fasten first layer of insulation according to requirements in FMG's "Approval Guide" for specified Windstorm Resistance Classification.
 - Fasten first layer of insulation to resist uplift pressure at corners, perimeter, and field of roof.
 - 3. Install subsequent layers of insulation in a cold fluid-applied adhesive.
- B. General: Extend insulation full thickness in two layers, over entire surface to be insulated, cutting and fitting tightly around obstructions. All joints between layers shall be staggered at least 6 in.. Form cant strips, crickets, saddles, and tapered areas with additional material as shown and as required for proper drainage of membrane.
- C. Do not install more insulation each day than can be covered with membrane before end of day and before start of inclement weather.

3.4 ADHERED ROOFING MEMBRANE INSTALLATION

- A. Install roofing membrane over area to receive roofing according to membrane roofing system manufacturer's written instructions. Unroll roofing membrane and allow to relax before installing.
- B. Start installation of roofing membrane in presence of membrane roofing system manufacturer's technical personnel.
- C. Accurately align roofing membrane and maintain uniform side and end laps of minimum dimensions required by manufacturer. Stagger end laps.
- D. Bonding Adhesive: Apply bonding adhesive to substrate and underside of roofing membrane at rate required by manufacturer and allow to partially dry before installing roofing membrane. Do not apply bonding adhesive to splice area of roofing membrane.

- E. Mechanically or adhesively fasten roofing membrane securely at terminations, penetrations, and perimeter of roofing.
- F. Apply roofing membrane with side laps shingled with slope of roof deck where possible.
- G. Tape Seam Installation: Clean and prime both faces of splice areas, apply splice tape, and firmly roll side and end laps of overlapping roofing membranes according to manufacturer's written instructions to ensure a watertight seam installation. Apply lap sealant and seal exposed edges of roofing membrane terminations.
- H. Repair tears, voids, and lapped seams in roofing that does not meet requirements.
- I. Spread sealant or mastic bed over deck drain flange at deck drains and securely seal roofing membrane in place with clamping ring.
- J. Install roofing membrane and auxiliary materials to tie in to existing roofing.
- K. Adhesive Adhered FSR: Install membrane by unrolling over prepared substrate, lapping adjoining sheets as recommended by manufacturer. Apply adhesive to surfaces to be bonded and roll FSR into place when adhesive has properly cured. Treat seams with special cement and apply sealant to exposed sheet edges, tapering application as recommended by manufacturer. Install mechanical fasteners, flashings and counter flashings, and accessories at locations and as recommended by manufacturer.

3.5 FLASHING - PENETRATIONS

A. General:

- 1. If project is a Tear-off or Reroof, remove all existing flashings (i.e. lead, asphalt, mastic, etc.).
- 2. Flash all penetrations passing through the membrane.
- 3. The flashing seal must be made directly to the penetration.
- B. Pipes, Round Supports, etc.
 - 1. Flash with Pre-Molded EPDM Pipe Flashings where practical.
 - 2. Flash using FormFlash when Pre-Molded EPDM Pipe Flashing is not practical.

C. Structural Steel Tubing:

1. Use a field fabricated pipe flashing detail provided that the minimum corner radius is greater than 1/4" and the longest side of the tube does not exceed 12". When the tube exceeds 12" use a standard curb detail.

D. Roof Drains:

- 1. If project is a Tear-off or Reroof remove all existing flashings, drain leads, roofing materials and cement from the existing drain in preparation for membrane and Water Block Seal.
- Provide a clean even finish on the mating surfaces between the clamping ring and the drain bowl.

- 3. Taper insulation around the drain to provide a smooth transition from the roof surface to the drain. Use pre-manufactured tapered insulation with facer or suitable bonding surface to achieve slope. Slope shall not exceed manufacturer recommendations.
- 4. Position the membrane, then cut a hole for the roof drain to allow 1/2" -3/4" of membrane extending inside the clamping ring past the drain bolts.
- Make round holes in the membrane to align with clamping bolts. Do not cut the membrane back to the bolt holes.
- 6. Place Water Block Seal on top of drain bowl where the clamping ring seats below the membrane
- 7. Install the roof drain clamping ring and clamping bolts. Tighten the clamping bolts to achieve constant compression.
- E. Pipe Clusters and Unusual Shaped Penetrations:
 - 1. Fabricate penetration pockets to allow a minimum clearance of 1" between the penetration and all sides.
 - 2. Secure penetration pockets per manufacturer's Details
 - 3. Fill penetration pockets with Pourable Sealer, so as to shed water. Pourable Sealer shall be a minimum of 2" deep.

F. Hot Pipes:

1. Protect the rubber components from direct contact with steam or heat sources when the in-service temperature is in excess of 180° F. In all such cases flash to an intermediate insulated "cool" sleeve per manufacturer's details.

G. Flexible Penetrations:

- 1. Provide a weather tight gooseneck set in Water Block Seal and secured to the deck.
- 2. Flash in accordance with manufacturer's Details.

H. Scuppers:

- 1. Remove existing scupper and provide a new welded watertight scupper or clean the existing scupper for reuse.
- Set welded watertight scupper in Water Block Seal and secure to the structure.
- 3. Flash in accordance with Manufacturer's Details.

I. Expansion Joints:

- 1. Install as shown on roof drawings in accordance with Manufacturer's details.
- 3.6 FLASHING WALLS, PARAPETS, MECHANICAL EQUIPMENT CURBS, SKYLIGHTS, ETC.

A. General:

1. Using the longest pieces practical, flash all walls, parapets, curbs, etc., a minimum of 8" high per Manufacturer's Details.

- B. Evaluate Substrate:
 - Evaluate the substrate and overlay per Manufacturer's specifications as necessary.
- C. For Tear-off or Reroof projects:
 - 1. Remove loose or unsecured flashings.
 - Remove mineral surfaced or coated flashings.
 - Remove excessive asphalt to provide a smooth, sound surface for new flashings.
- D. Complete the splice between flashing and the main roof sheet with Splice Adhesive before adhering flashing to the vertical surface. Provide lap splices in accordance with Manufacturer's Details.
- E. Apply Bonding Adhesive at about the same time to both the flashing and the surface to which it is being bonded so as to allow approximately the same flash off time. Apply Bonding Adhesive in a uniform coating.
- F. Allow Bonding Adhesive to flash off until tacky. Touch the Bonding Adhesive surface with a clean, dry finger to be certain that the adhesive does not stick or string. While touching the adhesive, pushing straight down to check for stringing, also push forward on the adhesive at an angle to ensure that the adhesive is ready throughout its thickness. If either motion exposes wet or stringy adhesive when the finger is lifted, then it is not ready for mating. Flash off time will vary depending on ambient air conditions.
- G. Roll the flashing into the adhesive evenly and carefully so as to minimize wrinkles.
- H. Ensure proper contact of flashing by brooming in place.
- I. Provide termination directly to the vertical substrate as shown on roof drawings.
- J. Install T-Joint covers at field and flashing splice intersections as required by Manufacturer's.
- Install intermediate flashing attachment as required by Manufacturer's Specifications and Details.
- 3.7 FLASHING GRAVEL STOPS OR ROOF EDGE METALS
 - A. Apply QuickPrime to the metal edging and membrane as described in Manufacturer's Specifications.
 - B. Place the roll of QuickSeam Flashing on the roof a few feet ahead of the application starting point, positioned so that it unrolls from the top of the roll. Remove approximately 2'-3' of release paper and apply to the metal flange and RubberGard membrane. Lap adjacent rolls of QuickSeam Flashing a minimum of one inch.
 - C. With a 2"-3" wide silicone or silicone sleeved steel hand roller, roll the QuickSeam Flashing ensure proper adhesion. Additional attention must be given to factory splice intersections and to any change in plane.
 - D. Apply 6" length of QuickSeam Flashing, a QuickSeam Joint Cover, or 6"x6" FormFlash to the inside edge of the QuickSeam Flashing at all overlaps.

- E. Apply 6" length of QuickSeam Flashing, a QuickSeam Joint Cover, or 6"x6" FormFlash at all intersections between the QuickSeam Flashing and field fabricated splices.
- F. Where QuickSeam Flashing will not completely cover the metal flange, an additional piece of QuickSeam Flashing must be applied to the metal edge laps. Apply Seam Edge Treatment at the intersections of the flashing sections.
- G. If the roof edge includes a gravel stop and sealant is not applied between the laps in the metal edging, an additional piece of QuickSeam Flashing shall be applied over the metal lap to the top of the gravel stop, after the initial application of QuickSeam Flashing. SeamEdge Treatment shall be applied at the intersections of the two flashing sections.
- H. When the roof slope is greater than 1 in 12, apply Seam Edge Treatment along the back edge of the QuickSeam Flashing.

3.8 CLEAN-UP

- A. Clean all contaminants from building and surrounding areas.
- B. Remove trash, debris, equipment from project site and surrounding areas.
- C. Repair or replace damaged building components or surrounding areas to the satisfaction of the building owner.

END OF SECTION

SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes sheet metal flashing and trim in the following categories:
 - 1. Roof sheet metal flashings and fabrications.
 - Miscellaneous sheet metal flashing.
 - 3. Exposed trim and miscellaneous sheet metal.
- B. Related Sections: The following Sections contain requirements that relate to this Section:
 - 1. Division 4 Section "Unit Masonry Assemblies" for through-wall flashing, reglets, and other integral masonry flashings specified as part of masonry work.
 - 2. Division 6 Section "Rough Carpentry" for wood nailers, curbs, and blocking.
 - 3. Division 7 Roofing Sections for flashing and roofing accessories installed integral with roofing membrane as part of roofing-system work.
 - 4. Division 7 Section "Manufactured Roof Specialties" for manufactured copings, gravel stops, roof-expansion joints, and gutters and downspouts not part of sheet metal flashing and trim.
 - 5. Division 7 Section "Roof Accessories" for roof hatches, vents, and other manufactured roof accessory units.
 - 6. Division 7 Section "Joint Sealants" for field-applied sheet metal flashing and trim sealants.

1.3 PERFORMANCE REQUIREMENTS

- A. General: Install sheet metal flashing and trim to withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failing, rattling, leaking, and fastener disengagement.
- B. Fabricate and install flashings at roof edges to comply with recommendations of FM Loss Prevention Data Sheet 1-49 for the following wind zone:
 - 1. Wind Zone 2: Wind pressures of 31 to 45 psf (1.48 to 2.15 kPa).
- C. Thermal Movements: Provide sheet metal flashing and trim that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, hole elongation, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Provide clips that resist rotation and avoid shear stress as a result of sheet metal and trim thermal movements. Base

engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

- Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.
- D. Water Infiltration: Provide sheet metal flashing and trim that do not allow water infiltration to building interior.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each manufactured product and accessory.
- B. LEED Submittals:
 - 1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.
- C. Shop Drawings: For sheet metal flashing and trim.
 - 1. Include plans, elevations, sections, and attachment details.
 - Detail fabrication and installation layouts, expansion-joint locations, and keyed details.
 Distinguish between shop- and field-assembled work.
 - 3. Include identification of material, thickness, weight, and finish for each item and location in Project.
 - 4. Include details for forming, including profiles, shapes, seams, and dimensions.
 - 5. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
 - 6. Include details of termination points and assemblies.
 - 7. Include details of expansion joints and expansion-joint covers, including showing direction of expansion and contraction from fixed points.
 - 8. Include details of roof-penetration flashing.
 - 9. Include details of edge conditions, including eaves, ridges, valleys, rakes, crickets, and counterflashings as applicable.
 - 10. Include details of special conditions.
 - 11. Include details of connections to adjoining work.
 - 12. Detail formed flashing and trim at scale of not less than 1-1/2 inches per 12 inches (1:10).
- D. Samples for Initial Selection: For each type of sheet metal and accessory indicated with factory-applied finishes.
- E. Samples for Verification: For each type of exposed finish.
 - 1. Sheet Metal Flashing: 12 inches (300 mm) long by actual width of unit, including finished seam and in required profile. Include fasteners, cleats, clips, closures, and other attachments.
 - 2. Trim, Metal Closures, Expansion Joints, Joint Intersections, and Miscellaneous Fabrications: 12 inches (300 mm) long and in required profile. Include fasteners and other exposed accessories.
 - 3. Unit-Type Accessories and Miscellaneous Materials: Full-size Sample.

4. Anodized Aluminum Samples: Samples to show full range to be expected for each color required.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For fabricator.
- B. Product Certificates: For each type of coping and roof edge flashing that is FM Approvals approved.
- C. Product Test Reports: For each product, for tests performed by a qualified testing agency.
- D. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sheet metal flashing and trim, and its accessories, to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experience Installer who has completed sheet metal flashing and trim work similar in material, design, and extent to that indicated for this Project and with a record of successful in-service performance.
- B. Sheet Metal Flashing and Trim Standard: Comply with SMACNA's "Architectural Sheet Metal Manual." Conform to dimensions and profiles shown unless more stringent requirements are indicated.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver sheet metal flashing materials and fabrications undamaged. Protect sheet metal flashing and trim materials and fabrications during transportation and handling.
- B. Unload, store, and install sheet metal flashing materials and fabrications in a manner to prevent bending, warping, twisting, and surface damage.
- C. Stack materials on platforms or pallets, covered with suitable weathertight and ventilated covering. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage.

1.9 COORDINATION

A. Coordinate installation of sheet metal flashing and trim with interfacing and adjoining construction to provide a leakproof, secure, and noncorrosive installation.

1.10 WARRANTY

- A. Special Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 METALS

- A. Aluminum: Alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated and with not less than the strength and durability of alloy and temper designated below:
 - 1. Aluminum Sheet: ASTM B 209 (ASTM B 209M), 3003-H14, with a minimum thickness of 0.040 inch (1.0 mm), unless otherwise indicated.
 - 2. Extruded Aluminum: ASTM B 221 (ASTM B 221M), alloy 6063-T52, with a minimum thickness of 0.080 inch (2.0 mm) for primary legs of extrusions unless otherwise indicated.
 - High-Performance Organic Finish: AA-C12C42R1x (Chemical Finish: cleaned with inhibited chemicals; Chemical Finish: acid-chromate-fluoride-phosphate conversion coating; Organic Coating: as specified below). Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - a. Fluoropolymer 2-Coat Coating System: Manufacturer's standard 2-coat, thermocured system composed of specially formulated inhibitive primer, fluoropolymer color coat, with color coat containing not less than 70 percent polyvinylidene fluoride resin by weight; complying with AAMA 1402, Test Method 7.
 - 1) Color: Custom color to match Architect's samples
- B. Stainless-Steel Sheet: ASTM A 167, Type 304, soft annealed, with No. 2D finish, except where harder temper is required for forming or performance; minimum 0.0187 inch (0.5 mm) thick, unless otherwise indicated.
- C. Lead Sheet: ASTM B 749, Type L51121, copper-bearing lead sheet.

2.2 UNDERLAYMENT MATERIALS

- A. Polyethylene Sheet: 6-mil- (0.15-mm-) thick polyethylene sheet complying with ASTM D 4397.
- B. Felts: ASTM D 226, Type II (No. 30), asphalt-saturated organic felt, nonperforated.
- C. Slip Sheet: Rosin-sized paper, minimum 3 lb/100 sq. ft. (0.16 kg/sq. m).

2.3 MISCELLANEOUS MATERIALS AND ACCESSORIES

- A. General: Provide materials and types of fasteners, solder, welding rods, protective coatings, separators, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation.
- B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads.

- 1. Exposed Fasteners: Heads matching color of sheet metal by means of plastic caps or factory-applied coating.
- Fasteners for Flashing and Trim: Blind fasteners or self-drilling screws, gasketed, with hex washer head.
- 3. Blind Fasteners: High-strength aluminum or stainless-steel rivets.
- C. Solder for Stainless Steel: ASTM B 32, Grade Sn60, with acid flux of type recommended by stainless-steel sheet manufacturer.
- D. Solder for Lead: ASTM B 32, Grade Sn50, 50 percent tin and 50 percent lead.
- E. Sealing Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealing tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape.
- F. Elastomeric Sealant: Generic type recommended by sheet metal manufacturer and fabricator of components being sealed and complying with requirements for joint sealants as specified in Division 7 Section "Joint Sealants."
- G. Butyl Sealant: ASTM C 1311, single-component, solvent-release butyl rubber sealant, polyisobutylene plasticized, heavy bodied for hooked-type expansion joints with limited movement.
- H. Epoxy Seam Sealer: Two-part, noncorrosive, aluminum seam-cementing compound, recommended by aluminum manufacturer for exterior nonmoving joints, including riveted joints.
- I. Bituminous Coating: Cold-applied asphalt mastic, SSPC-Paint 12, compounded for 15-mil (0.4-mm) dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.
- J. Asphalt Roofing Cement: ASTM D 4586, asbestos free, of consistency required for application.

2.4 FABRICATION, GENERAL

- A. General: Custom fabricate sheet metal flashing and trim to comply with recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated. Shop fabricate items where practicable. Obtain field measurements for accurate fit before shop fabrication.
- B. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.
- C. Fabricate sheet metal flashing and trim without excessive oil canning, buckling, and tool marks and true to line and levels indicated, with exposed edges folded back to form hems.
 - 1. Seams for Aluminum: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.
 - 2. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.
- D. Sealed Joints: Form nonexpansion but movable joints in metal to accommodate elastomeric sealant to comply with SMACNA recommendations.

- E. Expansion Provisions: Where lapped or bayonet-type expansion provisions in the Work cannot be used, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with butyl sealant concealed within joints.
- F. Conceal fasteners and expansion provisions where possible on exposed-to-view sheet metal flashing and trim, unless otherwise indicated.
- G. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.
 - Thickness: As recommended by SMACNA's "Architectural Sheet Metal Manual" and FMG Loss Prevention Data Sheet 1-49 for application but not less than thickness of metal being secured.

2.5 GENERAL ROOF SHEET METAL FABRICATIONS

- A. Base Flashing: Fabricate from the following material:
 - 1. Aluminum: 0.040 inch (1.0 mm) thick.
 - 2. Stainless Steel: 0.0187 inch (0.5 mm) thick.
- B. Counterflashing: Fabricate from the following material:
 - 1. Aluminum: 0.040 inch (1.0 mm) thick.
 - 2. Stainless Steel: 0.0187 inch (0.5 mm) thick.
- C. Flashing Receivers: Fabricate from the following material:
 - 1. Aluminum: 0.0320 inch (0.8 mm) thick.
 - 2. Stainless Steel: 0.0156 inch (0.4 mm) thick.
- D. Roof-Penetration Flashing: Fabricate from the following material:
 - 1. Stainless Steel: 0.0187 inch (0.5 mm) thick.

2.6 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

- A. Splash Pans: Fabricate from the following material:
 - 1. Aluminum: 0.040 inch (1.0 mm) thick.
 - 2. Stainless Steel: 0.0187 inch (0.5 mm) thick.
- B. Roof-Drain Flashing: Fabricate from the following material:
 - 1. Lead: 4.0 lb/sq. ft. (1.6 mm thick), hard tempered.

2.7 UNDERLAYMENT MATERIALS

- A. Felt: ASTM D 226/D 226M, Type II (No. 30), asphalt-saturated organic felt; nonperforated.
- B. Self-Adhering, High-Temperature Sheet: Minimum 30 mils (0.76 mm) thick, consisting of a slip-resistant polyethylene- or polypropylene-film top surface laminated to a layer of butyl- or SBS-modified asphalt adhesive, with release-paper backing; specifically designed to withstand

high metal temperatures beneath metal roofing. Provide primer according to written recommendations of underlayment manufacturer.

- 1. <u>Products</u>: Subject to compliance with requirements, provide the following:
 - Carlisle Residential, a division of Carlisle Construction Materials; WIP 300HT.
 - b. Grace Construction Products, a unit of W. R. Grace & Co.-Conn.; Grace Ice and Water Shield HT
 - c. Henry Company; Blueskin PE200 HT.
 - d. Kirsch Building Products, LLC; Sharkskin Ultra SA.
 - e. Metal-Fab Manufacturing, LLC; MetShield.
 - f. Owens Corning; WeatherLock Specialty Tile & Metal Underlayment.
 - g. Polyguard Products, Inc.; Deck Guard HT.
 - h. Protecto Wrap Company; Protecto Jiffy Seal Ice & Water Guard HT.
 - i. SDP Advanced Polymer Products Inc; Palisade SA-HT.
- Thermal Stability: ASTM D 1970; stable after testing at 240 deg F (116 deg C) or higher.
- 3. Low-Temperature Flexibility: ASTM D 1970; passes after testing at minus 20 deg F (29 deg C) or lower.
- C. Slip Sheet: Rosin-sized building paper, 3 lb/100 sq. ft. (0.16 kg/sq. m)minimum.

2.8 FINISHES

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions and other conditions affecting performance of work.
 - 1. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 - Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. General: Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement. Use fasteners, solder, welding rods, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.

- 1. Torch cutting of sheet metal flashing and trim is not permitted.
- B. Metal Protection: Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating or by other permanent separation as recommended by fabricator or manufacturers of dissimilar metals.
 - 1. Coat side of uncoated aluminum, stainless-steel, and lead sheet metal flashing and trim with bituminous coating where flashing and trim will contact wood, ferrous metal, or cementitious construction.
 - 2. Underlayment: Where installing metal flashing directly on cementitious or wood substrates, install a course of felt underlayment and cover with a slip sheet or install a course of polyethylene underlayment.
 - 3. Bed flanges in thick coat of asphalt roofing cement where required for waterproof performance.
- Install exposed sheet metal flashing and trim without excessive oil canning, buckling, and tool
 marks.
- D. Install sheet metal flashing and trim true to line and levels indicated. Provide uniform, neat seams with minimum exposure of solder, welds, and sealant.
- E. Install sheet metal flashing and trim to fit substrates and to result in watertight performance. Verify shapes and dimensions of surfaces to be covered before fabricating sheet metal.
 - 1. Space cleats not more than 12 inches (300 mm) apart. Anchor each cleat with two fasteners. Bend tabs over fasteners.
- F. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet (3 m) with no joints allowed within 24 inches (600 mm) of corner or intersection. Where lapped or bayonet-type expansion provisions cannot be used or would not be sufficiently watertight, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with butyl sealant concealed within joints.
- G. Fasteners: Use fasteners of sizes that will penetrate substrate not less than 1-1/4 inches (32 mm) for nails and not less than 3/4 inch (19 mm) for wood screws.
 - 1. Aluminum: Use aluminum or stainless-steel fasteners.
 - 2. Stainless Steel: Use stainless-steel fasteners.
- H. Seal joints with elastomeric sealant as required for watertight construction.
 - Where sealant-filled joints are used, embed hooked flanges of joint members not less than 1 inch (25 mm) into sealant. Form joints to completely conceal sealant. When ambient temperature at time of installation is moderate, between 40 and 70 deg F (4 and 21 deg C), set joint members for 50 percent movement either way. Adjust setting proportionately for installation at higher ambient temperatures. Do not install sealanttype joints at temperatures below 40 deg F (4 deg C).
 - 2. Prepare joints and apply sealants to comply with requirements in Division 7 Section "Joint Sealants."

- I. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter. Pretin edges of sheets to be soldered to a width of 1-1/2 inches (38 mm) except where pretinned surface would show in finished Work.
 - 1. Do not solder aluminum sheet.
 - Pretinning is not required for lead.
 - 3. Stainless-Steel Soldering: Pretin edges of uncoated sheets to be soldered using solder recommended for stainless steel and phosphoric acid flux. Promptly wash off acid flux residue from metal after soldering.
 - 4. Do not use open-flame torches for soldering. Heat surfaces to receive solder and flow solder into joints. Fill joints completely. Completely remove flux and spatter from exposed surfaces.
- J. Aluminum Flashing: Rivet or weld joints in uncoated aluminum where necessary for strength.

3.3 ROOF FLASHING INSTALLATION

- A. General: Install sheet metal roof flashing and trim to comply with performance requirements and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, set units true to line, and level as indicated. Install work with laps, joints, and seams that will be permanently watertight.
- B. Pipe or Post Counterflashing: Install counterflashing umbrella with close-fitting collar with top edge flared for butyl sealant, extending a minimum of 4 inches (100 mm) over base flashing. Install stainless-steel draw band and tighten.
- C. Counterflashing: Coordinate installation of counterflashing with installation of base flashing. Insert counterflashing in reglets or receivers and fit tightly to base flashing. Extend counterflashing 4 inches (100 mm) over base flashing. Lap counterflashing joints a minimum of 4 inches (100 mm) and bed with elastomeric sealant.
 - 1. Secure in a waterproof manner by means of snap-in installation and sealant, lead wedges and sealant, interlocking folded seam, or blind rivets and sealant as required.
- D. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation of roofing and other items penetrating roof. Install flashing as follows:
 - 1. Seal with butyl sealant and clamp flashing to pipes penetrating roof.

3.4 WALL FLASHING INSTALLATION

- A. General: Install sheet metal wall flashing to intercept and exclude penetrating moisture according to SMACNA recommendations and as indicated. Coordinate installation of wall flashing with installation of wall-opening components such as windows, doors, and louvers.
- B. Through-Wall Flashing: Installation of through-wall flashing is specified in Division 4 Section "Unit Masonry Assemblies."
- C. Reglets: Installation of reglets is specified in Division 3 Section "Cast-in-Place Concrete" and Division 4 Section "Unit Masonry Assemblies."

3.5 MISCELLANEOUS FLASHING INSTALLATION

A. Equipment Support Flashing: Coordinate installation of equipment support flashing with installation of roofing and equipment. Weld or seal flashing with elastomeric sealant to equipment support member.

3.6 ERECTION TOLERANCES

- A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.
- B. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerances specified in MCA's "Guide Specification for Residential Metal Roofing."

3.7 CLEANING AND PROTECTION

- A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.
- B. Clean and neutralize flux materials. Clean off excess solder.
- C. Clean off excess sealants.
- D. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions. On completion of sheet metal flashing and trim installation, remove unused materials and clean finished surfaces as recommended by sheet metal flashing and trim manufacturer. Maintain sheet metal flashing and trim in clean condition during construction.
- E. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION

MANUFACTURED ROOF SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Copings.
 - 2. Seal/Joint System.
 - 3. Preformed Flashing Sleeve.
- B. Related Sections include the following:
 - 1. Division 07 Section "Sheet Metal Flashing and Trim" for roof and miscellaneous flashings and exposed trim and sheet metal.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Shop Drawings: For roof specialties. Include plans, elevations, expansion-joint locations, keyed details, and attachments to other work. Distinguish between plant- and field-assembled work. Include the following:
 - 1. Details for expansion and contraction; locations of expansion joints, including direction of expansion and contraction.
 - 2. Pattern of seams and layout of fasteners, cleats, clips, and other attachments.
 - 3. Details of termination points and assemblies, including fixed points.
 - 4. Details of special conditions.
- C. Samples for Initial Selection: For each type of roof specialty indicated with factory-applied color finishes.
- D. Samples for Verification: For copings made from 12-inch (300-mm) lengths of full-size components including fasteners, cover joints, accessories, and attachments.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for copings.
- B. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For roofing specialties to include in maintenance manuals.

1.6 PERFORMANCE REQUIREMENTS

- A. General: Provide manufactured roof specialties capable of withstanding wind loads, structural movement, thermally induced movement, and exposure to weather without failing.
- B. Provide manufactured roofing specialties, incorporating roof edge treatment that complies with recommendations of FM Loss Prevention Data Sheet 1-49 for the following Wind Zone:
 - 1. Wind Zone 2: Wind pressures of 31 to 45 lbf/sq. ft. (1.48 to 2.15 kPa).
- C. All joints shall be designed to meet the specified performance criteria of the project as manufactured by: (USA & International) EMSEAL JOINT SYSTEMS, LTD 25 Bridle Lane, Westborough, MA 01581-2603, Toll Free: 800-526-8365. (Canada) EMSEAL, LLC 120 Carrier Drive, Toronto, Ontario, Canada M9W 5R1 Toll Free: 800-526-8365. www.emseal.com. Alternate manufacturers must demonstrate that their products meet or exceed the design criteria. Submittal of alternates must be made prior to bid opening to allow proper evaluation time.

1.7 QUALITY ASSURANCE

- A. Source Limitations: Obtain each type of manufactured roof specialty from one source and by a single manufacturer.
- B. The General Contractor will conduct a pre-construction meeting with all parties and trades involved in the treatment of work at and around expansion joints including, but not limited to, concrete, mechanical, electrical, HVAC, landscaping, masonry, curtain wall, waterproofing, fire-stopping, caulking, flooring and other finish trade subcontractors. All superintendents and foremen with responsibility for oversight and setting of the joint gap must attend this meeting. The General Contractor is responsible to coordinate and schedule all trades and ensure that all subcontractors understand their responsibilities in relation to expansion joints and that their work cannot impede anticipated structural movement at the expansion joints, or compromise the achievement of watertighness or life safety at expansion joints in any way.

1.8 PROJECT CONDITIONS

A. Coordinate work of this Section with adjoining work for proper sequencing of each installation to ensure best-possible weather resistance and protection of materials and finishes against damage.

1.9 WARRANTY

- A. Special Warranty on Painted Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace roof specialties that show evidence of deterioration of factoryapplied finishes within specified warranty period.
 - 1. Fluoropolymer Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 20 years from date of Substantial Completion.

B. Seal/Joint System Warranty – Manufacturer's standard warranty shall apply.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aluminum Copings:
 - a. Architectural Products Co.
 - b. ATAS International, Inc.
 - c. Cheney Flashing Company.
 - d. Hickman: W.P. Hickman Co.
 - e. Merchant and Evans. Inc.
 - f. Metal-Era, Inc.
 - g. MM Systems Corp.
 - h. Petersen Aluminum Corp.
 - 2. Seal/Joint System:
 - Emseal Joint System LTD, RJ-0200-NP, NPVC, and COLORSEAL JOINT SYSTEM for vertical wall joint locations
 - b. Or approved equal.

2.2 METALS

- A. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), 6063-T5 alloy and temper, or as recommended by manufacturer for use intended and as required for proper application of finish indicated.
- B. Aluminum Sheet: ASTM B 209 (ASTM B 209M), alloy and temper recommended by aluminum producer and finisher for use intended and finish indicated, and with not less than the strength and durability of alloy and temper designated below:
 - 1. Alloy 5005-H14, with a minimum thickness of 0.050 inch (1.2 mm), for aluminum sheet with other than mill finish.
- C. Galvanized Steel Sheets: ASTM A 653, G90 (ASTM A 653M, Z275) coating designation; commercial quality; at least 0.034 inch (0.85 mm) thick, unless otherwise indicated.
- D. Stainless-Steel Sheet: ASTM A 666, Type 304, soft annealed, with No. 2D finish, unless harder temper is required for forming or performance; at least 0.0187 inch (0.5 mm) thick, unless otherwise indicated.

2.3 COPINGS

- A. Provide copings in shapes and sizes indicated, with shop-fabricated corners. Include anchor plates formed from at least 0.028-inch- (0.7-mm-) thick, galvanized steel sheet; cleats or other attachment devices; concealed splice plates; and trim and other accessories indicated or required for complete installation, with no exposed fasteners.
- B. Seam Detail: All coping seams to be a single lock standing seam button punched per SMAGNA Architectural Sheet Metal Manual for locks and seams.

- C. Provide exposed coping components fabricated from the following metal:
 - 1. Formed-aluminum sheet in thickness indicated, but not less than the following:
 - a. Thickness: 0.050 inch (1.3 mm).

2.4 SEAL/JOINT SYSTEM

- A. Provide watertight, expansion joint by EMSEAL Joint Systems for expansion joints in roof decks and isolation joints in non-traffic, high-movement and seismic structural joint in roof decks. System shall perform waterproofing and movement-accommodation functions as the result of a single installation and without the addition of gutters, vapor barriers, bladders, or other devices suspended beneath or within the system in any way.
- B. Provide RoofJoint as manufactured by EMSEAL JOINT SYSTEMS LTD and as indicated on drawings for horizontal expansion joint locations.
- C. Provide COLORSEAL as manufactured by EMSEAL JOINT SYSTEMS, LTD. and as indicated on drawings for vertical expansion joint locations
- D. RoofJoint System shall be comprised of: 1.) a heat weldable, PVC FlexAlloy or TPV thermoplastic extrusion with dual-level flange and, 2.) manufacturer supplied termination bar and anchors and, 3.) factory welded downturn transition in the RoofJoint gland that is sealed at a ship lapped 45-degree angle to mate with an interlocking factory-fabricated RoofJoint/SEISMIC COLORSEAL transition piece.
- E. COLORSEAL System shall be comprised of: Preformed sealant shall be silicone pre-coated, preformed, pre-compressed, self-expanding, sealant system. Expanding foam to be cellular foam impregnated with a water-based, non-drying, 100% acrylic dispersion. Seal shall combine factory-applied, low-modulus silicone and a backing of acrylic-impregnated expanding foam into a unified hybrid sealant system. Silicone external color facing to be factory-applied to the foam while it is partially pre-compressed to a width greater than maximum joint extension and cured before final compression. When compressed to final supplied dimension, a bellow(s) to handle movement must be created in the silicone coating. Silicone coating to be available in a range of not less than 26 standard colors for coordination with typical building materials.
- F. Final selection of the extrusion size to be coordinated between manufacturer, designer, and contractor(s) in consideration of expected movements as a product of structural design and expected temperature variations, taking into account as-built joint-gap sizes and temperatures at expected installation time. Width of joint-gaps at time of casting or cutting to be adjusted, if necessary, from baseline temperature used and specified by designer in determining system suitability.
- G. Manufacturer's Checklist must be completed by expansion joint subcontractor and returned to manufacturer at time of ordering material.

2.5 ACCESSORIES

- A. General: Provide manufacturer's standard accessories designed and manufactured to match and fit roof edge treatment system indicated.
- B. Exposed Fasteners: Stainless steel, nonmagnetic, of manufacturer's standard type and size for product and application indicated. Match finish of exposed heads with material being fastened.

- C. Concealed Fasteners: Same metal as item fastened or other noncorrosive metal as recommended by manufacturer.
- D. Galvanizing Repair Paint: High-zinc-dust-content paint for regalvanizing welds in steel, complying with SSPC-Paint 20.
- E. Asphalt Mastic: SSPC-Paint 12, solvent-type asphalt mastic, nominally free of sulfur and containing no asbestos fibers, compounded for 15-mil (0.4-mm) dry film thickness per coat.
- F. Mastic Sealant: Polyisobutylene; nonhardening, nonskinning, nondrying, nonmigrating sealant.
- G. Foam-Rubber Seal: Manufacturer's standard foam.

2.6 FINISHES, GENERAL

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations relative to applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipment.
- C. Finish manufactured roof specialties after fabrication and assembly if products are not fabricated from prefinished metals.
- D. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are unacceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.7 ALUMINUM FINISHES

- A. Finish designations prefixed by AA conform to the system established by the Aluminum Association for designating aluminum finishes.
 - Fluoropolymer 2-Coat Coating System: Manufacturer's standard 2-coat, thermocured system composed of specially formulated inhibitive primer, fluoropolymer color coat, with color coat containing not less than 70 percent polyvinylidene fluoride resin by weight; complying with AAMA 1402, Test Method 7
 - 2. Color and Gloss: Architect shall select from manufacturer's full line of standard colors.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine walls for suitable conditions for coping system installation. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Promptly remove protective film, if any, from exposed surfaces of finished metals. Strip with care to avoid damage to finish.
- B. Prepare concrete masonry block and similar surfaces to coping system specified. Install blocking, cleats, and other anchoring and attachment accessories and devices required.

3.3 INSTALLATION

- A. General: Comply with manufacturer's written installation instructions. Coordinate with work of other trades and other substrates to receive work of this Section and with flashing and wall construction, as required to ensure that each element of the Work performs properly and that combined elements are waterproof and weathertight. Anchor products securely to structural substrates to withstand lateral and thermal stresses and inward and outward loading pressures.
- B. Isolation: Where metal surfaces of units contact dissimilar metal or corrosive substrates, including wood, apply bituminous coating on concealed metal surfaces or provide other permanent separation as recommended by aluminum producer.
- C. Expansion Provisions: Install running lengths to allow controlled expansion for movement of metal components in relation not only to one another but also to adjoining dissimilar materials, including flashing and architectural joint system materials, in a manner sufficient to prevent water leakage, deformation, or damage.
- D. The contractor shall clean the joint opening of all contaminants immediately prior to installation of expansion joint system. Repair spalled, irregular or unsound joint surfaces using accepted industry practices for repair of the substrates in question. Remove protruding roughness to ensure joint sides are smooth. Refer to Manufacturers Installation Guide for detailed step-bystep instructions.
- E. System to be installed by qualified sub-contractors only according to detailed published installation procedures and/or in accordance with job-specific installation instructions of manufacturer's field technician. The applicator must be the same contractor as will be installing the deck waterproofing system. Bids must include for presence of paid-for manufacturer's field technician to be present during initial preparation, inspection, and material installation.

3.4 CLEANING AND PROTECTING

- A. Clean exposed metal surfaces according to manufacturer's written instructions. Touch up damaged metal coatings.
- B. Protect the seal/joint system and its components during construction. Subsequent damage to the expansion joint system will be repaired at the general contractor's expense. After work is complete, clean exposed surfaces with a suitable cleaner that will not harm or attack the finish.
- C. Protection: Provide protective measures as required to ensure work of this Section will be without damage or deterioration at the time of Substantial Completion.

END OF SECTION

JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes joint sealants for the following locations:
 - 1. Exterior joints in vertical surfaces and nontraffic horizontal surfaces as indicated below:
 - a. Control and expansion joints in cast-in-place concrete.
 - b. Control and expansion joints in unit masonry.
 - c. Joints of stonework set without mortar.
 - d. Joints between different materials listed above.
 - e. Perimeter joints between materials listed above and frames of doors and windows.
 - f. Control and expansion joints in ceiling and overhead surfaces.
 - g. Other joints as indicated.
 - 2. Exterior joints in horizontal traffic surfaces as indicated below:
 - a. Control and expansion joints in brick pavers.
 - b. Control, expansion, and isolation joints in cast-in-place concrete slabs.
 - c. Tile control and expansion joints.
 - d. Joints between different materials listed above.
 - e. Other joints as indicated.
 - 3. Interior joints in vertical surfaces and horizontal nontraffic surfaces as indicated below:
 - a. Control and expansion joints on exposed interior surfaces of exterior walls.
 - b. Perimeter joints of exterior openings where indicated.
 - c. Tile control and expansion joints.
 - d. Vertical control joints on exposed surfaces of interior unit masonry and concrete walls and partitions.
 - e. Perimeter joints between interior wall surfaces and frames of interior doors, windows, and elevator entrances.
 - f. Perimeter joints of toilet fixtures.
 - g. Other joints as indicated.
 - 4. Interior joints in horizontal traffic surfaces as indicated below:
 - a. Control and expansion joints in cast-in-place concrete slabs.
 - b. Control and expansion joints in tile flooring.
 - c. Other joints as indicated.

1.3 SYSTEM PERFORMANCE REQUIREMENTS

A. Provide elastomeric joint sealants that have been produced and installed to establish and to maintain watertight and airtight continuous seals without causing staining or deterioration of joint substrates.

- B. Provide joint sealants for interior applications that have been produced and installed to establish and maintain airtight continuous seals that are water resistant and cause no staining or deterioration of joint substrates.
- C. Preconstruction Field-Adhesion Testing: Before installing sealants, field test their adhesion to Project joint substrates as follows:
 - 1. Locate test joints where indicated on Project or, if not indicated, as directed by Architect.
 - 2. Conduct field tests for each application indicated below:
 - a. Each kind of sealant and joint substrate indicated.
 - Notify Architect seven days in advance of dates and times when test joints will be erected.
 - 4. Arrange for tests to take place with joint-sealant manufacturer's technical representative present.
 - a. Test Method: Test joint sealants according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1 in ASTM C 1193 or Method A, Tail Procedure, in ASTM C 1521.
 - 1) For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.
 - 5. Report whether sealant failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. For sealants that fail adhesively, retest until satisfactory adhesion is obtained.
 - 6. Evaluation of Preconstruction Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing, in absence of other indications of noncompliance with requirements, will be considered satisfactory. Do not use sealants that fail to adhere to joint substrates during testing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each joint-sealant product indicated.
- B. LEED Submittals:
 - 1. Product Data for Credit IEQ 4.1: For sealants and sealant primers used inside the weatherproofing system, documentation including printed statement of VOC content.
 - Laboratory Test Reports for Credit IEQ 4: For sealants and sealant primers used inside
 the weatherproofing system, documentation indicating that products comply with the
 testing and product requirements of the California Department of Health Services'
 "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources
 Using Small-Scale Environmental Chambers."
- C. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.
- D. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch- (13-mm-) wide joints formed between two 6-inch- (150-mm-) long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
- E. Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.

- 2. Joint-sealant manufacturer and product name.
- 3. Joint-sealant formulation.
- 4. Joint-sealant color.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Product Certificates: For each kind of joint sealant and accessory, from manufacturer.
- C. Sealant, Waterproofing, and Restoration Institute (SWRI) Validation Certificate: For each sealant specified to be validated by SWRI's Sealant Validation Program.
- D. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, indicating that sealants comply with requirements.
- E. Preconstruction Compatibility and Adhesion Test Reports: From sealant manufacturer, indicating the following:
 - 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
 - 2. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion.
- F. Preconstruction Field-Adhesion Test Reports: Indicate which sealants and joint preparation methods resulted in optimum adhesion to joint substrates based on testing specified in "Preconstruction Testing" Article.
- G. Field-Adhesion Test Reports: For each sealant application tested.
- H. Warranties: Sample of special warranties.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Engage an experienced Installer who has completed joint sealant applications similar in material, design, and extent to that indicated for Project that have resulted in construction with a record of successful in-service performance.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials to Project site in original unopened containers or bundles with labels indicating manufacturer, product name and designation, color, expiration period for use, pot life, curing time, and mixing instructions for multicomponent materials.
- B. Store and handle materials in compliance with manufacturer's recommendations to prevent their deterioration or damage due to moisture, high or low temperatures, contaminants, or other causes.

1.8 PROJECT CONDITIONS

- A. Environmental Conditions: Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside the limits permitted by joint sealant manufacturer.
 - 2. When joint substrates are wet.

- B. Joint Width Conditions: Do not proceed with installation of joint sealants where joint widths are less than allowed by joint sealant manufacturer for application indicated.
- C. Joint Substrate Conditions: Do not proceed with installation of joint sealants until contaminants capable of interfering with their adhesion are removed from joint substrates.

1.9 SEQUENCING AND SCHEDULING

A. Sequence installation of joint sealants to occur not less than 21 nor more than 30 days after completion of waterproofing, unless otherwise indicated.

1.10 WARRANTY

- A. Special Installer's Warranty: Installer's standard form in which Installer agrees to repair or replace elastomeric joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Special Manufacturer's Warranty: Manufacturer's standard form in which elastomeric sealant manufacturer agrees to furnish elastomeric joint sealants to repair or replace those that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: 20 years from date of Substantial Completion.
- C. Special warranties specified in this Article exclude deterioration or failure of elastomeric joint sealants from the following:
 - 1. Movement of the structure resulting in stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression caused by structural settlement or errors attributable to design or construction.
 - 2. Disintegration of joint substrates from natural causes exceeding design specifications.
 - 3. Mechanical damage caused by individuals, tools, or other outside agents.
 - Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

- A. Compatibility: Provide joint sealants, joint fillers, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
- B. Colors: Provide color of exposed joint sealants to comply with the following:
 - 1. Provide selections made by Architect from manufacturer's full range of standard colors for products of type indicated.

2.2 ELASTOMERIC JOINT SEALANTS

A. Elastomeric Sealant Standard: Provide manufacturer's standard chemically curing elastomeric sealants that comply with ASTM C 920 and other requirements indicated on each Elastomeric

- Joint Sealant Data Sheet at end of this Section, including those requirements referencing ASTM C 920 classifications for Type, Grade, Class, and Uses.
- B. Products: Subject to compliance with requirements, provide one of the products specified in each Elastomeric Joint Sealant Data Sheet.
- C. GLAZING SEALANT shall be Dow Corning silicone sealant No. 795 or Tremco "Spectrem 2" or General Electric "Silglaze", in a standard color designated by the Architect.
- D. CONSTRUCTION SEALANT shall be Tremco "Spectrem 3" silicone Type S, Grade-NS. Class 50 or approved equal from Dow Corning or General Electric, in standard color designated by architect.
- E. ACRYLIC LATEX SEALANT shall be one-part conforming to ASTM C-834-76 as manufactured by TREMCO "Tremflex 834", PECORA or PTI. Color shall be selected by the Architect from standard colors. This material shall be used at interior areas around windows, doors, frames, precast concrete slabs, and interior masonry walls.
- F. ACOUSTICAL SEALANT shall conform to ASTM-D-217 and be a synthetic rubber base, as manufactured by TREMCO. This material shall be used wherever interior partitions butt up against exterior walls or drywall ceilings.
- G. ON-GRADE JOINT SEALANT shall be one or two-part, self-leveling pouring grade polyurethane as manufactured by Tremco THC 900/901", Pecora "NR-200", Sonaborn SL-2 or Master Mechanics "Vulkem #245".

2.3 JOINT SEALANT BACKINGS

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Plastic Foam Joint Fillers: Preformed, compressible, resilient, nonstaining, nonwaxing, nonextruding strips of flexible plastic foam of material indicated below and of size, shape, and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Open-cell polyurethane foam.
 - 2. Closed-cell polyethylene foam, nonabsorbent to liquid water and gas, nonoutgassing in unruptured state.
 - 3. Proprietary, reticulated, closed-cell polymeric foam, nonoutgassing, with a density of 2.5 pcf and tensile strength of 35 psi per ASTM D 1623, and with water absorption less than 0.02 gms/cc per ASTM C 1083.
 - 4. Any material indicated above.
- C. PRIMER: Provide type as recommended by the sealant manufacturer for the varied joint surfaces.

2.4 COMPRESSION SEALS

A. Performed Foam Sealant: Manufacturer's standard preformed, precompressed, impregnated open-cell foam sealant manufactured from high-density urethane foam impregnated with a nondrying, water repellant agent; factory-produced in precompressed sizes and in roll or stick form to fit joint widths indicated and to develop a watertight and airtight seal when compressed

to degree specified by manufacturer. Provide products which are permanently elastic, mildewresistant, non-migratory, nonstaining, compatible with joint substrates and other joint sealers, and comply with the following requirements:

- 1. Impregnating Agent: Neoprene rubber suspended in chlorinated.
- 2. Density: 9-10 lb./cu. ft.
- Backing: Pressure sensitive adhesive, factory applied to one side, with protective wrapping.
- Color: Manufacturers standard gray at building expansion joint, black at all other locations.
- Acceptable Manufacturers/Products: Subject to compliance with requirements, provide one of the following or approved equal:
 - a. <u>Dayton Superior Specialty Chemicals</u>; Polytite Standard.
 - b. EMSEAL Joint Systems, Ltd.; Emseal 25V.
 - c. <u>Sandell Manufacturing Co., Inc.</u>; Polyseal.
 - d. Schul International, Inc.; Sealtite
 - e. Willseal USA, LLC; Willseal 150

2.5 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - APPLICATION

3.1 SEALANT TYPE DETERMINATION

- A. USE EXTERIOR CONSTRUCTION SEALANT at above-grade exterior joints. Use same sealant at interior side of joint if exterior material is the same through the wall, such as a metal frame or single-wythe block wall.
- B. USE INTERIOR ACRYLIC LATEX SEALANT at all other above-grade interior joints, such as at interior hollow metal frames, wood, stone, brick or drywall, in any combination.
- C. USE PAVING SEALANT at all sealed joints on traffic bearing surfaces and at grade.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with recommendations of joint sealant manufacturer and the following requirements:

- 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
- 2. Clean concrete, masonry, unglazed surfaces of ceramic tile, and similar porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air.
- 3. Remove laitance and form release agents from concrete.
- 4. Clean metal, glass, porcelain enamel, glazed surfaces of ceramic tile, and other nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.
- B. Joint Priming: Prime joint substrates where indicated or where recommended by joint sealant manufacturer based on preconstruction joint sealant-substrate tests or prior experience. Apply primer to comply with joint sealant manufacturer's recommendations. Confine primers to areas of joint sealant bond; do not allow spillage or migration onto adjoining surfaces.
- C. Masking Tape: Use masking tape where required to prevent contact of sealant with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint sealant manufacturer's printed installation instructions applicable to products and applications indicated, except where more stringent requirements apply.
- B. Elastomeric Sealant Installation Standard: Comply with recommendations of ASTM C 962 for use of joint sealants as applicable to materials, applications, and conditions indicated.
- C. Solvent-Release-Curing Sealant Installation Standard: Comply with requirements of ASTM C 804 for use of solvent-release-curing sealants.
- D. Latex Sealant Installation Standard: Comply with requirements of ASTM C 90 for use of latex sealants.
- E. Acoustical Sealant Application Standard: Comply with recommendations of ASTM C 19 for use of joint sealants in acoustical applications as applicable to materials, applications, and conditions indicated.
- F. Installation of Sealant Backings: Install sealant backings to comply with the following requirements:
 - 1. Install joint fillers of type indicated to provide support of sealants during application and at position required to produce the cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - a. Do not leave gaps between ends of joint fillers.
 - b. Do not stretch, twist, puncture, or tear joint fillers.
 - c. Remove absorbent joint fillers that have become wet prior to sealant application and replace with dry material.

- 2. Install bond breaker tape between sealants where backer rods are not used between sealants and joint fillers or back of joints.
- G. Installation of Sealants: Install sealants by proven techniques that result in sealants directly contacting and fully wetting joint substrates, completely filling recesses provided for each joint configuration, and providing uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability. Install sealants at the same time sealant backings are installed.
- H. Tooling of Nonsag Sealants: Immediately after sealant application and prior to time skinning or curing begins, tool sealants to form smooth, uniform beads of configuration indicated, to eliminate air pockets, and to ensure contact and adhesion of sealant with sides of joint. Remove excess sealants from surfaces adjacent to joint. Do not use tooling agents that discolor sealants or adjacent surfaces or are not approved by sealant manufacturer.
 - 1. Provide concave joint configuration per Figure 5A in ASTM C 62, unless otherwise indicated.
 - 2. Provide flush joint configuration, per Figure 5B in ASTM C 962, where indicated.
 - a. Use masking tape to protect adjacent surfaces of recessed tooled joints.
 - 3. Provide recessed joint configuration, per Figure 5C in ASTM C 962, of recess depth and at locations indicated.
- I. Installation of Preformed Foam Sealants: Install each length of sealant immediately after removing protective wrapping, taking care not to pull or stretch material, and to comply with sealant manufacturer's directions for installation methods, materials, and tools that produce seal continuity at ends, turns, and intersections of joints. For applications at low ambient temperatures where expansion of sealant requires acceleration to produce seal, apply heat to sealant in conformance with sealant manufacturer's recommendations.

3.4 CLEANING

A. Clean off excess sealants or sealant smears adjacent to joints as work progresses by methods and with cleaning materials approved by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so that and installations with repaired areas are indistinguishable from original work.

END OF SECTION

STANDARD STEEL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following products manufactured in accordance with SDI Recommended Standards:
 - 1. Doors: Seamless, hollow or composite construction standard steel doors for interior and exterior locations. (Indicated as Hollow Metal "HM" on the Door Schedules.)
 - 2. Frames: Pressed steel frames for doors, transoms, sidelights, borrowed lights, mullions, interior glazed panels, and other interior and exterior openings of following type: (Indicated as Hollow Metal "HM" on the Door Schedules.):
 - a. Welded unit type.
 - 3. Assemblies: Provide standard steel door and frame assemblies as required for the following:
 - a. Labeled and fire rated.
 - b. Thermal rated (insulated).
 - c. Sound rated (acoustical).
 - 4. Provide factory primed doors and frames to be field painted.
- B. The following sections contain requirements that relate to this Section:
 - 1. Division 04 Section "Unit Masonry Assemblies" for building in of anchors and grouting of frames in masonry construction.
 - 2. Division 08 Section "Door Hardware" for door hardware.
 - 3. Division 09 Section "Painting" for painting primed doors and frames.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, core descriptions, and finishes.
- B. Shop Drawings: Include the following:
 - 1. Elevations of each door type.
 - 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 - 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.

- 4. Locations of reinforcement and preparations for hardware.
- 5. Details of each different wall opening condition.
- 6. Details of anchorages, joints, field splices, and connections.
- 7. Details of accessories.
- 8. Details of moldings, removable stops, and glazing.
- 9. Details of conduit and preparations for power, signal, and control systems.
- C. Samples for Initial Selection: For units with factory-applied color finishes.
- D. Samples for Verification:
 - 1. For each type of exposed finish required, prepared on Samples of not less than 3 by 5 inches (75 by 127 mm).
 - 2. For "Doors" and "Frames" subparagraphs below, prepare Samples approximately 8 by 10 inches (203 by 254 mm to demonstrate compliance with requirements for quality of materials and construction:
 - a. Doors: Show vertical-edge, top, and bottom construction; core construction; and hinge and other applied hardware reinforcement. Include separate section showing glazing if applicable.
 - b. Frames: Show profile, corner joint, floor and wall anchors, and silencers. Include separate section showing fixed hollow-metal panels and glazing if applicable.
- E. Schedule: Provide a schedule of hollow-metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final Door Hardware Schedule.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: For each type of hollow-metal door and frame assembly, for tests performed by a qualified testing agency.
- B. Oversize Construction Certification: For assemblies required to be fire rated and exceeding limitations of labeled assemblies.

1.5 QUALITY ASSURANCE

- A. Provide doors and frames complying with Steel Door Institute "Recommended Specifications Standard Steel Doors and Frames" ANSI/SDI-100 and as herein specified.
- B. Installer Qualifications: An employer of workers trained and approved by manufacturer.
- C. Testing Agency Qualifications: An independent agency qualified according to ASTM E 329 for testing indicated, as documented according to ASTM E 548.
- D. Source Limitations: Obtain standard steel doors and frames through one source from a single manufacturer.
- E. Fire-Rated Door Sidelight and Transom Frame Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated.

- 1. Test Pressure: Test according to NFPA 252 or UL 10C. After 5 minutes into the test, the neutral pressure level in furnace shall be established at 40 inches or less above the sill.
- Oversize Fire-Rated Door Assemblies: For units exceeding sizes of tested assemblies, provide certification by a testing agency acceptable to authorities having jurisdiction that doors comply with standard construction requirements for tested and labeled fireprotection-rated door assemblies except for size.
- 3. Temperature-Rise Rating: At exit enclosures, provide doors that have a temperature-rise rating of 450 deg F maximum in 30 minutes of fire exposure.
- F. Fire-Rated, Borrowed-Light Frame Assemblies: Assemblies complying with NFPA 80 that are listed and labeled, by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated, based on testing according to NFPA 257 or UL 9. Label each individual glazed lite.
- G. Smoke-Control Door Assemblies: Comply with NFPA 105 or UL 1784.
- H. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination."

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver doors and frames cardboard-wrapped or crated to provide protection during transit and job storage. Provide additional protection to prevent damage to finish of factory-finished doors and frames.
- B. Inspect doors and frames upon delivery for damage. Minor damages may be repaired provided refinished items are equal in all respects to new work and acceptable to Architect; otherwise, remove and replace damaged items as directed.
- C. Store doors and frames at building site under cover. Place units on minimum 4-inches high wood blocking. Avoid use of non-vented plastic or canvas shelters which could create humidity chamber. If cardboard wrapper on door becomes wet, remove carton immediately. Provide 1/4-inches spaces between stacked doors to promote air circulation.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Manufacturer: Subject to compliance with requirements, provide standard steel doors and frames by one of the following:
 - 1. Standard Steel Doors and Frames:
 - a. Ceco Corp.
 - b. Curries Company.
 - c. Republic Builders Products.
 - d. Pioneer Industries.
 - e. Steelcraft

2.2 MATERIALS

A. Hot-Rolled Steel Sheets and Strip: Commercial quality carbon steel, pickled and oiled, complying with ASTM A 569 and ASTM A 568.

- B. Cold-Rolled Steel Sheets: Commercial quality carbon steel, complying with ASTM A 366 and ASTM A 568.
- C. Galvanized Steel Sheets: Zinc-coated carbon steel sheets of commercial quality, complying with ASTM A 526, or drawing quality, ASTM A 642, hot dipped galvanized in accordance with ASTM A 525, with A60 or G60 coating designation, mill phosphatized.
 - 1. Stainless Steel: ASTM Type 2, AISI Type 302, other 300 series to suit specified requirements.
- D. Supports and Anchors: Fabricate of not less than 18-gage sheet steel; galvanized where used with galvanized frames.
- E. Inserts, Bolts, and Fasteners: Manufacturer's standard units. Where items are to be built into exterior walls, hot-dip galvanize in compliance with ASTM A 153, Class C or D as applicable.
- F. Shop Applied Paint: Apply after fabrication.
 - 1. Primer: Rust-inhibitive enamel or paint, either air-drying or baking, suitable as a base for specified finish paints complying with ANSI A224.1, "Test Procedure and Acceptance Criteria for Prime Painted Steel Surfaces for Steel Doors and Frames."

2.3 DOORS

- A. Provide metal doors of SDI grades and models specified below or as indicated on drawings or schedules:
 - Interior Doors: ANSI/SDI-100, Grade II, heavy-duty, Level 3 or 4, minimum 18-gage cold-rolled sheet steel faces.
 - 2. Exterior Doors: ANSI/SDI-100, Grade III, extra heavy-duty, Level 4, minimum 16-gage hot dipped A60 galvanized steel faces, also galvanized hardware reinforcement.
 - 3. Doors shall have beveled (1/8" in 2") hinge and lock edge with edge seam welded and ground smooth.

2.4 FRAMES

- A. Provide metal frames for doors, transoms, sidelights, borrowed lights, and other openings, of types and styles as shown on drawings and schedules. Conceal fastenings, unless otherwise indicated. Fabricate frames of minimum 16-gage cold-rolled steel.
 - 1. Fabricate frames with mitered, coped, or welded corners.
 - 2. Form exterior frames from 14-gage hot dipped A60 galvanized steel.
- B. Door Silencers: Except on weatherstripped frames, drill stops to receive 3 silencers on strike jambs of single-door frames and 2 silencers on heads of double-door frames.
- C. Plaster Guards: Provide minimum 26-gage steel plaster guards or mortar boxes at back of hardware cutouts where mortar or other materials might obstruct hardware operation and to close off interior of openings.

2.5 FABRICATION

- A. Fabricate steel door and frame units to be rigid, neat in appearance and free from defects, warp or buckle. Wherever practicable, fit and assemble units in manufacturer's plant. Clearly identify work that cannot be permanently factory-assembled before shipment, to assure proper assembly at project site. Comply with ANSI/SDI-100 requirements.
 - 1. Internal Construction: Manufacturer's standard honeycomb, polyurethane, unitized steel grid, vertical steel stiffeners, or rigid mineral fiber core with internal sound deadener on inside of face sheets where appropriate in accordance with SDI standards.
 - 2. Clearances: Not more than 1/8 inch at jambs and heads except between non-fire-rated pairs of doors not more than 1/4 inch. Not more than 3/4 inch at bottom.
- B. Fabricate exposed faces of doors and panels, including stiles and rails of nonflush units, from only cold-rolled steel.
- C. Tolerances: Comply with SDI 117 "Manufacturing Tolerances Standard Steel Doors and Frames."
- D. Fabricate frames, concealed stiffeners, reinforcement, edge channels, louvers and moldings from either cold-rolled or hot-rolled steel.
- E. Fabricate exterior doors, panels, and frames from galvanized sheet steel in accordance with SDI-112. Close top and bottom edges of exterior doors as integral part of door construction or by addition of minimum 16-gage inverted steel channels.
- F. Exposed Fasteners: Unless otherwise indicated, provide countersunk flat or oval heads for exposed screws and bolts.
- G. Thermal-Rated (Insulating) Assemblies: At exterior locations and elsewhere as shown or scheduled, provide doors fabricated as thermal insulating door and frame assemblies and tested in accordance with ASTM C 236 or ASTM C 976 on fully operable door assemblies.
 - 1. Unless otherwise indicated, provide thermal-rated assemblies with U factor of .13 Btu/(hr x sq ft x deg F.) or better.
- H. Sound-Rated (Acoustical) Assemblies: Where shown or scheduled, provide door and frame assemblies fabricated as sound-reducing type, tested in accordance with ASTM E 90, and classified in accordance with ASTM E 413.
 - Unless otherwise indicated, provide acoustical assemblies with sound ratings of 33 or better.
- I. Finish Hardware Preparation: Prepare doors and frames to receive mortised and concealed hardware in accordance with final Door Hardware Schedule and templates provided by hardware supplier. Comply with applicable requirements of ANSI A115 Series Specifications for door and frame preparation for hardware.
 - 1. For concealed hardware, provide space, cutouts, reinforcing and provisions for fastening in doors and frames, as applicable.
- J. Reinforce doors and frames to receive surface-applied hardware. Drilling and tapping for surface-applied hardware to be done at project site.

- K. Locate hardware as indicated on final shop drawings or, if not indicated, in accordance with "Recommended Locations for Builder's Hardware on Standard Steel Doors and Frames," published by Door and Hardware Institute.
- L. Shop Painting: Clean, treat, and paint exposed surfaces of steel door and frame units, including galvanized surfaces.
 - 1. Clean steel surfaces of mill scale, rust, oil, grease, dirt, and other foreign materials before application of paint.
 - 2. Apply shop coat of prime paint of even consistency to provide a uniformly finished surface ready to receive finish paint.
- M. Glazing Stops: Minimum 20 gage steel or .040-inch-thick aluminum.
 - 1. Provide non-removable stops on outside of exterior doors and on secure side of interior doors for glass, louvers, and other panels in doors.
 - 2. Provide screw applied removable glazing beads on inside of glass, louvers, and other panels in doors.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Install standard steel doors, frames, and accessories in accordance with final shop drawings, manufacturer's data, and as herein specified.
- B. Placing Frames: Comply with provisions of SDI-105 "Recommended Erection Instructions For Steel Frames," unless otherwise indicated.
 - Except for frames located at existing concrete, masonry or drywall installations, place frames prior to construction of enclosing walls and ceilings. Set frames accurately in position, plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is completed, remove temporary braces and spreaders leaving surfaces smooth and undamaged.
 - 2. In masonry construction, locate 3 wall anchors per jamb adjacent to hinge location on hinge jamb and at corresponding heights on strike jamb. Acceptable anchors include masonry wire anchors and masonry Tee anchors. Provide four (4) wall anchors per jamb for frame over 7'-2" high.
 - 3. At existing concrete or masonry construction, provide 3 completed opening anchors per jamb adjacent to hinge location on hinge jamb and at corresponding heights on strike jamb, set frames and secure to adjacent construction with bolts and masonry anchorage devices.
 - Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.
 - 4. Install fire-rated frames in accordance with NFPA Standard No. 80.
 - 5. In metal stud partitions, install at least 3 wall anchors per jamb at hinge and strike levels. In closed steel stud partitions, attach wall anchors to studs with screws.

- 6. At existing in-place drywall partitions install knock down slip-on drywall frames.
- C. Door Installation: Fit hollow metal doors accurately in frames, within clearances specified in ANSI/SDI-100.
 - 1. Install fire-rated doors with clearances as specified in NFPA Standard No. 80.

3.2 ADJUST AND CLEAN

- A. Prime Coat Touch-up: Immediately after erection, sand smooth any rusted or damaged areas of prime coat and apply touch-up of compatible air-drying primer.
- B. Protection Removal: Immediately prior to final inspection, remove protective plastic wrappings from prefinished doors.
- C. Final Adjustments: Check and readjust operating hardware items, leaving steel doors and frames undamaged and in complete and proper operating condition.

END OF SECTION

ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawing and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Wall access doors and frames.
 - 2. Fire-rated wall access doors and frames.
 - 3. Ceiling access doors and frames.
 - 4. Fire-rated ceiling access doors and frames.
- B. Related Sections include the following:
 - 1. Division 03 Section "Cast-in-Place Concrete" for blocking out openings for access doors and frames in concrete.
 - 2. Division 04 Section "Unit Masonry" for anchoring and grouting access door frames set in masonry construction.
 - 3. Division 07 Section "Roof Accessories" for roof hatches.
 - 4. Division 08 Section "Door Hardware" for mortise or rim cylinder locks and master keying.
 - 5. Division 09 Section "Acoustical Tile Ceilings" for suspended acoustical tile ceilings.
 - 6. Division 22 Section "Facility Storm Drainage Piping" for connection of floor door drainage couplings to drains.
 - Division 23 Section "Air Duct Accessories" for heating and air-conditioning duct access doors.

1.3 SUBMITTALS

- A. Product Data: For each type of door and frame indicated. Include construction details relative to materials, individual components and profiles, finishes, and fire ratings (if required) for access doors and frames.
- B. Shop Drawings: Show fabrication and installation details of customized doors and frames. Include plans, elevations, sections, details, and attachments to other Work.
- C. Samples: For each door face material, at least 3 by 5 inches (75 by 125 mm) in size, in specified finish.

- D. Schedule: Provide complete door and frame schedule, including types, general locations, sizes, construction details, latching or locking provisions, and other data pertinent to installation.
- E. Coordination Drawings: Reflected ceiling plans drawn to scale and coordinating penetrations and ceiling-mounted items with concealed framing, suspension systems, piping, ductwork, and other construction. Show the following:
 - 1. Method of attaching door frames to surrounding construction.
 - 2. Ceiling-mounted items including access doors and frames, lighting fixtures, diffusers, grilles, speakers, sprinklers, and special trim.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain doors and frames through one source from a single manufacturer.
- B. Fire-Rated Access Doors and Frames: Units complying with NFPA 80 that are identical to access door and frame assemblies tested for fire-test-response characteristics per the following test method and that are labeled and listed by UL, ITS, or another testing and inspecting agency acceptable to authorities having jurisdiction:
 - 1. NFPA 252 or UL 10B for vertical access doors.
 - 2. ASTM E 119, UBC Standard 7.1 or UL 263 for horizontal access doors and frames.
- C. Size Variations: Obtain Architect's acceptance of manufacturer's standard-size units, which may vary slightly from sizes indicated.

1.5 COORDINATION

A. Verification: Determine specific locations and sizes for access doors needed to gain access to concealed equipment, and indicate on schedule specified in "Submittals" Article.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cesco Products.
 - Jensen Industries.
 - 3. J. L. Industries, Inc.
 - 4. Karp Associates, Inc.
 - 5. Larsen's Manufacturing Company.
 - 6. Milcor Limited Partnership.
 - 7. Nystrom Building Products Co.

2.2 MATERIALS

- A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- B. Cold-Rolled Steel Sheets: ASTM A 366/A 366M, Commercial Steel (CS), or ASTM A 620/A 620M, Drawing Steel (DS), Type B; stretcher-leveled standard of flatness; with minimum thickness indicated representing specified nominal thickness according to ASTM A 568/A 568M. Electrolytic zinc-coated steel sheet, complying with ASTM A 591/A 591M, Class C coating, may be substituted at fabricator's option.
- C. Electrolytic Zinc-Coated Steel Sheet: ASTM A 591/A 591M, Commercial Steel (CS), with Class C coating and phosphate treatment to prepare surface for painting; with minimum thickness indicated representing specified nominal thickness according to ASTM A 568/A 568M for uncoated base metal.
- D. Drywall Beads: Edge trim formed from 0.0299-inch (0.76-mm) zinc-coated steel sheet formed to receive joint compound and in size to suit thickness of gypsum board.

2.3 PAINT

- A. Shop Primer for Ferrous Metal: Fast-curing, lead- and chromate-free, universal modifiedalkyd primer complying with performance requirements in FS TT-P-664; selected for good resistance to normal atmospheric corrosion, compatibility with finish paint systems indicated, and capability to provide a sound foundation for field-applied topcoats despite prolonged exposure.
- B. Shop Primer for Metallic-Coated Steel: Organic zinc-rich primer complying with SSPC-Paint 20 and compatible with topcoat.
- C. Galvanizing Repair Paint: High-zinc-dust-content paint for regalvanizing welds in steel, complying with SSPC-Paint 20.

2.4 ACCESS DOORS AND FRAMES

- A. Flush, Uninsulated, Fire-Rated Access Doors and Frames with Exposed Trim: Fabricated from steel sheet.
 - 1. Locations: Masonry walls.
 - 2. Fire-Resistance Rating: As indicated.
 - 3. Temperature Rise Rating: 250 deg F (139 deg C) at the end of 30 minutes.
 - 4. Door: Minimum 0.060-inch- (1.5-mm-) thick sheet metal, flush construction.
 - Frame: Minimum 0.060-inch- (1.5-mm-) thick sheet metal with 1-inch- (25-mm-) wide, surface-mounted trim.
 - 6. Hinges: Continuous piano hinge.
 - 7. Automatic Closer: Spring type.
 - 8. Latch: Self-latching bolt operated by key with interior release.
- B. Flush, Uninsulated, Fire-Rated Access Doors and Trimless Frames: Fabricated from steel sheet.

- 1. Locations: Gypsum board wall and ceiling surfaces.
- 2. Fire-Resistance Rating: As indicated.
- 3. Temperature Rise Rating: 250 deg F (139 deg C) at the end of 30 minutes.
- 4. Door: Minimum 0.060-inch- (1.5-mm-) thick sheet metal, flush construction.
- 5. Frame: Minimum 0.060-inch- (1.5-mm-) thick sheet metal with drywall bead.
- 6. Hinges: Continuous piano hinge.
- 7. Automatic Closer: Spring type.
- 8. Latch: Self-latching bolt operated by key with interior release.
- C. Flush Access Doors and Frames with Exposed Trim: Fabricated from steel sheet.
 - 1. Locations: Masonry wall surfaces.
 - 2. Door: Minimum 0.060-inch- (1.5-mm-) thick sheet metal, set flush with exposed face flange of frame.
 - Frame: Minimum 0.060-inch- (1.5-mm-) thick sheet metal with 1-inch- (25-mm-) wide, surface-mounted trim.
 - 4. Hinges: Continuous piano hinge.
 - 5. Latch: Screwdriver-operated cam latch.
- D. Flush Access Doors and Trimless Frames: Fabricated from steel sheet.
 - 1. Locations: Gypsum board wall and ceiling surfaces.
 - 2. Door: Minimum 0.060-inch- (1.5-mm-) thick sheet metal, set flush with surrounding finish surfaces.
 - 3. Frame: Minimum 0.060-inch- (1.5-mm-) thick sheet metal with drywall bead.
 - 4. Hinges: Concealed continuous piano hinge.
 - 5. Latch: Screwdriver-operated cam latch.
- E. Recessed Access Doors and Trimless Frames: Fabricated from steel sheet.
 - 1. Locations: Gypsum board wall and ceiling surfaces.
 - 2. Door: Minimum 0.060-inch- (1.5-mm-) thick sheet metal in the form of a pan recessed 5/8 inch (16 mm) gypsum board infill.
 - 3. Frame: Minimum 0.060-inch- (1.5-mm-) thick sheet metal with drywall bead for gypsum board surfaces.
 - Hinges: Concealed pivoting rod hinge.
 - Latch: Screwdriver-operated cam latch with plastic grommet for access through pan recess.

2.5 FABRICATION

- General: Provide access door assemblies manufactured as integral units ready for installation.
- B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.
- C. Steel Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish attachment devices and fasteners of type required to secure access panels to types of supports indicated.
 - 1. Exposed Flanges: Nominal 1 to 1-1/2 inches (25 to 38 mm) wide around perimeter of frame.
 - 2. For trimless frames with drywall bead for installation in gypsum board assembly, provide edge trim for gypsum board securely attached to perimeter of frames.
 - 3. Provide mounting holes in frames to attach frames to metal or wood framing in plaster and drywall construction and to attach masonry anchors in masonry construction. Furnish adjustable metal masonry anchors.
- D. Recessed Access Doors: Form face of panel to provide recess for application of applied finish. Reinforce panel as required to prevent buckling.
- E. Latching Mechanisms: Furnish number required to hold doors in flush, smooth plane when closed.
 - 1. For recessed panel doors, provide access sleeves for each locking device. Furnish plastic grommets and install in holes cut through finish.

2.6 FINISHES, GENERAL

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Finish metal fabrications after assembly.

2.7 STEEL FINISHES

- A. Surface Preparation: Prepare uncoated ferrous-metal surfaces to comply with minimum requirements indicated below for SSPC surface-preparation specifications and environmental exposure conditions of installed metal fabrications:
 - 1. Interiors (SSPC Zone 1A): SSPC-SP 3, "Power Tool Cleaning."
- B. Apply shop primer to uncoated surfaces of metal fabrications. Comply with SSPC-PA 1, "Paint Application Specification No. 1," for shop painting.

PART 3 - EXECUTION

3.1 PREPARATION

A. Advise installers of other work about specific requirements relating to access door and floor door installation, including sizes of openings to receive access door and frame, as well as locations of supports, inserts, and anchoring devices.

3.2 INSTALLATION

- A. Comply with manufacturer's written instructions for installing access doors and frames.
- B. Set frames accurately in position and attach securely to supports with plane of face panels aligned with adjacent finish surfaces.
- C. Install access doors with trimless frames flush with adjacent finish surfaces or recessed to receive finish material.

3.3 ADJUSTING AND CLEANING

- A. Adjust doors and hardware after installation for proper operation.
- B. Remove and replace doors and frames that are warped, bowed, or otherwise damaged.

END OF SECTION

DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes commercial door hardware for the following:
 - 1. Swinging doors.
 - 2. Sliding doors.
 - 3. Other doors to the extent indicated.
- B. Door hardware includes, but is not necessarily limited to, the following:
 - 1. Mechanical door hardware.
 - 2. Electromechanical door hardware, power supplies, back-ups and surge protection.
 - 3. Cylinders specified for doors in other sections.

C. Related Sections:

- 1. Division 08 Section "Door Hardware Schedule".
- 2. Division 08 Section "Hollow Metal Doors and Frames".
- 3. Division 08 Section "Fiberglass Reinforced Plastic Doors".
- 4. Division 08 Section "Flush Wood Doors".
- D. Codes and References: Comply with the version year adopted by the Authority Having Jurisdiction.
 - 1. ANSI A117.1 Accessible and Usable Buildings and Facilities.
 - 2. ICC/IBC International Building Code.
 - 3. NFPA 80 Fire Doors and Windows.
 - NFPA 101 Life Safety Code.
 - 5. NFPA 105 Installation of Smoke Door Assemblies.
 - 6. Michigan Building Code, Local Amendments.
- E. Standards: All hardware specified herein shall comply with the following industry standards:
 - 1. ANSI/BHMA Certified Product Standards A156 Series
 - 2. UL10C Positive Pressure Fire Tests of Door Assemblies

1.3 SUBMITTALS

- A. Product Data: Manufacturer's product data sheets including installation details, material descriptions, dimensions of individual components and profiles, operational descriptions and finishes.
- B. Door Hardware Schedule: Prepared by or under the supervision of supplier, detailing fabrication and assembly of door hardware, as well as procedures and diagrams. Coordinate the final Door Hardware Schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.
 - 1. Format: Comply with scheduling sequence and vertical format in DHI's "Sequence and Format for the Hardware Schedule."
 - 2. Organization: Organize the Door Hardware Schedule into door hardware sets indicating complete designations of every item required for each door or opening. Organize door hardware sets in same order as in the Door Hardware Sets at the end of Part 3. Submittals that do not follow the same format and order as the Door Hardware Sets will be rejected and subject to resubmission.
 - 3. Content: Include the following information:
 - a. Type, style, function, size, label, hand, and finish of each door hardware item.
 - b. Manufacturer of each item.
 - c. Fastenings and other pertinent information.
 - d. Location of door hardware set, cross-referenced to Drawings, both on floor plans and in door and frame schedule.
 - e. Explanation of abbreviations, symbols, and codes contained in schedule.
 - f. Mounting locations for door hardware.
 - g. Door and frame sizes and materials.
 - 4. Submittal Sequence: Submit the final Door Hardware Schedule at earliest possible date, particularly where approval of the Door Hardware Schedule must precede fabrication of other work that is critical in the Project construction schedule. Include Product Data, Samples, Shop Drawings of other work affected by door hardware, and other information essential to the coordinated review of the Door Hardware Schedule.
- C. Shop Drawings: Details of electrified access control hardware indicating the following:
 - 1. Wiring Diagrams: Upon receipt of approved schedules, submit detailed system wiring diagrams for power, signaling, monitoring, communication, and control of the access control system electrified hardware. Differentiate between manufacturer-installed and field-installed wiring. Include the following:
 - a. Elevation diagram of each unique access controlled opening showing location and interconnection of major system components with respect to their placement in the respective door openings.
 - b. Complete (risers, point-to-point) access control system block wiring diagrams.
 - 2. Electrical Coordination: Coordinate with related Division 26 Electrical Sections the voltages and wiring details required at electrically controlled and operated hardware openings.

- D. Keying Schedule: Prepared under the supervision of the Owner, separate schedule detailing final keying instructions for locksets and cylinders in writing. Include keying system explanation, door numbers, key set symbols, hardware set numbers and special instructions. Owner to approve submitted keying schedule prior to the ordering of permanent cylinders.
- E. Operating and Maintenance Manuals: Provide manufacturers operating and maintenance manuals for each item comprising the complete door hardware installation in quantity as required in Division 01, Closeout Submittals. The manual to include the name, address, and contact information of the manufacturers providing the hardware and their nearest service representatives. The final copies delivered after completion of the installation test to include "as built" modifications made during installation, checkout, and acceptance.
- F. Warranties and Maintenance: Special warranties and maintenance agreements specified in this Section.

1.4 QUALITY ASSURANCE

- A. Manufacturers Qualifications: Engage qualified manufacturers with a minimum 5 years of documented experience in producing hardware and equipment similar to that indicated for this Project and that have a proven record of successful in-service performance.
- B. Installer Qualifications: Installers, trained by the primary product manufacturers, with a minimum 3 years documented experience installing both standard and electrified builders hardware similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.
- C. Door Hardware Supplier Qualifications: Experienced commercial door hardware distributors with a minimum 5 years documented experience supplying both mechanical and electromechanical hardware installations comparable in material, design, and extent to that indicated for this Project. Supplier recognized as a factory direct distributor in good standing by the manufacturers of the primary materials with a warehousing facility in Project's vicinity. Supplier to have on staff a certified Architectural Hardware Consultant (AHC) available during the course of the Work to consult with Contractor, Architect, and Owner concerning both standard and electromechanical door hardware and keying.
 - 1. Scheduling Responsibility: Preparation of door hardware and keying schedules.
- D. Source Limitations: Obtain each type and variety of Door Hardware specified in this Section from a single source, qualified supplier unless otherwise indicated.
 - 1. Electrified modifications or enhancements made to a source manufacturer's product line by a secondary or third party source will not be accepted.
 - 2. Provide electromechanical door hardware from the same manufacturer as mechanical door hardware, unless otherwise indicated.
- E. Regulatory Requirements: Comply with NFPA 70, NFPA 80, NFPA 101 and ANSI A117.1 requirements and guidelines as directed in the model building code including, but not limited to, the following:
 - 1. NFPA 70 "National Electrical Code", including electrical components, devices, and accessories listed and labeled as defined in Article 100 by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

- Where indicated to comply with accessibility requirements, comply with Americans with Disabilities Act (ADA), "Accessibility Guidelines for Buildings and Facilities (ADAAG)," ANSI A117.1 as follows:
 - a. Handles, Pulls, Latches, Locks, and other Operating Devices: Shape that is easy to grasp with one hand and does not require tight grasping, tight pinching, or twisting of the wrist.
 - b. Door Closers: Comply with the following maximum opening-force requirements indicated:
 - 1) Interior Hinged Doors: 5 lbf applied perpendicular to door.
 - 2) Fire Doors: Minimum opening force allowable by authorities having jurisdiction.
 - c. Thresholds: Not more than 1/2 inch high. Bevel raised thresholds with a slope of not more than 1:2.
- 3. NFPA 101: Comply with the following for means of egress doors:
 - a. Latches, Locks, and Exit Devices: Not more than 15 lbf to release the latch. Locks shall not require the use of a key, tool, or special knowledge for operation.
 - b. Thresholds: Not more than 1/2 inch high.
- 4. Fire-Rated Door Assemblies: Provide door hardware for assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing according to NFPA 252 (neutral pressure at 40" above sill) or UL-10C.
 - a. Test Pressure: Positive pressure labeling.
- F. Each unit to bear third party permanent label demonstrating compliance with the referenced standards.
- G. Keying Conference: Conduct conference to comply with requirements in Division 01 Section "Project Meetings." Keying conference to incorporate the following criteria into the final keying schedule document:
 - 1. Function of building, purpose of each area and degree of security required.
 - 2. Plans for existing and future key system expansion.
 - 3. Requirements for key control storage and software.
 - 4. Installation of permanent keys, cylinder cores and software.
 - 5. Address and requirements for delivery of keys.
- H. Pre-Submittal Conference: Conduct coordination conference in compliance with requirements in Division 01 Section "Project Meetings" with attendance by representatives of Supplier(s), Installer(s), and Contractor(s) to review proper methods and the procedures for receiving, handling, and installing door hardware.
 - Prior to installation of door hardware, conduct a project specific training meeting to
 instruct the installing contractors' personnel on the proper installation and adjustment of
 their respective products. Product training to be attended by installers of door hardware
 (including electromechanical hardware) for aluminum, hollow metal and wood doors.
 Training will include the use of installation manuals, hardware schedules, templates and
 physical product samples as required.

- 2. Inspect and discuss electrical roughing-in, power supply connections, and other preparatory work performed by other trades.
- 3. Review sequence of operation narratives for each unique access controlled opening.
- 4. Review and finalize construction schedule and verify availability of materials.
- 5. Review the required inspecting, testing, commissioning, and demonstration procedures
- I. At completion of installation, provide written documentation that components were applied to manufacturer's instructions and recommendations and according to approved schedule.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Inventory door hardware on receipt and provide secure lock-up and shelving for door hardware delivered to Project site. Do not store electronic access control hardware, software or accessories at Project site without prior authorization.
- B. Tag each item or package separately with identification related to the final Door Hardware Schedule, and include basic installation instructions with each item or package.
- C. Deliver, as applicable, permanent keys, cylinders, cores, access control credentials, software and related accessories directly to Owner via registered mail or overnight package service. Instructions for delivery to the Owner shall be established at the "Keying Conference".

1.6 COORDINATION

- A. Templates: Obtain and distribute to the parties involved templates for doors, frames, and other work specified to be factory prepared for installing standard and electrified hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing hardware to comply with indicated requirements.
- B. Door Hardware and Electrical Connections: Coordinate the layout and installation of scheduled electrified door hardware and related access control equipment with required connections to source power junction boxes, low voltage power supplies, detection and monitoring hardware, and fire and detection alarm systems.
- C. Door and Frame Preparation: Related Division 08 Sections (Steel, Aluminum and Wood) doors and corresponding frames are to be prepared, reinforced and pre-wired (if applicable) to receive the installation of the specified electrified, monitoring, signaling and access control system hardware without additional in-field modifications.

1.7 WARRANTY

- A. General Warranty: Reference Division 01, General Requirements. Special warranties specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.
- B. Warranty Period: Written warranty, executed by manufacturer(s), agreeing to repair or replace components of standard and electrified door hardware that fails in materials or workmanship within specified warranty period after final acceptance by the Owner. Failures include, but are not limited to, the following:

- 1. Structural failures including excessive deflection, cracking, or breakage.
- 2. Faulty operation of the hardware.
- 3. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
- 4. Electrical component defects and failures within the systems operation.
- C. Standard Warranty Period: One year from date of Substantial Completion, unless otherwise indicated.
- D. Special Warranty Periods:
 - 1. Ten years for mortise locks and latches.
 - 2. Five years for exit hardware.
 - 3. Twenty five years for manual surface door closers.
 - 4. Two years for electromechanical door hardware.

1.8 MAINTENANCE SERVICE

- A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.
- B. Continuing Service: Beginning at Substantial Completion, and running concurrent with the specified warranty period, provide continuous (6) months full maintenance including repair and replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper door opening operation. Provide parts and supplies as used in the manufacture and installation of original products.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

- A. General: Provide door hardware for each door to comply with requirements in Door Hardware Sets and each referenced section that products are to be supplied under.
 - Designations: Requirements for quantity, item, size, finish or color, grade, function, and other distinctive qualities of each type of door hardware are indicated in the Door Hardware Sets at the end of Part 3. Products are identified by using door hardware designations, as follows:
 - a. Named Manufacturer's Products: Product designation and manufacturer are listed for each door hardware type required for the purpose of establishing requirements. Manufacturers' names are abbreviated in the Door Hardware Schedule.
- B. Substitutions: Requests for substitution and product approval for inclusive mechanical and electromechanical door hardware in compliance with the specifications must be submitted in writing and in accordance with the procedures and time frames outlined in Division 01, Substitution Procedures. Approval of requests is at the discretion of the architect, owner, and their designated consultants.

2.2 HANGING DEVICES

- A. Hinges: ANSI/BHMA A156.1 certified butt hinges with number of hinge knuckles as specified in the Door Hardware Sets.
 - 1. Quantity: Provide the following hinge quantity, unless otherwise indicated:
 - a. Two Hinges: For doors with heights up to 60 inches.
 - b. Three Hinges: For doors with heights 61 to 90 inches.
 - c. Four Hinges: For doors with heights 91 to 120 inches.
 - d. For doors with heights more than 120 inches, provide 4 hinges, plus 1 hinge for every 30 inches of door height greater than 120 inches.
 - 2. Hinge Size: Provide the following, unless otherwise indicated, with hinge widths sized for door thickness and clearances required:
 - a. Widths up to 3'0": 4-1/2" standard or heavy weight as specified.
 - b. Sizes from 3'1" to 4'0": 5" standard or heavy weight as specified.
 - 3. Hinge Weight and Base Material: Unless otherwise indicated, provide the following:
 - a. Exterior Doors: Heavy weight, non-ferrous, ball bearing or oil impregnated bearing hinges unless Hardware Sets indicate standard weight.
 - b. Interior Doors: Standard weight, steel, ball bearing or oil impregnated bearing hinges unless Hardware Sets indicate heavy weight.
 - 4. Hinge Options: Comply with the following where indicated in the Hardware Sets or on Drawings:
 - a. Non-removable Pins: Provide set screw in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while door is closed; for the following applications:
 - 1) Out-swinging exterior doors.
 - Out-swinging access controlled doors.
 - 3) Out-swinging lockable doors.
 - 5. Acceptable Manufacturers:
 - a. Hager Companies (HA).
 - b. McKinney Products (MK).
 - c. Stanley Hardware (ST).
- B. Continuous Geared Hinges: ANSI/BHMA A156.26 certified continuous geared hinge with minimum 0.120-inch thick extruded 6060 T6 aluminum alloy hinge leaves and a minimum overall width of 4 inches. Hinges are non-handed, reversible and fabricated to template screw locations. Provide concealed flush mount (with or without inset), full surface, or half surface, in standard and heavy duty models, as specified in the Hardware Sets. Concealed continuous hinges to be U.L. listed for use on up to and including 90 minute rated door installations and U.L. listed for windstorm components where applicable. Factory cut hinges for door size and provide with removable service power transfer panel where indicated at electrified openings.

- 1. Acceptable Manufacturers:
 - a. Pemko Manufacturing (PE).
 - b. Select Hinge (SE).
 - c. Stanley Hardware (ST).

2.3 POWER TRANSFER DEVICES

- A. Concealed Quick Connect Electric Power Transfers: Provide concealed wiring pathway housing mortised into the door and frame for low voltage electrified door hardware. Furnish with Molex™ standardized plug connectors and sufficient number of concealed wires (up to 12) to accommodate the electrified functions specified in the Door Hardware Sets. Connectors plug directly to through-door wiring harnesses for connection to electric locking devices and power supplies. Wire nut connections are not acceptable.
 - 1. Acceptable Manufacturers:
 - Securitron (SU) EL-CEPT Series.
- B. Electric Door Hardware Cords: Provide electric transfer wiring harnesses with standardized plug connectors to accommodate up to twelve (12) wires. Connectors plug directly to through-door wiring harnesses for connection to electric locking devices and power supplies. Provide sufficient number of concealed wires to accommodate electric function of specified hardware. Provide a connector for through-door electronic locking devices and from hinge to junction box above the opening. Wire nut connections are not acceptable. Determine the length required for each electrified hardware component for the door type, size and construction, minimum of two per electrified opening.
 - 1. Acceptable Manufacturers:
 - a. McKinney Products (MK) Inner Door Cord 3 inches: QC-C003P.
 - b. McKinney Products (MK) Inner Door Cord 3 foot door: QC-C206P.
 - c. McKinney Products (MK) Inner Door Cord 4 foot door: QC-C306P.
 - d. McKinney Products (MK) Inner Door Cord 15 feet: QC-C1500P.
 - e. McKinney Products (MK) Hinge to Junction Panel 15 feet: QC-C1500P.
 - 2. Provide one each of the following tools as part of the base bid contract:
 - a. McKinney Products (MK) Electrical Connecting Kit: QC-R001.
 - b. McKinney Products (MK) Connector Hand Tool: QC-R003.

2.4 DOOR OPERATING TRIM

- A. Door Push Plates and Pulls: ANS/BHMA A156.6 certified door pushes and pulls of type and design specified below or in the Hardware Sets. Coordinate and provide proper width and height as required where conflicting hardware dictates.
 - 1. Push/Pull Plates: Minimum .050 inch thick, size as indicated in hardware sets, with beveled edges, secured with exposed screws unless otherwise indicated.
 - 2. Door Pull and Push Bar Design: Size, shape, and material as indicated in the hardware sets. Minimum clearance of 2 1/2-inches from face of door unless otherwise indicated.

- 3. Offset Pull Design: Size, shape, and material as indicated in the hardware sets. Minimum clearance of 2 1/2-inches from face of door and offset of 90 degrees unless otherwise indicated.
- 4. Fasteners: Provide manufacturer's designated fastener type as indicated in Hardware Sets.
 - a. Acceptable Manufacturers:
 - 1) Any member of Builders Hardware Manufacturers Association (BHMA).

2.5 CYLINDERS AND KEYING

- A. General: Cylinder manufacturer to have minimum (10) years experience designing secured master key systems and have on record a published security keying system policy.
- B. Source Limitations: Obtain each type of keyed cylinder and keys from the same source manufacturer as locksets and exit devices, unless otherwise indicated.
- C. Cylinders: Original manufacturer cylinders complying with the following:
 - 1. Mortise Type: Fixed core, threaded cylinders with rings and straight- or clover-type cam.
 - 2. Rim Type: Fixed core, tylinders with back plate, flat-type vertical or horizontal tailpiece, and raised trim ring.
 - 3. Mortise and rim cylinder collars to be solid and recessed to allow the cylinder face to be flush and be free spinning with matching finishes.
 - 4. Keyway: Corbin Russwin 67 and 77 keyway families.
- D. Keying System: Each type of lock and cylinders to be keyed to keys provided by Owner. Conduct specified "Keying Conference" to define and document keying system instructions and requirements. Furnish nickel-silver large bow permanently inscribed with a visual key control number as directed by Owner. Incorporate decisions made in keying conference, and as follows:
 - 1. Master Key System: Cylinders are operated by a change key and a master key.
 - 2. Grand Master Key System: Cylinders are operated by a change key, a master key, and a grand master key.
 - 3. Great-Grand Master Key System: Cylinders are operated by a change key, a master key, a grand master key, and a great-grand master key.
 - 4. Existing System: Master key or grand master key locks to Owner's existing system.
 - 5. Keyed Alike: Key all cylinders to same change key.
- E. Key Quantity: Provide the following minimum number of keys:
 - 1. Change Keys per Cylinder: Two (2)
- F. Owner shall provide keys for pinning purposes only. Cylinders shall be pinned to suit Owner provided bitting numbers and shall not be pinned using an existing key. Owner provided keys shall not be duplicated and shall be returned directly to Owner's representative when keying of cylinders is complete.

2.6 MECHANICAL LOCKS AND LATCHING DEVICES

- A. Mortise Locksets, Grade 1 (Heavy Duty): ANSI/BHMA A156.13, Series 1000, Operational Grade 1 certified mortise locksets furnished in the functions as specified in the Hardware Sets. Locksets to be manufactured with a corrosion resistant, stamped 12 gauge minimum formed steel case and be field-reversible for handing without disassembly of the lock body. Lockset trim (including knobs, levers, escutcheons, roses) to be the product of a single manufacturer. Furnish with standard 2 3/4" backset, 3/4" throw anti-friction stainless steel latchbolt, and a full 1" throw stainless steel bolt for deadbolt functions.
 - 1. Acceptable Manufacturers:
 - a. Corbin Russwin Hardware (RU) ML2000 Series.
 - b. No Substitution Facility Standard.
- B. Lock Trim Design: As specified in Hardware Sets.

2.7 LOCK AND LATCH STRIKES

- A. Strikes: Provide manufacturer's standard strike with strike box for each latch or lock bolt, with curved lip extended to protect frame, finished to match door hardware set, unless otherwise indicated, and as follows:
 - 1. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer.
 - 2. Extra-Long-Lip Strikes: For locks used on frames with applied wood casing trim.
 - 3. Aluminum-Frame Strike Box: Provide manufacturer's special strike box fabricated for aluminum framing.
- B. Standards: Comply with the following:
 - 1. Strikes for Mortise Locks and Latches: BHMA A156.13.

2.8 CONVENTIONAL EXIT DEVICES

- A. General Requirements: All exit devices specified herein shall meet or exceed the following criteria:
 - 1. At doors not requiring a fire rating, provide devices complying with NFPA 101 and listed and labeled for "Panic Hardware" according to UL305. Provide proper fasteners as required by manufacturer including sex nuts and bolts at openings specified in the Hardware Sets.
 - Where exit devices are required on fire rated doors, provide devices complying with NFPA 80 and with UL labeling indicating "Fire Exit Hardware". Provide devices with the proper fasteners for installation as tested and listed by UL. Consult manufacturer's catalog and template book for specific requirements.
 - a. Fire Exit Removable Mullions: Provide keyed removable mullions for use with fire exit devices complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire and panic protection, based on testing according to UL 305 and NFPA 252. Mullions to be used only with exit devices for which they have been tested.

- 3. Except on fire rated doors, provide exit devices with hex key dogging device to hold the pushbar and latch in a retracted position. Provide optional keyed cylinder dogging on devices where specified in Hardware Sets.
- 4. Devices must fit flat against the door face with no gap that permits unauthorized dogging of the push bar. The addition of filler strips is not acceptable except in any case where the door light extends behind the device as in a full glass configuration.
- 5. Flush End Caps: Provide heavy weight impact resistant flush end caps made of architectural metal in the same finish as the devices as in the Hardware Sets. Plastic end caps will not be acceptable.
- 6. Lever Operating Trim: Where exit devices require lever trim, furnish manufacturer's heavy duty trim with cold forged escutcheons, beveled edges, and four threaded studs for thrubolts.
 - a. Lock Trim Design: As indicated in Hardware Sets, provide finishes and designs to match that of the specified locksets. Provided free-wheeling type trim where indicated.
 - b. Where function of exit device requires a cylinder, provide an interchangeable core type keyed cylinder (Rim or Mortise) as specified in Hardware Sets.
- 7. Vertical Rod Exit Devices: Provide and install interior surface and concealed vertical rod exit devices as Less Bottom Rod (LBR) unless otherwise indicated.
- 8. Narrow Stile Applications: At doors constructed with narrow stiles, or as specified in Hardware Sets, provide devices designed for maximum 2" wide stiles.
- 9. Dummy Push Bar: Nonfunctioning push bar matching functional push bar.
- 10. Rail Sizing: Provide exit device rails factory sized for proper door width application.
- 11. Through Bolt Installation: For exit devices and trim as indicated in Door Hardware Sets.
- 12. Install exit devices at centerline from floor as specified in Part 3.3.B.1 of this Section to suit door designs and ADA requirements.
- B. Conventional Push Rail Exit Devices (Heavy Duty): ANSI/BHMA A156.3, Grade 1 certified panic and fire exit hardware devices furnished in the functions specified in the Hardware Sets. Mounting rails to be formed from smooth stainless steel, brass or bronze architectural materials no less than 0.072" thick, with push rails a minimum of 0.062" thickness. Painted or aluminum metal rails are not acceptable. Exit device latch to be investment cast stainless steel, pullman type, with deadlock feature.
 - 1. Acceptable Manufacturers:
 - a. Sargent Manufacturing (SA) 80 Series.
 - b. Stanley Precision (PR) Apex 2000 Series.
- C. Tube Steel Removable Mullions: ANSI/BHMA A156.3 removable steel mullions with malleable-iron top and bottom retainers and a primed paint finish. Provide keyed removable feature, stabilizers, and mounting brackets as specified in the Hardware Sets. At openings designed for severe wind load conditions due to hurricanes or tornadoes, provide manufacturers approved mullion and accessories to meet applicable state and local windstorm codes.

- 1. Acceptable Manufacturers:
 - a. Sargent Manufacturing (SA) 980S Series.
 - b. Stanley Precision (PR) 822 Series.

2.9 DOOR CLOSERS

- A. All door closers specified herein shall meet or exceed the following criteria:
 - General: Door closers to be from one manufacturer, matching in design and style, with the same type door preparations and templates regardless of application or spring size. Closers to be non-handed with full sized covers including installation and adjusting information on inside of cover.
 - 2. Standards: Closers to comply with UL-10C and UBC 7-2 for Positive Pressure Fire Test and be U.L. listed for use of fire rated doors.
 - 3. Size of Units: Comply with manufacturer's written recommendations for sizing of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Where closers are indicated for doors required to be accessible to the physically handicapped, provide units complying with ANSI ICC/A117.1.
 - 4. Closer Arms: Provide heavy duty, forged steel closer arms unless otherwise indicated in Hardware Sets.
 - a. Where closers are indicated to have mechanical dead-stop, provide heavy duty arms and brackets with an integral positive stop.
 - b. Where closers are indicated to have mechanical hold open, provide heavy duty units with an additional built-in mechanical holder assembly designed to hold open against normal wind and traffic conditions. Holder to be manually selectable to on-off position.
 - C. Where closers are indicated to have a cushion-type stop, provide heavy duty arms and brackets with spring stop mechanism to cushion door when opened to maximum degree.
 - d. Closers shall not be installed on exterior or corridor side of doors; where possible install closers on door for optimum aesthetics. Provide drop plates or other accessories as required for proper mounting.
 - 5. Closer Accessories: Provide door closer accessories including custom templates, special mounting brackets, spacers and drop plates, and through-bolt or security type fasteners as specified in the door Hardware Sets.
- B. Door Closers, Surface Mounted (Large Body Cast Iron): ANSI/BHMA A156.4, Grade 1 surface mounted, heavy duty door closers with complete spring power adjustment, sizes 1 thru 6; and fully operational adjustable according to door size, frequency of use, and opening force. Closers to be rack and pinion type, one piece cast iron body construction, with adjustable backcheck and separate non-critical valves for closing sweep and latch speed control.
 - 1. Acceptable Manufacturers:
 - a. LCN Closers (LC) 4011 / 4111 Series.
 - b. No Substitution Facility Standard.

2.10 AUTOMATIC DOOR OPERATORS - GENERAL

- A. General: Provide operators of size recommended by manufacturer for door size, weight, and movement; for condition of exposure; and for compliance with UL 325. Coordinate operator mechanisms with door operation, hinges, and activation devices.
 - 1. Fire-Rated Doors: Provide door operators for fire-rated door assemblies that comply with NFPA 80 for fire-rated door components and are listed and labeled by a qualified testing agency.
- B. Electrohydraulic Door Operators: Self-contained low-pressure units with rack and pinion design contained within a cast aluminum housing. Door closing speed controlled by independent hydraulic adjustment valves in the sweep and latch range of the closing cycle. Operator is to provide conventional door closer opening and closing forces unless the power operator motor is activated. Unit is to include an adjustable hydraulic backcheck valve to cushion the door speed if opened violently. Non-handed units for both push and pull side applications.
- C. Brackets and Reinforcements: Manufacturer's standard, fabricated from aluminum with nonferrous shims for aligning system components.

2.11 LOW ENERGY DOOR OPERATORS (ALTERNATE PRICE NO. 2)

- A. Standard: Certified ANSI/BHMA A156.19.
 - 1. Performance Requirements:
 - a. Opening and Closing Force if Power Fails: Door operator shall provide conventional door closer opening and closing forces unless the power operator motor is activated.
 - b. Entrapment Protection: Not more than 15 lbf required to prevent stopped door from closing or opening.
- B. Configuration: Surface mounted. Door operators to control single swinging and pair of swinging doors.
- C. Operation: Power opening and spring closing operation capable of meeting ANSI A117.1 accessibility guideline. Provide time delay for door to remain open before initiating closing cycle as required by ANSI/BHMA A156.19. When not in automatic mode, door operator to function as manual door closer with fully adjustable opening and closing forces, with or without electrical power.
 - 1. On-off switch to control power to be key switch operated.
- D. Features: Operator units to have full feature adjustments for door opening and closing force and speed, backcheck, motor assist acceleration from 0 to 30 seconds, time delay, vestibule interface delay, obstruction recycle, and hold open time from 0 up to 30 seconds.
 - 1. Provide outputs and relays on board the operator to allow for coordination of exit device latch retraction, electric strikes, magnetic locks, card readers, safety and motion sensors and specified auxiliary contacts.

- E. Acceptable Manufacturer and model:
 - 1. Norton Door Controls 6020 Series.

2.12 ACTIVATION DEVICES

- A. General: Provide activation devices in accordance with ANSI/BHMA A156.19 standard, for condition of exposure indicated and for long term, maintenance free operation under normal traffic load operation. Coordinate activation control with electrified hardware and access control interfaces. Activation switches are standard SPST, with optional DPDT availability.
- B. Push-Plate Switch: Momentary contact door control switch with push-plate actuator.
 - 1. Configuration: Square or round push-plate control switch with single or double gang junction box mounting. Provide narrow profile face plate where indicated for jamb or mullion mounting.
 - a. Mounting Location: As indicated on Drawings.
 - 2. Push-Plate Material: Stainless steel.
 - Message: International symbol of accessibility with "Push (Press) to Open (Operate)" text.
- C. Wireless or Remote Radio-Control Switch: Manufacturer's standard radio control system consisting of header mounted receiver and remote transmitter activation device.
- D. Signage: As required by cited ANSI/BHMA A156.19 standard for the type of operator.
- E. Finishes: Designations used to indicate hardware finishes complying with ANSI/BHMA A156.18, including coordination with traditional U.S. finishes indicated by certain manufacturers for their products.
- F. Provide quality of finish, including thickness of plating or coating (if any), composition, hardness, and other qualities complying with manufacturer's standards, but in no case less than specified by referenced standards for the applicable units of hardware. Units will be sprayed with a combination of waterborne acrylic and polyester powder coat.
- G. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

2.13 ARCHITECTURAL TRIM

- A. Door Protective Trim
 - General: Door protective trim units to be of type and design as specified below or in the Hardware Sets.
 - 2. Size: Fabricate protection plates (kick, armor, or mop) not more than 2" less than door width (LDW) on stop side of single doors and 1" LDW on stop side of pairs of doors, and not more than 1" less than door width on pull side. Coordinate and provide proper width and height as required where conflicting hardware dictates. Height to be as specified in the Hardware Sets.

- 3. Metal Protection Plates: ANSI/BHMA A156.6 certified metal protection plates (kick, armor, or mop), beveled on four edges (B4E), fabricated from the following:
 - a. Stainless Steel: 300 series, 050-inch thick, with countersunk screw holes (CSK).
- Fasteners: Provide manufacturer's designated fastener type as specified in the Hardware Sets.
- 5. Acceptable Manufacturers:
 - a. Any member of Builders Hardware Manufacturers Association (BHMA).

2.14 DOOR STOPS AND HOLDERS

- A. General: Door stops and holders to be of type and design as specified below or in the Hardware Sets.
- B. Door Stops and Bumpers: ANSI/BHMA A156.16, Grade 1 certified door stops and wall bumpers. Provide wall bumpers, either convex or concave types with anchorage as indicated, unless floor or other types of door stops are specified in Hardware Sets. Do not mount floor stops where they will impede traffic. Where floor or wall bumpers are not appropriate, provide overhead type stops and holders.
 - 1. Acceptable Manufacturers:
 - a. Any member of Builders Hardware Manufacturers Association (BHMA).
- C. Overhead Door Stops and Holders: ANSI/BHMA A156.6, Grade 1 certified overhead stops and holders to be surface or concealed types as indicated in Hardware Sets. Track, slide, arm and jamb bracket to be constructed of extruded bronze and shock absorber spring of heavy tempered steel. Provide non-handed design with mounting brackets as required for proper operation and function.
 - 1. Acceptable Manufacturers:
 - a. Any member of Builders Hardware Manufacturers Association (BHMA).

2.15 ARCHITECTURAL SEALS

- A. General: Thresholds, weatherstripping, and gasket seals to be of type and design as specified below or in the Hardware Sets. Provide continuous weatherstrip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated. At exterior applications provide non-corrosive fasteners and elsewhere where indicated.
- B. Smoke Labeled Gasketing: Assemblies complying with NFPA 105 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for smoke control ratings indicated, based on testing according to UL 1784.
 - 1. Provide smoke labeled perimeter gasketing at all smoke labeled openings.

- C. Fire Labeled Gasketing: Assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing according to UL-10C.
 - 1. Provide intumescent seals as indicated to meet UL10C Standard for Positive Pressure Fire Tests of Door Assemblies, and UBC 7-2, Fire Tests of Door Assemblies.
- D. Sound-Rated Gasketing: Assemblies that are listed and labeled by a testing and inspecting agency, for sound ratings indicated, based on testing according to ASTM E 1408.
- E. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer.
- F. Acceptable Manufacturers:
 - 1. Pemko Manufacturing (PE).
 - 2. Reese Enterprises, Inc. (RS).
 - 3. Zero International (ZE).

2.16 ELECTRIC STRIKES

- A. Standard Electric Strikes: Heavy duty, cylindrical and mortise lock electric strikes conforming to ANSI/BHMA A156.31, Grade 1, UL listed for both Burglary Resistance and for use on fire rated door assemblies. Stainless steel construction with dual interlocking plunger design tested to exceed 3000 lbs. of static strength and 350 ft-lbs. of dynamic strength. Strikes tested for a minimum 1 million operating cycles. Provide strikes with 12 or 24 VDC capability and supplied standard as fail-secure unless otherwise specified. Option available for latchbolt and latchbolt strike monitoring indicating both the position of the latchbolt and locked condition of the strike.
 - 1. Acceptable Manufacturers:
 - a. Folger Adam EDC (FO).
 - b. HES (HE).
 - c. Von Duprin (VD).
- B. Surface Mounted Rim Electric Strikes: Surface mounted rim exit device electric strikes conforming to ANSI/BHMA A156.31, Grade 1, and UL Listed for both Burglary Resistance and for use on fire rated door assemblies. Construction includes internally mounted solenoid with two heavy-duty, stainless steel locking mechanisms operating independently to provide tamper resistance. Strikes tested for a minimum of 500,000 operating cycles. Provide strikes with 12 or 24 VDC capability supplied standard as fail-secure unless otherwise specified. Option available for latchbolt and latchbolt strike monitoring indicating both the position of the latchbolt and locked condition of the strike. Strike requires no cutting to the jamb prior to installation.
 - 1. Acceptable Manufacturers:
 - a. HES (HE) 9500/9600 Series.
- C. Provide electric strikes with in-line power controller and surge suppressor by the same manufacturer as the strike with the combined products having a five year warranty.

2.17 ELECTRONIC ACCESSORIES

- A. Door Position Switches: Door position magnetic reed contact switches specifically designed for use in commercial door applications. On recessed models the contact and magnetic housing snap-lock into a 1" diameter hole. Surface mounted models include wide gap distance design complete with armored flex cabling. Provide SPDT, N/O switches with optional Rare Earth Magnet installation on steel doors with flush top channels.
 - 1. Acceptable Manufacturers:
 - a. Securitron (SU) DPS Series.
- B. Switching Power Supplies: Provide UL listed or recognized filtered and regulated power supplies. Provide single, dual, or multi-voltage units as shown in the hardware sets. Units must be expandable up to eight Class 2 power limited outputs. Units must include the capability to incorporate a battery backup option with integral battery charging capability in addition to operating the DC load in event of line voltage failure. Provide the least number of units, at the appropriate amperage level, sufficient to exceed the required total draw for the specified electrified hardware and access control equipment.
 - 1. Acceptable Manufacturers:
 - a. Securitron (SU) AQ Series.

2.18 FABRICATION

A. Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to manufacturers recognized installation standards for application intended.

2.19 FINISHES

- A. Standard: Designations used in the Hardware Sets and elsewhere indicate hardware finishes complying with ANSI/BHMA A156.18, including coordination with traditional U.S. finishes indicated by certain manufacturers for their products.
- B. Provide quality of finish, including thickness of plating or coating (if any), composition, hardness, and other qualities complying with manufacturer's standards, but in no case less than specified by referenced standards for the applicable units of hardware.
- C. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine scheduled openings, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.

B. Notify architect of any discrepancies or conflicts between the door schedule, door types, drawings and scheduled hardware. Proceed only after such discrepancies or conflicts have been resolved in writing.

3.2 PREPARATION

- A. Hollow Metal Doors and Frames: Comply with ANSI/DHI A115 series.
- B. Wood Doors: Comply with ANSI/DHI A115-W series.

3.3 INSTALLATION

- A. Install each item of mechanical and electromechanical hardware and access control equipment to comply with manufacturer's written instructions and according to specifications.
 - 1. Installers are to be trained and certified by the manufacturer on the proper installation and adjustment of fire, life safety, and security products including: hanging devices; locking devices; closing devices; and seals.
- B. Mounting Heights: Mount door hardware units at heights indicated in following applicable publications, unless specifically indicated or required to comply with governing regulations:
 - 1. Exit devices shall be installed at 38 7/16 inches from floor to centerline of push rail.
 - 2. Standard Steel Doors and Frames: DHI's "Recommended Locations for Architectural Hardware for Standard Steel Doors and Frames."
 - Wood Doors: DHI WDHS.3, "Recommended Locations for Architectural Hardware for Wood Flush Doors."
 - 4. Where indicated to comply with accessibility requirements, comply with ANSI A117.1 "Accessibility Guidelines for Buildings and Facilities."
 - 5. Provide blocking in drywall partitions where wall stops or other wall mounted hardware is located.
- C. Retrofitting: Install door hardware to comply with manufacturer's published templates and written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 9 Sections. Do not install surface-mounted items until finishes have been completed on substrates involved.
- D. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 7 Section "Joint Sealants."
- E. Storage: Provide a secure lock up for hardware delivered to the project but not yet installed. Control the handling and installation of hardware items so that the completion of the work will not be delayed by hardware losses before and after installation.

3.4 FIELD QUALITY CONTROL

A. Field Inspection: Supplier will perform a final inspection of installed door hardware and state in report whether work complies with or deviates from requirements, including whether door hardware is properly installed, operating and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

3.6 CLEANING AND PROTECTION

- A. Protect all hardware stored on construction site in a covered and dry place. Protect exposed hardware installed on doors during the construction phase. Install any and all hardware at the latest possible time frame.
- B. Clean adjacent surfaces soiled by door hardware installation.
- Clean operating items as necessary to restore proper finish. and provide final protection and maintain conditions that ensure door hardware is without damage or deterioration at time of owner occupancy.

3.7 DEMONSTRATION

A. Instruct Owner's maintenance personnel to adjust, operate, and maintain mechanical and electromechanical door hardware.

3.8 DOOR HARDWARE SCHEDULE

- A. The hardware sets represent the design intent and direction of the owner and architect. They are a guideline only and should not be considered a detailed hardware schedule.

 Discrepancies, conflicting hardware and missing items should be brought to the attention of the architect with corrections made prior to the bidding process. Omitted items not included in a hardware set should be scheduled with the appropriate additional hardware required for proper application and functionality.
- B. Manufacturer's Abbreviations:
 - 1. MK McKinney
 - 2. PE Pemko
 - 3. RO Rockwood
 - 4. SA Sargent
 - 5. RU Corbin Russwin
 - 6. RF Rixson
 - 7. LC LCN Closers

Hardware Schedule

Hardware Schedule

Set: 12.0

Doors:	C303A

3 Hinge	TA2714 NRP	US26D	MK
1 Mortise Lock (storeroom)	ML2057 LWA LC	626	RU
1 Cylinder	Cylinder as Required		RU
1 Surface Closer	4111 SCUSH 4110-30 4110-61	AL	LC
1 Kickplate	K1050 10" high 4BE	US32D	RO
1 Smoke Seal	S88D (Head & Jambs)		PΕ

Set: 26.0

Doors: J142A

3 Hinge (heavy weight)	T4A3786 NRP	US26D	MK
1 Exit Device	12 19 NB8715 ETL	US32D	SA
1 Surface Closer	4111 EDA	AL	LC
1 Kickplate	K1050 10" high 4BE	US32D	RO
1 Door Stop	400	US26D	RO
1 Smoke Seal	S88D (Head & Jambs)		PE
1 Astragal	S771D		PΕ

Set: 27.0

Doors: C211

3 Hinge (heavy weight)	T4A3786 NRP	US26D	MK
1 Exit Device	12 19 8813 ETL	US32D	SA
1 Cylinder	Cylinder as Required		RU
1 Surface Closer	4111 EDA	AL	LC
1 Kickplate	K1050 10" high 4BE	US32D	RO
1 Door Stop	400	US26D	RO
1 Smoke Seal	S88D (Head & Jambs)		PΕ

Set: 28.0

Doo	rs:	F21	3
	· •		v

6 Hinge	TA2714	US26D	MK
1 Dust Proof Strike	570	US26D	RO
1 Set Flush Bolt	2945	US26D	RO
1 Mortise Lock (storeroom)	ML2057 LWA LC	626	RU
1 Cylinder	Cylinder as Required		RU
2 Surface Overhead Holder/Stop	9ADJ-026	630	RF
2 Kickplate	K1050 10" high 4BE	US32D	RO

Set: 29.0

Doors: F214

NRP US26D	MK
4 ETL US32D	SA
r as Required	RU
DA AL	LC
10" high 4BE US32D	RO
US26D	RO
	4 NRP US26D 4 ETL US32D er as Required DA AL 10" high 4BE US32D US26D

Set: 30.0

Doors: C303

3 Hinge	TA2714 NRP	US26D	MK
1 Mortise Lock (classroom)	ML2055 LWA LC	626	RU
1 Cylinder	Cylinder as Required		RU
1 Surface Closer	4111 EDA	AL	LC
1 Kickplate	K1050 10" high 4BE	US32D	RO
1 Door Stop	400	US26D	RO
1 Smoke Seal	S88D (Head & Jambs)		PE

^{**}END OF SECTION**

LOUVERS AND VENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS:

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

1.2 DESCRIPTION OF WORK:

- A. Extent of louvers and vents is indicated on drawings, including indications of sizes and locations.
- B. Types of louvers and vents include the following:
 - Extruded aluminum louvers
- C. Related Sections: The following Sections contain requirements that relate to this Section:
 - 1. Division 7 Section "Joint Sealants" for sealants.
 - 2. Division 15 for air-handling louvers connected to ductwork.

1.3 QUALITY ASSURANCE:

- A. Comply with SMACNA "Architectural Sheet Metal Manual" recommendations for fabrication, construction details and installation procedures, except as otherwise indicated.
- B. Field measurements: Verify size, location and placement of louver units prior to fabrication, wherever possible.
- C. Shop Assembly: Coordinate field measurements and shop drawings with fabrication and shop assembly to minimize field adjustments, splicing, mechanical joints and field assembly of units. Pre-assemble units in shop to greatest extent possible and disassemble as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.

1.4 SUBMITTALS:

- A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.
 - Substitutions for products as specified MUST be submitted in accordance with Division 1 Substitute products not submitted in accordance with Division 1 Section "Product Requirements" will NOT be considered.
- B. Product Data: Submit manufacturer's specifications; certified test data, where applicable; and installation instructions for required products, including finishes.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS:

A. Manufacturer: Subject to compliance with requirements, provide products equal to Ruskin Manufacturing Co. No. ELF 15J Thin line stationary louver, flange mount

- 1. The Airolite Co.
- 2. American Warming and Ventilating Co.
- 3. Construction Specialties, Inc.

2.2 MATERIALS:

- A. Aluminum Sheet: ASTM B 209, Alloy 3003 or 5005 with temper as required for forming, or as otherwise recommended by metal producer to provide required finish.
- B. Aluminum Extrusions: ASTM B 221, Alloy 6063-T52.
- C. Fastenings: Use same material as items fastened, unless otherwise indicated. Fasteners for exterior applications may be hot-dip galvanized, stainless steel or aluminum. Provide types, gages and lengths to suit unit installation conditions. Use Phillips flat-head machine screws for exposed fasteners, unless otherwise indicated.
- D. Anchors and Inserts: Use non-ferrous metal or hot-dip galvanized anchors and inserts for exterior installations and elsewhere as required for corrosion resistance. Use steel or lead expansion bolt devices for drilled-in-place anchors. Furnish inserts, as required, to be set into concrete or masonry work.
- E. Bituminous Paint: SSPC-Paint 12 (cold-applied asphalt mastic).

2.3 FABRICATION, GENERAL:

- A. Provide louvers and accessories of design, materials, sizes, depth, arrangement, and metal thicknesses indicated, or if not indicated, as required for optimum performance with respect to airflow; water penetration; air leakage, where applicable (for adjustable units, if any); strength; durability; and uniform appearance.
- B. Fabricate frames including integral sills to suit adjacent construction with tolerances for installation, including application of sealants in joints between louvers and adjoining work.
- C. Include supports, anchorages, and accessories required for complete assembly.
- D. Join frame members to one another and to stationary louver blades by welding, except where indicated otherwise or where field bolted connections between frame members are made necessary by size of louvers. Maintain equal blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.

2.4 STATIONARY EXTRUDED ALUMINUM WALL LOUVERS:

- A. Horizontal Blade Louvers: Size and depth indicated, with blades of profile, slope and spacing indicated, or if not indicated, to meet performance requirements.
 - 1. Extrusion Thickness: Not less than 0.080" for blades and frames.
 - Continuous Horizontal Blades: Conceal supporting framework from vision on outside face of louver by placing braces, mullions and brackets on inside face; with close fitting, field-made splice joints in blades designed to permit expansion and contraction without deforming blades or framework.
 - a. Exterior Corners: Shop miter and weld blades into prefabricated corner units to align with straight sections. Include concealed bracing.
 - b. Aluminum: Not less than 14 gage.

2.5 LOUVER SCREENS

- A. General: Provide louvers with screens at locations indicated.
 - 1. Screen Location for Fixed Louvers: Interior face, unless otherwise indicated.
 - 2. Screening Type: Bird screening, unless otherwise indicated.
- B. Secure screens to louver frames with stainless steel machine screws, spaced at each corner and at 12 inch o.c. between.
- C. Louver Screen Frames: Fabricate screen frames with mitered corners to louver sizes indicated and to comply with the following requirements:
 - Metal: Same kind and form of metal as indicated for louver frames to which screens are attached.
 - a. Reinforce extruded aluminum screen frames at corners with clips.
 - b. Finish: Same finish as louver frames to which louver screens are attached.
 - c. Type: Non-rewireable U-shaped frames for permanently securing screen mesh.
- D. Louver Screening for Aluminum Louvers: Fit aluminum louver screen frames with screening covering louver openings and complying with the following requirements:
 - 1. Bird Screening: 1/2 inch square mesh formed with 0.063 inch diameter aluminum wire.

2.6 BLANK-OFF PANELS

- A. General: Fabricate blank-off panels from materials and to sizes indicated and to comply with the following requirements:
 - 1. Finish: Match finish applied to louver with respect to coating type, except for color which shall be as follows:
 - a. Black.
 - 2. Attach blank-off panels to back of louver frames with stainless steel sheet metal screws.
- B. Insulated Blank-Off Panels: Laminated metal-faced panels consisting of insulating core surfaced on back and front with metal sheets; complying with the following requirements:
 - 1. Thickness: 1 inch.
 - 2. Metal Facing Sheets: Aluminum sheet, 0.032 inch thick.
 - 3. Insulating Core: Extruded polystyrene insulation board insulation complying with ASTM C 578, Type VII (2.2 lb/cu. ft. density).
 - 4. Edge Treatment: Trim perimeter edges of blank-off panels with louver manufacturer's standard extruded aluminum channel frames 0.081 inch thick, with corners mitered and with same finish as panels.
 - 5. Seal perimeter joints between panel faces and louver frames with polyvinyl chloride compression gaskets, 1/8 inch by 1 inch.

2.7 METAL FINISHES:

- A. GENERAL: Comply with NAAMM "Metal Finishes Manual" for finish designations and application recommendations, except as otherwise indicated. Apply finishes in factory after products are assembled. Protect finishes on exposed surfaces with protective covering, prior to shipment. Remove scratches and blemishes from exposed surfaces which will be visible after completing finishing process.
 - 1. Provide custom color as selected by Architect.

B. Aluminum Finishes:

- High-Performance Coating: AA-C12C42R1x (cleaned with inhibitive chemicals, conversion coated with an acid-chromate-fluoride phosphate treatment and painted with organic coating specified below). Apply where high-performance coating is indicated in strict compliance with coating and resin manufacturer's instructions using a licensed applicator.
 - a. Fluorocarbon Coating: Inhibitive thermo-cured primer, 0.2 mil minimum dry film thickness, and thermo-cured fluorocarbon coating containing "Kynar 500" resin, 1.0 mil minimum dry film thickness.

PART 3 - EXECUTION

3.1 PREPARATION:

A. Coordinate setting drawings, diagrams, templates, instructions and directions for installation of anchorages which are to be embedded in concrete or masonry construction. Coordinate delivery of such items to project site.

3.2 INSTALLATION:

- A. Locate and place louver units plumb, level and in proper alignment with adjacent work.
- B. Use concealed anchorages wherever possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.
- C. Repair finishes damaged by cutting, welding, soldering and grinding operations required for fitting and jointing. Restore finishes so there is no evidence of corrective work. Return items which cannot be refinished in field to shop, make required alterations, and refinish entire unit, or provide new units, at Contractor's option.
- D. Protect galvanized and non-ferrous metal surfaces from corrosion or galvanic action by application of a heavy coating of bituminous paint on surfaces which will be in contact with concrete, masonry or dissimilar metals.
- E. Refer to Division-7 sections for sealants in connection with installations of louvers.

END OF SECTION

GYPSUM VENEER PLASTER

PART 1 - GENERAL

1.1 RELATED SECTIONS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Non-load-bearing steel framing members for veneer plaster assemblies.
 - 2. Veneer plastering over gypsum base.
- B. Related Sections: The following Sections contain requirements that relate to this Section:
 - 1. Division 6 Section "Rough Carpentry" for wood framing and furring.
 - Division 9 Section "Painting" for painting.

1.3 DEFINITIONS

A. Gypsum Board Construction Terminology: Refer to ASTM C 11 and GA 505 for definitions of terms for gypsum board construction not otherwise defined in this Section or other referenced standards.

1.4 SUBMITTALS

- A. General: Submit the following according to the Conditions of the Contract and Division 1 Specification Sections.
- B. Product data for each type of product specified.
- C. Samples of joint tape and each type of accessory in 12-inch lengths.
- D. Product certificates signed by manufacturers of veneer plaster components certifying that their products comply with specified requirements.

1.5 QUALITY ASSURANCE

- A. Single-Source Responsibility for Steel Framing: Obtain steel framing members for veneer plaster assemblies from a single manufacturer.
- B. Single-Source Responsibility: Obtain veneer plaster products (gypsum base, joint reinforcing, and veneer plaster) from a single manufacturer for each veneer plaster assembly indicated.
- C. Field Samples: Prior to beginning installation, apply veneer plaster on actual wall surfaces in a designated location as indicated below:
 - Notify Architect one (1) week in advance of the dates and times when field samples will be erected.

- 2. Cover an entire area between breaks using materials and methods proposed for production work.
- 3. Modify field sample or apply additional samples as required to obtain Architect's acceptance. Simulate finished lighting conditions for reviewing field samples.
- 4. Retain and maintain field samples during construction in an undisturbed condition as a standard for judging the completed unit of Work.
- 5. Accepted field samples in an undisturbed condition at time of Substantial Completion may become a part of the completed unit of Work.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials in original packages, containers, or bundles bearing brand name and identification of manufacturer or supplier.
- B. Store materials inside, under cover, and keep them dry and protected against damage from weather, direct sunlight, surface contamination, corrosion, construction traffic, or other causes. Neatly stack gypsum base flat to prevent sagging.
- C. Handle gypsum base to prevent damage to edges, ends, and surfaces. Do not bend or otherwise damage metal corner beads and trim.

1.7 PROJECT CONDITIONS

- A. Environmental Conditions, General: Establish and maintain environmental conditions for application of veneer plaster to comply with ASTM C 843 and with veneer plaster manufacturer's recommendations.
- B. Room Temperatures: For non-adhesive attachment of gypsum board to framing, maintain not less than 40 F (4 C). For adhesive attachment of gypsum base and application of veneer plaster, maintain not less than 50 F (10 C) nor more than 80 F (27 C) for one week prior to application and continuously after until veneer plaster has fully dried. Distribute heat evenly; prevent concentrated or uneven heat on veneer plaster near heat source.
- C. Ventilate building spaces to remove water not required for hydrating veneer plaster materials. Avoid conditions that result in veneer plaster drying too rapidly.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturer: Subject to compliance with requirements, provide products by one of the following:
 - 1. Steel Framing and Furring:
 - a. Clark Steel Framing.
 - b. Consolidated Systems, Inc.
 - c. Dale Industries, Inc.
 - d. Dietrich Industries, Inc.
 - e. Marino Industries Corp.
 - f. Gold Bond Building Products Div., National Gypsum Company.
 - g. Unimast Inc.

- Veneer Plaster Products:
 - a. Domtar Gypsum.
 - b. Georgia-Pacific Corp.
 - c. Gold Bond Building Products Div., National Gypsum Company.
 - d. United States Gypsum Company.

2.2 STEEL FRAMING FOR WALLS AND PARTITIONS

- A. General: Provide steel framing members complying with the following requirements:
 - 1. Component Sizes and Spacings: As indicated but not less than that required to comply with the following maximum deflection and lateral loading conditions:
 - a. Maximum Deflection: L/360 at 5 lbf per sq. ft.
 - 2. Protective Coating: Manufacturer's standard corrosion-resistant coating.
- B. Steel Studs and Runners: ASTM C 645, with flange edges of studs bent back 90° and doubled over to form 3/16-inch-wide minimum lip (return) and complying with the following requirements for minimum thickness of (uncoated) base metal and for depth:
 - 1. Thickness: As indicated.
 - 2. Depth: As indicated.
- C. Fasteners for Metal Framing: Provide fasteners of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel framing and furring members securely to substrates involved, complying with the recommendations of gypsum board manufacturers for applications indicated.

2.3 GYPSUM BOARD PRODUCTS

- A. General: Provide gypsum board of type indicated in maximum lengths available to minimize butt joints.
- B. Gypsum Base for Veneer Plaster: ASTM C 588, of types and thicknesses indicated below, with square or tapered long edges as standard with manufacturer, and as follows:
 - 1. Type: Regular where indicated.
 - 2. Thickness: As indicated.
- C. Products: Subject to compliance with requirements, provide one of the following products:
 - 1. Regular Type Gypsum Base:
 - a. Gyproc Veneer Plaster Base; Domtar Gypsum.
 - b. Dens-Cote Plaster Base; Georgia-Pacific Corp.
 - c. Kal-Kore Regular; Gold Bond Building Products Div., National Gypsum Company.
 - d. IMPERIAL Gypsum Base; United States Gypsum Company.

2.4 ACCESSORIES

- A. Standard Accessories: Corner beads, edge trim, and control joints complying with ASTM C 1047 and requirements indicated below:
 - 1. Material: Formed metal, plastic, or metal combined with paper, with metal complying with the following requirement:
 - a. Sheet steel zinc-coated by hot-dip process.
 - 2. Shapes indicated below by reference to Figure 1 designations in ASTM C 1047:
 - a. Cornerbead on outside corners, unless otherwise indicated.
 - b. LC-bead with both face and back flanges; face flange formed to receive joint compound. Use LC-beads for edge trim unless otherwise indicated.
 - c. L-bead with face flange only; face flange formed to receive joint compound. Use L-bead where indicated.
 - d. One-piece control joint formed with V-shaped slot, with removable strip covering slot opening.

2.5 JOINT REINFORCING MATERIALS

- A. General: Provide joint reinforcing materials complying with joint strength requirements of ASTM C 587 and the recommendations of veneer plaster manufacturer for application indicated.
- B. Joint Tape: Paper.
- C. Embedding Material for Gypsum Base Joint Tape: As recommended by veneer plaster manufacturer for use with joint tape material indicated.
- D. Products: Subject to compliance with requirements, provide one of the following:
 - 1. Paper Joint Tape:
 - G-P Tape; Georgia-Pacific Corp.
 - b. Gold Bond Paper Tape; Gold Bond Building Products Div., National Gypsum Company.
 - c. SHEETROCK Joint Tape; United States Gypsum Company.
 - 2. Embedding Material for Paper Joint Tape:
 - a. Gyproc 90; Domtar Gypsum.
 - b. G-P Speed Set Joint Compound; Georgia Pacific Corp.
 - c. Kal-Kote Base Plaster; Gold Bond Building Products Div., National Gypsum Company.
 - d. SHEETROCK Setting-Type (DURABOND) Joint Compound; United States Gypsum Company.

2.6 VENEER PLASTER MATERIALS

A. Two-Component High-Strength Veneer Plaster: Separate ready-mixed veneer plaster formulations complying with ASTM C 587: one for base coat and the other for finish coat, each containing mill-mixed fine silica sand and having a compressive strength of 3,000 psi per ASTM C 472; for application over the following:

- 1. Substrate: Gypsum base.
- B. Products: Subject to compliance with requirements, provide one of the following:
 - 1. Two-Component High-Strength Veneer Plaster:
 - a. Base Coat: IMPERIAL Basecoat.b. Finish Coat: IMPERIAL Finish.

2.7 ACOUSTICAL SEALANT

- A. Acoustical Sealant for Exposed and Concealed Joints: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834 and the following requirements:
 - 1. Product is effective in reducing airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies per ASTM E 90.
- B. Products: Subject to compliance with requirements, provide one of the following:
 - 1. Acoustical Sealant for Exposed and Concealed Joints:
 - a. AC-20 FTR Acoustical and Insulation Sealant; Pecora Corp.
 - b. SHEETROCK Acoustical Sealant; United States Gypsum Company.

2.8 MISCELLANEOUS MATERIALS

- A. General: Provide auxiliary materials for veneer plaster construction that comply with referenced standards and the recommendations of veneer plaster manufacturer.
- B. Bonding Compound for Interior Plastering: ASTM C 631.
- C. Spot Grout: ASTM C 475, setting-type joint compound of type recommended for spot grouting hollow metal door frames.
- D. Steel drill screws complying with ASTM C 1002 for the following applications:
 - Fastening gypsum board to steel members less than 0.03 inch thick.
- E. Steel drill screws complying with ASTM C 954 for fastening gypsum board to steel members from 0.033 to 0.112 inch thick.
- F. Gypsum Board Nails: ASTM C 514.

2.9 VENEER PLASTER MIXES

A. Mechanically mix veneer plaster materials to comply with referenced veneer plaster application standard and with recommendations of veneer plaster manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Substrates: With Installer present, examine substrates to which veneer plaster assemblies attach or abut including installed hollow metal frames, cast-in anchors, and structural framing

for compliance with requirements for installation tolerances and other conditions affecting performance of assemblies specified in this Section. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Protect adjoining surfaces and equipment from overspray, fallout, and dusting-off of sprayed plaster. Mask or cover surfaces that are not indicated to receive plaster.

3.3 INSTALLING STEEL FRAMING, GENERAL

- A. Steel Framing Installation Standard: Install steel framing to comply with ASTM C 754 and with ASTM C 844 requirements that apply to framing installation.
- B. Install supplementary framing, blocking and bracing at terminations in veneer plaster assemblies to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction. Comply with details indicated and with recommendations of veneer plaster manufacturer, or if none available, with "Gypsum Construction Handbook" published by United States Gypsum Company.
- C. Isolate steel framing from building structure at locations indicated to prevent transfer of loading imposed by structural movement. Comply with details shown on Drawings.
 - 1. Where partition framing and wall furring abut structure except at floor.
- D. Do not bridge building expansion and control joints with steel framing or furring members. Independently frame both sides of joints with framing or furring members as indicated.

3.4 INSTALLING STEEL FRAMING FOR WALLS AND PARTITIONS

- A. Install runners (tracks) at floors, where veneer plaster stud system abuts other construction.
- B. Installation Tolerances: Install each steel framing and furring member so that fastening surfaces do not vary more than 1/8 inch from plane of faces of adjacent framing.
- C. Install steel studs and furring in sizes and at spacings indicated but not less than that required by the referenced steel framing installation standard to comply with maximum deflection and minimum loading requirements specified.
 - 1. For Single-Layer Construction: 16 inches o.c.
 - 2. For Single- and Double-Layer Construction: 24 inches o.c.
- D. Install steel studs so that flanges point in the same direction and so that leading edges or ends of each gypsum base panel can be attached to open (unsupported) edges of stud flanges first.
- E. Frame door openings to comply with details indicated, with GA-219 and with applicable published recommendations of veneer plaster manufacturer. Attach vertical studs at jambs with screws either directly to frames or to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
- F. Frame openings other than door openings to comply with details indicated, or if none indicated, in same manner as required for door openings; and install framing below sills of openings to match framing required above door heads.

3.5 APPLYING GYPSUM BASE, GENERAL

- A. Gypsum Base Application Standard: Comply with ASTM C 844.
- B. Erection Tolerance: No more than 1/16-inch offsets between planes of gypsum base faces, and 1/8 inch in 8 feet for plumb, level, warp and bow.
- C. Install gypsum base for walls/partitions in manner to minimize the number of end-butt joints or avoid them entirely where possible. At high walls, install gypsum base horizontally with end abutting joints staggered over studs.
- D. Install gypsum base with face side out. Do not install imperfect, damaged, or damp panels. Butt panels together for a light contact at edges and ends with not more than 1/16-inch open space between panels. Do not force into place.
- E. Locate both edge or end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Position adjoining panels so that tapered edges abut tapered edges, and field-cut edges abut field-cut edges and ends. Do not place tapered edges against cut edges or ends. Stagger vertical joints over different studs on opposite sides of partitions. Avoid joints at corners of framed openings where possible.
- F. Attach gypsum base to steel studs so that leading edge or end of each panel is attached to open (unsupported) edge of stud flange first.
- G. Attach gypsum base to framing and blocking provided at openings and cutouts.
- H. Spot-grout hollow metal door frames for solid core wood doors, hollow metal doors, and doors over 32 inches wide. Apply spot grout at each jamb anchor clip just before inserting gypsum base into frame.
- I. Form control and expansion joints at locations indicated, with space between edges of adjoining gypsum base and at supporting framing behind gypsum on both sides of joints.
- J. Isolate perimeter of non-load-bearing veneer plaster partitions at structural abutments, except floors, as detailed. Provide ¼-inch to ½-inch space and trim edges of gypsum base with metal edge trim where they are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
- K. Space fasteners in gypsum base according to referenced gypsum base application standard, manufacturer's recommendations, and fire-resistance rating requirements.

3.6 GYPSUM BASE APPLICATION METHODS

- A. Single-Layer Application: Install gypsum base as follows:
 - 1. On partitions/walls apply gypsum base vertically (parallel to framing), unless otherwise indicated, and provide panel lengths that minimize end joints.
 - 2. On partitions/walls, apply gypsum base panels horizontally (perpendicular to framing), unless parallel application is required for fire-resistance-rated assemblies. Use maximum-length panels to minimize end joints.

- B. Single-Layer Fastening Methods: Apply gypsum boards to supports as follows:
 - 1. Fasten with screws.

3.7 INSTALLING ACCESSORIES

- A. General: For accessories with back flanges, fasten to framing with the same fasteners used to fasten gypsum base. Otherwise, fasten accessories according to accessory manufacturer's directions for type, length, and spacing of fasteners.
- B. Install corner beads at external corners.
- C. Install metal edge trim where edges of gypsum base would otherwise be exposed or semiexposed. Provide edge trim type with face flange formed to receive veneer plaster except where other types are indicated.
 - 1. Install LC-bead where gypsum base panels are tightly abutted to other construction and back flange can be attached to framing or supporting substrate.
 - Install L-bead where edge trims can only be installed after gypsum base panels are installed.
 - 3. Install aluminum edge trim and other accessories where indicated.
- D. Install control joints at locations indicated, and where not indicated according to ASTM C 844, and in locations approved by Architect for visual effect.

3.8 INSTALLING JOINT REINFORCEMENT

A. Reinforce interior angles and flat joints in gypsum base panels with joint tape and embedding material, with or without using staples, to comply with ASTM C 843 and with veneer plaster manufacturer's recommendations. Do not use staples alone.

3.9 VENEER PLASTERING

- A. Gypsum Veneer Plaster Application Standard: Apply gypsum veneer plaster to comply with ASTM C 843 and veneer plaster manufacturer's directions.
- B. Grout frames solidly and continuously where indicated or required for fire-resistance ratings; otherwise spot-grout at each anchorage point by encasement of anchor devices in plaster grout.
- C. Concealed Surfaces: Omit veneer plaster in the following areas where plaster will be concealed from view in completed Work, but do not omit veneer plaster behind cabinets, furniture, furnishings and similar removable items:
 - 1. Above suspended ceilings.
 - 2. Behind or under wood paneling and under other permanently applied wall or ceiling finishes.
- D. Provide smooth-trowelled finish, unless otherwise indicated.
- E. Abutment: Where veneer plaster abuts metal door frames, windows, and other units in the veneer plaster, groove finish coat to eliminate spalling.

3.10 CLEANING AND PROTECTION

- A. Remove temporary coverings used to protect other work.
- B. Remove plaster spillage promptly from door frames, windows, and other adjoining work. Repair surfaces damaged by plastering work.
- C. After completing veneer plastering provide protection and maintain conditions in a manner suitable to Installer that ensures veneer plaster is without damage or deterioration at the time of Substantial Completion.

END OF SECTION

GYPSUM WALLBOARD ASSEMBLIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary and Supplementary Conditions and Division 01 Specification Sections, apply to work of this section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Interior gypsum wallboard.
 - 2. Tile backing panels.
 - 3. Non-load-bearing steel framing.
- B. Related Sections include the following:
 - Division 05 Section "Cold-Formed Metal Framing" for load-bearing steel framing.
 - 2. Division 06 Section "Rough Carpentry" for wood framing and furring, exterior gypsum sheathing, and air infiltration barriers.
 - 3. Division 07 Section "Building Insulation" for insulation and vapor retarders installed in gypsum board assemblies.
 - 4. Division 07 Section "Interior/Exterior Finish System" for interior/exterior finish system.
 - 5. Division 09 Section "Painting" for painting.

1.3 DEFINITIONS

A. Gypsum Board Terminology: Refer to ASTM C 11 for definitions of terms for gypsum board assemblies not defined in this Section or in other referenced standards.

1.4 SYSTEM DESCRIPTION

- A. In order to be acceptable, the appearance of all exposed wallboard surfaces in finished locations, after painting, shall be equivalent, in the judgment of the Architect, to the appearance of painted putty coat plaster surfaces and as follows:
 - 1. The finish shall be equal to a Level 4 Finish as described in the current edition of the "Gypsum Construction Handbook" of the United States Gypsum Company.
- B. Structural performance of fire rated shaft-wall assemblies:
 - Provide gypsum board shaft-wall assemblies capable of withstanding the full airpressure loads indicated for maximum heights of partitions without failing and while
 maintaining an airtight and smoke-tight seal. Evidence of failure includes deflections
 exceeding limits indicated, bending stresses causing studs to break or to distort, and
 end-reaction shear causing track (runners) to bend or to shear and studs to become
 crippled.

2. Provide gypsum board shaft-wall assemblies for horizontal duct enclosures capable of spanning distances indicated within deflection limits indicated.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Coordination Drawings: Lay-out drawings indicating proposed location of all control joints in metal-framed gypsum board partitions, walls, ceilings, bulkheads, fasciae and soffits. Coordination drawings for this purpose may be annotated copies of Construction Documents architectural floor plans, reflected ceiling plans and interior elevations. Submit prior to commencement of framing installation.

1.6 QUALITY ASSURANCE

- A. Comply with the provisions and recommendations of the United States Gypsum Company "Gypsum Construction Handbook" (current edition) except where otherwise specified.
- B. Single-Source Responsibility: Obtain each type of gypsum board and related joint treatment materials from a single manufacturer.
- C. Fire-Test-Response Characteristics: For gypsum board assemblies with fire-resistance ratings and fire rated shaft-wall assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing and inspecting agency acceptable to authorities having jurisdiction.
 - 1. Fire-Resistance-Rated Assemblies: Indicated by design designations from UL's "Fire Resistance Directory," GA-600, "Fire Resistance Design Manual," or of other testing agency acceptable to authorities having jurisdiction.
- D. Sound Transmission Characteristics: For gypsum board assemblies and fire rated shaft-wall assemblies with STC ratings, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by a qualified independent testing agency.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials in original packages, containers, or bundles bearing brand name and identification of manufacturer or supplier.
- B. Store materials inside under cover and keep them dry and protected against damage from weather, direct sunlight, surface contamination, corrosion, construction traffic, and other causes. Stack gypsum panels flat to prevent sagging.
- C. Handle gypsum boards to prevent damage to edges, ends and surfaces. Do not bend or otherwise damage metal corner beads and trim.

1.8 PROJECT CONDITIONS

- A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written recommendations, whichever are more stringent.
- B. Minimum Room Temperatures: For non-adhesive attachment of gypsum board to framing, maintain not less than 40°F (4°C). For adhesive attachment and finishing of gypsum board maintain not less than 50°F (10°C) for 48 hours prior to application and continuously thereafter until drying is complete.

C. Ventilate building spaces to remove water not required for drying joint treatment materials. Avoid drafts during dry, hot weather to prevent materials from drying too rapidly.

1.9 SCAFFOLDING

- A. Provide necessary scaffolding and staging required for proper execution of wallboard work.
- B. Allow access and use of scaffolding by other trades whose work must be coordinated with wallboard work at no additional cost or back-charge and during regular working hours.

1.10 COORDINATION

- A. Make detailed inspection of all areas and surfaces to be covered.
- B. Verify dimensions, details, partition schedule and relationship to other work.
- C. Observe benchmarks and thickness of materials. Where diffusers or other accessories are mis-located notify installing trade with copy to the Architect.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply for product selection:
 - Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 STEEL PARTITION AND SOFFIT FRAMING

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Steel Framing and Furring:
 - a. ClarkDietrich Building Systems.
 - b. Marino\Ware.
 - c. Steel Stud Solutions, LLC.
 - d. MBA Metal Framing.
- B. Components, General: As follows:
 - 1. Comply with ASTM C 754 for conditions indicated.
 - 2. Steel Sheet Components: Complying with ASTM C 645 requirements for metal and with ASTM A 653/A 653M, G60 (Z180), hot-dip galvanized zinc coating.
- C. Steel Studs and Runners: ASTM C 645.
 - 1. Minimum Base Metal Thickness: 0.0454 inch (1.15 mm).
 - 2. Depth: As indicated.

- D. Deep-Leg Deflection Track: ASTM C 645 top runner with 2-inch- (50.8-mm-) deep flanges.
- E. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.
 - 1. Minimum Base Metal Thickness: 0.0312 inch (0.79 mm).
- F. Hat-Shaped, Rigid Furring Channels: ASTM C 645.
 - 1. Minimum Base Metal Thickness: 0.0312 inch (0.79 mm).
 - 2. Depth: As indicated.
- G. Resilient Furring Channels: 1/2-inch- (12.7-mm-) deep, steel sheet members designed to reduce sound transmission.
 - 1. Configuration: Asymmetrical, with face attached to single flange by a slotted leg (web).
 - a. Product: U.S. Gypsum No. RC-1 or equal.
- H. Z-Shaped Furring: With slotted or nonslotted web, face flange of 1-1/4 inches (31.8 mm), wall attachment flange of 7/8 inch (22.2 mm), minimum bare metal thickness of 0.0179 inch (0.45 mm), and depth required to fit insulation thickness indicated.
- I. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

2.3 STEEL SUSPENDED CEILING AND SOFFIT FRAMING

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Steel Framing and Furring:
 - a. Clark Steel Framing Systems.
 - b. Dale Industries, Inc. Dale/Incor.
 - c. Dietrich Industries, Inc.
 - d. National Gypsum Company.
 - e. Unimast, Inc.
 - f. Western Metal Lath & Steel Framing Systems.
- B. Components, General: Comply with ASTM C 754 for conditions indicated.
- C. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.0625-inch- (1.59-mm-) diameter wire, or double strand of 0.0475-inch- (1.21-mm-) diameter wire.
- D. Hanger Attachments to Concrete: As follows:
 - Anchors: Fabricated from corrosion-resistant materials with holes or loops for attaching hanger wires and capable of sustaining, without failure, a load equal to 5 times that imposed by construction as determined by testing according to ASTM E 488 by a qualified independent testing agency.
 - a. Type: Cast-in-place anchor, designed for attachment to concrete forms, postinstalled, chemical anchor, or postinstalled, expansion anchor.

- Powder-Actuated Fasteners: Suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other devices for attaching hangers of type indicated, and capable of sustaining, without failure, a load equal to 10 times that imposed by construction as determined by testing according to ASTM E 1190 by a qualified independent testing agency.
- E. Hangers: As follows:
 - 1. Wire Hangers: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.162-inch (4.12-mm) diameter.
- F. Carrying Channels: Cold-rolled, commercial-steel sheet with a base metal thickness of 0.0538 inch (1.37 mm), a minimum 1/2-inch- (12.7-mm-) wide flange, with ASTM A 653/A 653M, G60 (Z180), hot-dip galvanized zinc coating.
 - 1. Depth: Minimum 2 inches (50.8 mm) unless otherwise indicated.
- G. Furring Channels (Furring Members): Commercial-steel sheet with ASTM A 653/A 653M, G60 (Z180), hot-dip galvanized zinc coating.
 - 1. Hat-Shaped, Rigid Furring Channels: ASTM C 645, 7/8 inch (22.2 mm) deep.
 - a. Minimum Base Metal Thickness: 0.0312 inch (0.79 mm).
 - 2. Resilient Furring Channels: 1/2-inch- (12.7-mm-) deep members designed to reduce sound transmission.
 - a. Configuration: Asymmetrical or hat shaped, with face attached to single flange by a slotted leg (web) or attached to two flanges by slotted or expanded metal legs.

2.4 WALLBOARD

- A. Panel Size: Provide in maximum lengths and widths available that will minimize joints in each area and correspond with support system indicated.
- B. Gypsum Wallboard: Gypsum core wall panel surfaced with a natural-finish face paper on front and a liner paper on back. Comply with ASTM C36 and the following:
 - 1. Type X:
 - a. Thickness: 5/8 inch (15.9 mm).
 - b. Long Edges: Tapered.
 - c. Location: As indicated and where required for fire-resistance-rated assembly.
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed., ProRoc products.
 - b. Georgia-Pacific Corp., ToughRock Gypsum Board products.
 - c. National Gypsum Company, Gold Bond Brand products.
 - d. United States Gypsum Co., Sheetrock Brand Gypsum products.

2.5 TILE BACKING PANELS

A. Panel Size: Provide in maximum lengths and widths available that will minimize joints in each area and correspond with support system indicated.

- B. Cementitious Backer Units (Cement Board): ANSI A118.9.
 - Thickness: As indicated.
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. National Gypsum Co., PermaBase Cement Board.
 - b. United States Gypsum Co., Durock Cement Board

2.6 TRIM ACCESSORIES

- A. Interior Trim: ASTM C 1047.
 - 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc.
 - 2. Shapes:
 - a. Cornerbead: Use at outside corners.
 - 1) Product: U.S. Gypsum No. 103 Dur-A-Bead or equal.
 - b. LC-Bead (Casing Bead): J-shaped; exposed long flange receives joint compound; use at exposed panel edges and where indicated.
 - 1) Product: U.S. Gypsum No. 200-A Metal Trim or equal.
 - L-Bead (Casing Bead): L-shaped; exposed long leg receives joint compound; use where indicated.
 - 1) Product: U.S. Gypsum No. 200-B Metal Trim or equal.
 - d. Control Joint: Use at control joint locations in walls, ceilings, bulkheads, fasciae and soffits:
 - e.
- 1) Product: U.S. Gypsum No. 093 Control Joint, or equal.
- Back to back casing beads may be used in lieu of prefabricated control joint trim. Provide backer and sealant to finish opening between beads as with materials appropriate to conditions of installation.
- f. Curved-Edge Cornerbead: With notched or flexible flanges for use at curved openings.
 - 1) Product: U.S. Gypsum Sheetrock Flexible Metal Corner Tape or equal.

2.7 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C 475.
- B. Joint Tape:
 - 1. Interior Gypsum Wallboard: Paper.
 - 2. Tile Backing Panels: As recommended by panel manufacturer.
- C. Joint Compound for Gypsum Wallboard: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.

- 1. Prefilling: At open joints and damaged surface areas, use setting-type taping compound.
- 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound or drying-type, all-purpose compound.
- 3. Fill Coat: For second coat, use setting-type, sandable topping compound or drying-type, all-purpose compound.
- 4. Finish Coat: For third coat, use setting-type, sandable topping compound or drying-type, all-purpose compound.
- D. Joint Compound for Tile Backing Panels:
 - 1. Cementitious Backer Units: As recommended by manufacturer.

2.8 ACOUSTICAL SEALANT

- A. Acoustical Sealant for Concealed Joints: Nondrying, nonhardening, nonskinning, nonstaining, gunnable, synthetic-rubber sealant, with a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24), recommended for sealing interior concealed joints to reduce airborne sound transmission.
- B. Products: Subject to compliance with requirements, provide the following:
 - 1. Acoustical Sealant for Concealed Joints:
 - a. Tremco, Inc.; Tremco Acoustical Sealant.

2.9 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written recommendations.
- B. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate and for adhering second layer of wallboard to first layer.
 - 1. Use adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.
 - 1. Use screws complying with ASTM C 954 for fastening panels to cold formed metal framing and steel members from 0.033 to 0.112 inch (0.84 to 2.84 mm) thick.
 - For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.
- D. Isolation Strip at Exterior Walls:
 - 1. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch (3.2 mm) thick, in width to suit steel stud size.

- E. Sound Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 - 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
 - 2. Density: 2.5 pounds per cubic foot.
 - 3. Thickness: 3 inches unless indicated otherwise on the drawings
 - 4. Products: Subject to compliance with requirements, provide the following:
 - a. Thermafiber Sound Attenuation Fire Blankets as manufactured by United States Gypsum Co.
- F. Thermal Insulation: As specified in Division 7 Section "Building Insulation."
- G. Polyethylene Vapor Retarder: As specified in Division 7 Section "Building Insulation."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Suspended Ceilings: Coordinate installation of ceiling suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive ceiling hangers at spacing required to support ceilings and that hangers will develop their full strength.
 - 1. Furnish concrete inserts and other devises indicated to other trades for installation in advance of time needed for coordination and construction.
- B. Coordination with Sprayed Fire-Resistive Materials:
 - 1. Before sprayed fire-resistive materials are applied, attach offset anchor plates or ceiling runners (tracks) to surfaces indicated to receive sprayed-on fire-resistive materials. Where offset anchor plates are required, provide continuous plates fastened to building structure not more than 24 inches (600 mm) o.c.
 - 2. After sprayed fire-resistive materials are applied, remove them only to extent necessary for installation of gypsum board assemblies and without reducing the fire-resistive material thickness below that which is required to obtain fire-resistance rating indicated. Protect remaining fire-resistive materials from damage.
- C. Control Joint Layout: Prior to commencement of framing installation submit coordination drawings indicating proposed control joint locations in metal-framed gypsum board partitions, walls, ceilings, bulkheads, fasciae and soffits, for review and acceptance of Architect.

3.3 INSTALLING STEEL FRAMING, GENERAL

- A. Installation Standards: ASTM C 754, and ASTM C 840 requirements that apply to framing installation.
- B. Install supplementary framing, blocking, and bracing at terminations in gypsum board assemblies to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction. Comply with details indicated and with gypsum board manufacturer's written recommendations or, if none available, with United States Gypsum's "Gypsum Construction Handbook."
- C. Isolate steel framing from building structure at locations indicated to prevent transfer of loading imposed by structural movement.
 - 1. Isolate ceiling assemblies where they abut or are penetrated by building structure.
 - Isolate partition framing and wall furring where it abuts structure, except at floor. Install slip-type joints at head of assemblies that avoid axial loading of assembly and laterally support assembly.
 - a. Use deep-leg deflection track where indicated.
- D. Do not bridge building control and expansion joints with steel framing or furring members. Frame both sides of joints independently.
- E. General requirements and locations of control joints in metal-framed gypsum board construction:
 - 1. General: Comply with requirements of ASTM C840, and as noted below:
 - 2. Control joints shall be constructed with manufactured control joint trim, or field fabricated from materials as specified.
 - 3. Control joints will be installed where a partition, wall, or ceiling traverses and construction joint (expansion, or building control element) in the base building structure.
 - 4. Control joints will be installed where a wall or partition extends in an uninterrupted straight plane exceeding 30 linear feet. Door and/or window frames that extend full height of partitions will be considered equivalent to control joint construction.
 - 5. Control joints in interior ceilings, bulkheads, fasciae and soffits will be installed so that linear dimensions between control joints do not exceed 30 linear feet and total area between control joints does not exceed 900 square feet. Control joints will be installed to isolate wings of "L", "U: and "T" shaped ceiling and soffit areas.
 - 6. A control joint will be installed where ceiling, bulkhead, fascia and soffit framing members change direction.
 - 7. Provide appropriate backing material, fire-safing insulation, and sealant for control joints installed in acoustical or fire-rated construction, as required to maintain fire-rating and/or acoustical separation.
- F. All mechanical heating and cooling system components shall be independently supported; not supported by gypsum board framing system.
- G. Provide gypsum panel bulkheads and closures where ducts penetrate fire separations.

3.4 INSTALLING STEEL PARTITION AND SOFFIT FRAMING

- A. Install tracks (runners) at floors, ceilings, and structural walls and columns where gypsum board assemblies abut other construction.
 - Where studs are installed directly against exterior walls, install foam-gasket isolation strip between studs and wall.
 - 2. Anchor tracks 24 inches o.c. with not less than two fasteners per section.
 - Review electrical conduit layout in slab, avoid penetration of conduits running directly below walls.
 - 3. Secure studs to top and bottom runner tracks by either welding or screw fastening at both inside and outside flanges.
 - 4. Allow for differential movement between floors and at roofs by use of nested runners unless otherwise noted.
- B. Installation Tolerance: Install each steel framing and furring member so fastening surfaces vary not more than 1/8 inch (3 mm) from the plane formed by the faces of adjacent framing.
- C. Extend partition framing full height to structural supports or substrates above suspended ceilings, except where partitions are indicated to terminate at suspended ceilings. Continue framing over frames for doors and openings and frame around ducts penetrating partitions above ceiling to provide support for gypsum board.
 - For fire-resistance-rated and STC-rated partitions that extend to the underside of floor/roof slabs and decks or other continuous solid-structure surfaces to obtain ratings, install framing around structural and other members extending below floor/roof slabs and decks, as needed to support gypsum board closures and to make partitions continuous from floor to underside of solid structure.
 - Metal studs which cannot extend full height to structure above, due to interference with ductwork and the like, shall be tied to cross stiffening, or diagonal bracing to structure above.
 - 3. Terminate partition framing at suspended ceilings where indicated.
 - 4. Interrupt metal framing (including top and bottom tracks) with a 1/2-inch gap at all control joint locations. Provide back to back studs and or framing for each control joint flange. Provide appropriate backing material, fire-safing insulation, and sealant for control joints installed in acoustical or fire-rated construction, as required to maintain fire-rating and/or acoustical separation.
- D. Install supplementary framing, blocking, backing plates and bracing in metal framing system wherever walls or partitions are indicated to support fixtures, equipment, services, casework, heavy trim and furnishings, and similar work.
- E. Install steel studs and furring at the following spacings:
 - 1. Single-Layer Construction: 16 inches (406 mm) o.c., unless otherwise indicated.
 - 2. Multilayer Construction: 16 inches (406 mm) o.c., unless otherwise indicated.
 - 3. Cementitious Backer Units: 16 inches (406 mm) o.c., unless otherwise indicated.

- F. Install horizontal stiffeners in stud system, spaced (vertical distance) not more than 4'-6" o.c. Weld at each intersection.
- G. Install steel studs so flanges point in the same direction and leading edge or end of each panel can be attached to open (unsupported) edges of stud flanges first.
- H. Acoustical Partition:
 - 1. Typical Partition: Steel channel studs with one or two layers of wallboard each side, with or without blanket insulation between the studs.
 - 2. Lay all runners in mastic or caulk between wallboard and floor.
 - 3. Caulk all top and bottom joints between the wallboard and structure.
 - 4. Tape other joints and spackle partition thoroughly airtight.
- Sound Insulation (where indicated): Install in accordance with manufacturer's recommendations.
- J. Frame door openings to comply with GA-600 and with gypsum board manufacturer's applicable written recommendations, unless otherwise indicated. Screw vertical studs at jambs to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
 - 1. Install two studs at each jamb, unless otherwise indicated.
 - Extend jamb studs through suspended ceilings and attach to underside of floor or roof structure above.
- K. Frame openings other than door openings the same as required for door openings, unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
- L. Z-Furring Members:
 - 1. Erect insulation vertically and hold in place with Z-furring members spaced 24 inches (610 mm) o.c.
 - 2. Except at exterior corners, securely attach narrow flanges of furring members to wall with concrete stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches (600 mm) o.c.
 - 3. At exterior corners, attach wide flange of furring members to wall with short flange extending beyond corner; on adjacent wall surface, screw-attach short flange of furring channel to web of attached channel. At interior corners, space second member no more than 12 inches (300 mm) from corner and cut insulation to fit.
- M. Polyethylene Vapor Retarder: Where indicated install to comply with requirements specified in Division 7 Section "Building Insulation."
- 3.5 INSTALLING STEEL SUSPENDED CEILING AND SOFFIT FRAMING
 - A. All ceiling construction shall be fully "unrestrained". Interrupt main runners, furring, or wallboard ceilings at walls of all full sized rooms as required to accommodate building movement. Use appropriate trim pieces to accomplish the work.

- 1. Cut furring, reinforce, support, and fit for electric outlet boxes, recessed fixtures, grilles and similar items.
- Provide allowance for anticipated building movement between floors and ceilings or soffits.
- B. Suspend ceiling hangers from building structure as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or ceiling suspension system. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - a. Do not support ceilings directly from permanent metal forms. Furnish cast-inplace hanger inserts that extend through forms.
 - b. Do not attach hangers to steel deck tabs.
 - c. Do not attach hangers to steel roof deck. Attach hangers to structural members.
 - d. Do not connect or suspend steel framing from ducts, pipes, or conduit.
 - Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with the location of hangers required to support standard suspension system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards.
 - 3. Secure wire hangers by looping and wire-tying, either directly to structures or to inserts, eyescrews, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause them to deteriorate or otherwise fail.
- C. Tie carrying channels to hangers with single (only) wrap of wire to avoid lifting channel.
- D. Installation Tolerances: Install steel framing components for suspended ceilings so members for panel attachment are level to within 1/8 inch in 12 feet (3 mm in 3.6 m) measured lengthwise on each member and transversely between parallel members.
- E. Wire-tie furring channels to supports, as required to comply with requirements for assemblies indicated.
 - 1. Saddle tie furring channels to carrying channels with double strand tie wires.
 - 2. Screw furring to wood framing.
- F. Install suspended steel framing components in sizes and spacings indicated, but not less than that required by the referenced steel framing and installation standards.
 - 1. Hangers: 48 inches (1219 mm) o.c.
 - 2. Carrying Channels (Main Runners): 48 inches (1219 mm o.c.
 - 3. Furring Channels (Furring Members): 16 inches (406 mm) o.c.
- 3.6 APPLYING AND FINISHING PANELS, GENERAL
 - A. Gypsum Board Application and Finishing Standards: ASTM C 840 and GA-216.

- B. Install sound attenuation blankets before installing gypsum panels, unless blankets are readily installed after panels have been installed on one side.
- C. Install ceiling board panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in the central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
- D. Install gypsum panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch (1.5 mm) of open space between panels. Do not force into place.
- E. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.
- F. Attach gypsum panels to steel studs so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.
- G. Attach gypsum panels to framing provided at openings and cutouts.
- H. Do not attach gypsum panels across the flat grain of wide-dimension lumber, including floor joists and headers. Float gypsum panels over these members using resilient channels, or provide control joints to counteract wood shrinkage.
- I. Form control and expansion joints with space between edges of adjoining gypsum panels.
- J. Cover both faces of steel stud partition framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 - 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. (0.7 sq. m) in area.
 - 2. Fit gypsum panels around ducts, pipes, and conduits.
 - 3. Where partitions intersect open concrete coffers, concrete joists, and other structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by coffers, joists, and other structural members; allow 1/4- to 3/8-inch- (6.4- to 9.5-mm-) wide joints to install sealant.
- K. Isolate perimeter of non-load-bearing gypsum board partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch- (6.4- to 12.7-mm-) wide spaces at these locations, and trim edges with U-bead edge trim where edges of gypsum panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
- L. Hold gypsum panels free from all surfaces subject to condensation or moisture.
- M. Floating Construction: Where feasible, including where recommended in writing by manufacturer, install gypsum panels over wood framing, with floating internal corner construction.
- N. STC-Rated Assemblies: Seal construction at perimeters, behind control and expansion joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and manufacturer's written recommendations for locating edge trim and

- closing off sound-flanking paths around or through gypsum board assemblies, including sealing partitions above acoustical ceilings.
- O. Space fasteners in gypsum panels according to referenced gypsum board application and finishing standard and manufacturer's written recommendations.
- P. Space fasteners in panels that are tile substrates a maximum of 8 inches (203.2 mm) o.c.

3.7 PANEL APPLICATION METHODS

A. General:

- 1. Plenum wall, ceiling drops, skirts or baffles that are beyond reach of user or occupant are to be constructed to meet L/120 deflection criteria.
- 2. Partitions, ceiling drops, baffles or other assemblies within user or occupant contact or with painted or vinyl finishes or that some vibration or movement is not detrimental to perceived structural integrity shall be constructed to meet L/240 deflection criteria.
- 3. Partitions, or assemblies where finish is a rigid veneer, such as plaster, skim coat, tile or stone work or mounted mirror or any use that would be compromised by vibration or deflection shall be constructed to meet L/360 deflection criteria.
- 4. Do not proceed with work until temperature and humidity of building meet requirements of manufacturer's standard specifications.
- 5. Fastening system shall be power driven drywall screws. Where hand driven fasteners are used, double nailing will be required.
- 6. Set all nails and screws to slightly dimple, but not break surface of board. Space nails 6 to 8 inches, 3/8 inch from edges, staggered at joints; double spacing for screws.
- 7. Repair areas scarified or otherwise damaged by cutting out damaged areas, back blocking set with adhesive, and patching with patching plaster.
- 8. Grout anchors for door frames. Jamb board into door frame to provide rigidity. Full grout frames at label doors, shaftwall, and elsewhere as indicated.
- Metal studs with finish one side are to receive stiffener channels at no more than 4'-6" maximum spacing.

B. Single-Layer Application:

- 1. On ceilings, apply gypsum panels before wall/partition board application to the greatest extent possible and at right angles to framing, unless otherwise indicated.
- 2. On partitions/walls, apply gypsum panels vertically (parallel to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 - Stagger abutting end joints not less than one framing member in alternate courses of board.
 - b. At stairwells and other high walls, install panels horizontally, unless otherwise indicated or required by fire-resistance-rated assembly.
- 3. On Z-furring members, apply gypsum panels vertically (parallel to framing) with no end joints. Locate edge joints over furring members.

- C. Single-Layer Fastening Methods: Apply gypsum panels to supports with steel drill screws.
- D. Tile Backing Panels:
 - 1. Cementitious Backer Units: ANSI A108.11, at locations indicated to receive tile.
 - a. Where indicated install standard gypsum wallboard panels to produce a flat surface at tiled areas not subject to wetting.
 - Examine framing; verify that framing and furring members to receive cement board has a maximum spacing of 16" o.c. and is minimum 20 gauge with a maximum deflection of L/360.
 - 3. Install cement board in accordance with manufacturer's instructions.
 - a. Install cement board with rough side out.
 - b. Use maximum lengths possible to minimize number of joints.
 - 4. Attach cement board to framing with screws spaced 8" o. c. at perimeter where there are framing supports, and 8" o. c. along intermediate framing in field.
 - a. Drive fasteners to bear tight against and flush with surface of cement board. Do not countersink. Locate fasteners minimum 3/8" from edges and ends of cement board.
 - 5. Where tile backing panels abut other types of panels in the same plane, shim surfaces to produce a uniform plane across panel surfaces.

3.8 INSTALLING TRIM ACCESSORIES

- A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
- B. Control Joints: Install control joints at locations specified and per reviewed Coordination Drawings, subject to Architect's approval. Install control joint trim in accordance with manufacturer's recommendations.
- C. All aluminum in contact with joint compound shall have contact faces treated with zinc chromate primer.

3.9 FINISHING GYPSUM BOARD ASSEMBLIES

- A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
 - 1. Apply perforated tape and compound at all joints, at inside corner and as required to conceal all fasteners and finish off all trim. Protect outside corners with corner beads.
 - 2. Finished appearance shall be perfectly smooth so that, after painting, there shall be no evidence of taping or patching. Areas where the location of joints or fasteners may be determined by visual inspection due to bulges, irregularities in surface of variations in texture, will be considered defective.

- If dry-out or over-sanding of finish coat of compound leaves surface requiring special treatment or sealing, provide such sealer or treatment and leave entire surface acceptable to the finishing trades as specified under Division 9 Section "Painting."
- 4. Repair all nail pops, wrinkles, buckles and other defects occurring during the Guarantee period and make good all damage to other work resulting from such repairs.
- B. Prefill open joints and damaged surface areas.
- C. Apply joint tape over gypsum board joints, except those with trim having flanges not intended for tape.
- D. Gypsum Board Finish Levels: Finish panels to levels indicated below, according to ASTM C 840, for locations indicated:
 - 1. Level 4: Embed tape and apply separate first, fill, and finish coats of joint compound to tape, fasteners, and trim flanges.
- E. Cementitious Backer Units: Finish according to manufacturer's written instructions.

3.10 ACOUSTICAL BULKHEADS IN PLENUM SPACE

- A. Provide acoustical separation by bulkhead in ceiling plenum space where indicated.
- B. Bulkhead: Tight assembly of screw studs and wallboard with all cracks sealed or gasketed. Bulkheads between adjacent rooms require wallboard on one side only (where so indicated.).
- C. Coordinate with acoustical ceiling work.
- D. Where bulkheads are built to enclose and shield noisy ducts, no part of the bulkhead structure may touch the duct.

3.11 PATCHING AND REPAIRS

- A. Prior to start of painting or installation of wall covering, neatly and accurately patch and repair all damaged wallboard to match finish of adjoining work. Cut out cracks, damaged areas, blemished, defective portions and re-work to match adjacent area.
- B. Apply chemical treatment where required to remedy defects.
- C. After sizing and seal coats have been applied, as specified under Division 9 Section "Painting," patch and repair any hair cracks or fine cracks which become visible, as necessary to render finish painting free from visible cracks.

3.12 CLEAN UP

- A. Upon completion of the work, in each area, brush all surfaces clean including floors, ledges and other areas carrying droppings or debris resulting from the work.
- B. Upon completion of work in any area or as often as directed, remove from the premises and legally dispose of all surplus materials, and construction debris.
- C. Do not bury lime or gypsum materials on the site.

END OF SECTION

TILE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Unglazed porcelain mosaic tile.
 - Anti-fracture membrane.
- B. Related Sections: The following sections contain requirements that relate to this Section:
 - Division 3 Section "Cast-in-Place Concrete" for monolithic slab finishes specified for tile substrates.
 - 2. Division 7 Section "Joint Sealants" for sealing of expansion, contraction, control, and isolation joints in tile surfaces.
 - 3. Division 9 Section "Gypsum Wallboard Assemblies" for cementitious backer units installed as part of gypsum wallboard systems.

1.3 SUBMITTALS

- General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.
- B. Product data for each type of product specified.
- C. Samples for initial selection purposes in form of manufacturer's color charts consisting of actual tiles or sections of tile showing full range of colors, textures, and patterns available for each type and composition of tile indicated. Include samples of grout and accessories involving color selection.
- D. Samples for verification purposes of each item listed below, prepared on samples of size and construction indicated, products involve color and texture variations, in sets showing full range of variations expected.
 - 1. Each type and composition of tile and for each color and texture required, at least 12 inches square, mounted on plywood or hardboard backing and grouted.
 - Full-size units of each type of trim and accessory for each color required.

1.4 QUALITY ASSURANCE

A. Single-Source Responsibility for Tile: Obtain each color, grade, finish, type, composition, and variety of tile from a single source with resources to provide products of consistent quality in appearance and physical properties without delaying progress of the Work.

- B. Single-Source Responsibility for Setting and Grouting Materials: Obtain ingredients of a uniform quality from one manufacturer for each cementitious and admixture component and from one source or producer for each aggregate.
- C. Installer Qualifications: Engage an experienced Installer who has successfully completed tile installations similar in material, design, and extent to that indicated for Project.
- D. Preinstallation Conference: Conduct conference at Project site to comply with requirements of Division 1.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Comply with requirement of ANSI A137.1 for labeling sealed tile packages.
- B. Prevent damage or contamination to materials by water, freezing, foreign matter, and other causes.
- C. Handle tile with temporary protective coating on exposed surfaces to prevent coated surfaces from contacting backs or edges of other units. If despite these precautions coating does contact bonding surfaces of tile, remove coating from bonding surfaces before setting tile.

1.6 PROJECT CONDITIONS

- A. Maintain environmental conditions and protect work during and after installation to comply with referenced standards and manufacturer's printed recommendations.
- B. Vent temporary heaters to exterior to prevent damage to tile work from carbon dioxide buildup.
- C. Maintain temperatures at 50°F (10°C) or more in tiled areas during installation and for 7 days after completion, unless higher temperatures are required by referenced installation standard or manufacturer's instructions.

1.7 EXTRA MATERIALS

- A. Deliver extra materials to Owner. Furnish extra materials that match products installed as described below, packaged with protective covering for storage and identified with labels clearly describing contents.
 - 1. Tile and Trim Units: Furnish quantity of full-size units equal to 3 percent of amount installed, for each type, composition, color, pattern, and size.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Tile: Subject to compliance with requirements, provide products as follows:

1. CT1: Virginia Tile

American Olean

Unglazed Colorbody Porcelain Mosaics

Size: 2" x 2" Thickness: 1/4"

Recommended Grout Joint: 1/8"

Sheet Size: 12" x 24"

Finish: Matte

Color: A04 Light Smoke Speckled

Cove Base:

Built-Up Base MT-6

Finish: Matte

Color: A04 Light Smoke Speckled

Note: Use all necessary inside and outside corner pieces to complete installation.

Manufacturer's Representative: Kathleen Somervell (248) 467-4362

2.2 PRODUCTS, GENERAL

- A. ANSI Standard for Ceramic Tile: Comply with ANSI A137.1 "American National Standard Specifications for Ceramic Tile" for types, compositions, and grades of tile indicated.
 - 1. Furnish tile complying with "Standard Grade" requirements unless otherwise indicated.
- B. ANSI Standard for Tile Installation Materials: Comply with ANSI standard referenced with products and materials indicated for setting and grouting.
- C. Colors, Textures, and Patterns: Where manufacturer's standard products are indicated for tile, grout, and other products requiring selection of colors, surface textures, patterns, and other appearance characteristics, provide specific products or materials complying with the following requirements:
 - 1. Provide selections made by Architect from manufacturer's full range of colors, textures, and patterns as indicated for each product.
 - 2. Provide tile trim and accessories that match color and finish of adjoining flat tile.
- D. Factory Blending: For tile exhibiting color variations within the ranges selected during sample submittals, blend tile in factory and package accordingly so that tile units taken from one package show the same range in colors as those taken from other packages and match approved samples.
- E. Factory-Applied Temporary Protective Coating: Where indicated under tile type, protect exposed surfaces of tile against adherence of mortar and grout by precoating them with a continuous film of petroleum paraffin wax, applied hot. Do not coat unexposed tile surfaces.

2.3 TRIM UNITS:

- A. Trim Units: Provide tile trim units to match characteristics of adjoining flat tile and to comply with following requirements:
 - 1. Size: As indicated, coordinated with sizes and coursing of adjoining flat tile where applicable.
 - 2. Shapes: As selected by Architect from manufacturer's standard shapes, and as necessary for a complete installation.

2.4 ANTI-FRACTURE MATERIALS

- A. Anti-fracture Membrane: ANSI A118.12, composition as follows:
- B. Fluid-Applied Membrane: Liquid-latex rubber or elastomeric polymer.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Laticrete: Blue 92 Anti-Fracture Membrane.
 - b. MAPEI Corporation; Mapelastic AquaDefense Waterproofing and Crack-Isolation Membrane.
 - c. TEC; a subsidiary of H. B. Fuller Company; HydraFlex Waterproofing Crack Isolation Membrane.
 - Location: At all locations unless indicated otherwise.

2.5 SETTING MATERIALS

- A. Latex-Portland Cement Mortar: ANSI A118.4, composition as follows:
 - 1. Latex additive (water emulsion) of type described below, serving as replacement for part or all of gauging water, combined at job site with prepackaged dry mortar mix supplied or specified by latex additive manufacturer.
 - a. Latex Type: Manufacturer's standard.

2.6 GROUTING MATERIALS

- A. Latex-Portland Cement Grout: ANSI A118.6, color as indicated, composition as follows:
 - 1. Latex additive (water emulsion) serving as replacement for part or all of gauging water, added at job site with dry grout mixture, with type of latex and dry grout mix as follows:
 - a. Latex Type: Manufacturer's standard.
 - b. Dry Grout Mixture: Grout shall be as manufactured by one of the following:
 - 1) Custom Building Products.
 - 2) H. B. Fuller Co.
 - 3) LATICRETE International Inc.
 - 4) MAPEI Corporation.
 - 5) Summitville Tiles, Inc.
 - 6) TEC Specialty Products Inc. "AccuColor Premium Unsanded Grout"

 Grout shall be colored as selected by Architect from manufacturer's full line of colors.

2.7 MIXING MORTARS AND GROUT

A. Mix mortars and grouts to comply with requirements of referenced standards and manufacturers including those for accurate proportioning of materials, water, or additive content; type of mixing equipment, selection of mixer speeds, mixing containers, mixing time, and other procedures needed to produce mortars and grouts of uniform quality with optimum performance characteristics for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and areas where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of installed tile.
 - 1. Verify that substrates for setting tile are firm, dry, clean, and free from oil or waxy films and curing compounds.
 - 2. Verify that installation of grounds, anchors, recessed frames, electrical and mechanical units of work, and similar items located in or behind tile has been completed before installing tile.
- B. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Blending: For tile exhibiting color variations within the ranges selected during sample submittals, verify that tile has been blended in factory and packaged accordingly so that tile units taken from one package show the same range in colors as those taken from other packages and match approved samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.

3.3 INSTALLATION, GENERAL

- A. ANSI Tile Installation Standard: Comply with parts of ANSI 108 series of tile installation standards included under "American National Standard Specifications for the Installation of Ceramic Tile" that apply to type of setting and grouting materials and methods indicated.
- B. TCA Installation Guidelines: TCA "Handbook for Ceramic Tile Installation"; comply with TCA installation methods indicated.
- C. Where indicated, install anti-fracture membrane to comply with manufacturer's written instructions to produce a membrane of uniform thickness bonded securely to substrate.
- D. Extend tile work into recesses and under or behind equipment and fixtures to form a complete covering without interruptions except as otherwise shown. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.
- E. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so that plates, collars, or covers overlap tile.

- F. Jointing Pattern: Unless otherwise shown, lay tile in grid pattern. Align joints when adjoining tiles on floor, base, walls, and trim are same size. Lay out tile work and center tile fields in both directions in each space or on each wall area. Adjust to minimize tile cutting. Provide uniform joint widths unless otherwise shown.
- G. Lay out tile wainscots to dimensions indicated.
- H. Expansion Joints: Locate expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated during installation of setting materials, mortar beds, and tile. Do not saw cut joints after installation of tiles.
 - 1. Locate joints in tile surfaces directly above joints in concrete substrates.
- I. Grout tile to comply with the requirements of the following installation standards:
 - 1. For ceramic tile grouts (and latex-portland cement grouts), comply with ANSI A108.10.
 - 2. For chemical-resistant epoxy grouts, comply with ANSI A108.6.

3.4 FLOOR INSTALLATION METHODS

- A. Porcelain Mosaic Tile: Install tile to comply with requirements indicated below for setting bed methods, TCA installation methods related to types of subfloor construction, and grout types:
 - Latex-Portland Cement Mortar: ANSI A108.5.
 - Concrete Subfloors, Interior: TCA F112, F113 and 125A as indicated on Drawings.
 - 1) Install anti-fracture membrane at all locations unless indicated otherwise.
 - b. Grout: Latex-portland cement.
 - 1) Provide epoxy grout where noted in specifications and where indicated on Drawings.

3.5 CRACK ISOLATION MEMBRANE INSTALLATION

A. Install crack isolation membrane to comply with ANSI A108.17 and manufacturer's written instructions to produce membrane of uniform thickness and bonded securely to substrate.

3.6 CLEANING AND PROTECTION

- A. Cleaning: Upon completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.
 - 1. Remove latex-portland cement grout residue from tile as soon as possible.
 - Unglazed tile may be cleaned with acid solutions only when permitted by tile and grout manufacturer's printed instructions, but no sooner than 14 days after installation.
 Protect metal surfaces, cast iron, and vitreous plumbing fixtures from effects of acid cleaning. Flush surface with clean water before and after cleaning.
 - 3. Remove temporary protective coating by method recommended by coating manufacturer that is acceptable to brick and grout manufacturer. Trap and remove coating to prevent it from clogging drains.

- B. Finished Tile Work: Leave finished installation clean and free of cracked, chipped, broken, unbonded, and otherwise defective tile work.
- C. Provide final protection and maintain conditions in a manner acceptable to manufacturer and installer that ensures that tile is without damage or deterioration at time of Substantial Completion.
 - 1. When recommended by tile manufacturer, apply a protective coat of neutral protective cleaner to completed tile walls and floors. Protect installed tile work with kraft paper or other heavy covering during construction period to prevent staining, damage, and wear.
 - 2. Prohibit foot and wheel traffic from tiled floors for at least 7 days after grouting is completed.
- D. Before final inspection, remove protective coverings and rinse neutral cleaner from tile surfaces.

END OF SECTION

ACOUSTICAL CEILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of acoustical ceilings.
 - 1. Acoustical panel ceilings installed with exposed suspension systems.
- B. Related Sections: The following sections contain requirements that relate to this section:
 - 1. Division 9 Section "Gypsum Wallboard Assemblies" for gypsum board substrate for adhered acoustical tile.
 - 2. Division 15 for grilles, registers, and diffusers and sprinkler heads in acoustical ceilings.
 - 3. Division 16 for lighting fixtures in acoustical ceilings.

1.3 SUBMITTALS

- A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.
- B. Product data for each type of product specified.
- C. Samples for initial selection purposes in form of manufacturer's color charts consisting of actual acoustical units or sections of units showing full range of colors, textures, and patterns available for each type of unit indicated.
- D. Samples for verification purposes of each type of exposed finish required, prepared on samples of size indicated below and of same thickness and material indicated for final unit of Work. Where finishes involve normal color and texture variations, include sample sets showing full range of variations expected.
 - 1. 6-inch-square samples of each acoustical panel type, pattern, and color.
 - 2. Set of 12-inch-long samples of exposed suspension system members, including moldings, for each color and system type required.
- E. Qualification data for firms and persons specified in "Quality Assurance" article to demonstrate their capabilities and experience. Include list of completed projects with project names, addresses, names of Architects and Owners, and other information specified.
- F. Product test reports from qualified independent testing laboratory that are based on its testing of current products for compliance of acoustical ceiling systems and components with requirements.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experienced Installer who has successfully completed acoustical ceilings similar in material, design, and extent to those indicated for Project.
- B. Fire-Performance Characteristics: Provide acoustical ceilings that are identical to those tested for the following fire-performance characteristics, per ASTM test method indicated below, by UL or other testing and inspecting organizations acceptable to authorities having jurisdiction. Identify acoustical ceiling components with appropriate markings of applicable testing and inspecting organization.
 - 1. Surface Burning Characteristics: As follows, tested per ASTM E 84 and complying with ASTM E 1264 for Class A products.
 - a. Flame Spread: 25 or less.
 - b. Smoke Developed: 50 or less.
 - 2. Fire-Resistance Ratings: As indicated by reference to design designations in UL "Fire Resistance Directory," for types of assemblies in which acoustical ceilings function as a fire-protective membrane and tested per ASTM E 119.
 - a. Protect lighting fixtures and air ducts to comply with requirements indicated for rated assembly.
- C. Single-Source Responsibility for Ceiling Units: Obtain each type of acoustical ceiling unit from a single source with resources to provide products of consistent quality in appearance and physical properties without delaying progress of the Work.
- D. Single-Source Responsibility for Suspension System: Obtain each type of suspension system from a single source with resources to provide products of consistent quality in appearance and physical properties without delaying progress of the Work.
- E. Coordination of Work: Coordinate layout and installation of acoustical ceiling units and suspension system components with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system components (if any), and partition system (if any).

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver acoustical ceiling units to project site in original, unopened packages and store them in a fully enclosed space where they will be protected against damage from moisture, direct sunlight, surface contamination, and other causes.
- B. Before installing acoustical ceiling units, permit them to reach room temperature and a stabilized moisture content.
- C. Handle acoustical ceiling units carefully to avoid chipping edges or damaging units in any way.

1.6 PROJECT CONDITIONS

A. Space Enclosure: Do not install interior acoustical ceilings until space is enclosed and weatherproof, wet-work in space is completed and nominally dry, work above ceilings is complete, and ambient conditions of temperature and humidity will be continuously maintained at values near those indicated for final occupancy.

1.7 EXTRA MATERIALS

- A. Deliver extra materials to Owner. Furnish extra materials described below that match products installed, are packaged with protective covering for storage, and are identified with appropriate labels.
 - Acoustical Ceiling Units: Furnish quantity of full-size units equal to 2.0 percent of amount installed.
 - 2. Exposed Suspension System Components: Furnish quantity of each exposed component equal to 2.0 percent of amount installed.

PART 2 - PRODUCTS

2.1 ACOUSTICAL PANELS

A. Manufacturer: Subject to compliance with requirements provide products as follows:

1. ACT1 USG Interiors

"F" Fissured Item No. : 131 Size: 24" x 24" x 3/4"

Edge: SQ Color: White

Or Equal By: Armstrong, CertainTeed

2. ACT2 USG Interiors

Rock Face ClimaPlus Item No. 56335 Size: 24" x 24" x 5/8"

Edge: SQ Color: White

Or Equal By: Armstrong, CertainTeed

3. ACT3 USG Interiors

SheetRock Lay-in Ceiling Panel ClimaPlus

Item No. 3260 Size: 24" x 24" x ½"

Edge: SQ Color: White

Or Equal By: Armstrong, CertainTeed

4. ACT4 USG Interiors

Radar Ceramic ClimaPlus

Item No. 56644 Size: 24" x 24" x5/8""

Edge: SQ Color: White

Or Equal By: Armstrong, CertainTeed

2.2 METAL SUSPENSION SYSTEMS

A. Suspension systems shall conform to ASTM C-635 for "intermediate duty" classification, except that where quantity or weight of ceiling fixtures would create deflection of greater than

1/360 of the span length, "heavy duty" system shall be used or ceiling grid shall be reinforced in a manner to maintain deflection of less than 1/360 of the span length. The General and Supplementary Conditions shall take precedence over Section 6 (Inspection) of ASTM C-635. All recessed light fixtures shall be supported by main runners on not less than two opposite sides.

- 1. Exposed portions shall receive a factory applied matte white baked enamel finish.
- B. Manufacturer: Subject to compliance with requirements provide products as follows:
 - 1. Grid at ACT1 & ACT2:
 - USG Interiors
 Donn DX Suspension System with 15/16" Exposed Face
 Color: White
 Or Equal By: Armstrong, CertainTeed
 - 2. Grid at ACT3 & ACT4
 - USG Interiors
 Donn DXLA Suspension System with 15/16" Exposed Face
 Color: White
 Or Equal By: Armstrong, CertainTeed

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and structural framing to which ceiling system attaches or abuts, with Installer present, for compliance with requirements specified in this and other sections that affect installation and anchorage of ceiling system. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Measure each ceiling area and establish layout of acoustical units to balance border widths at opposite edges of each ceiling. Avoid use of less-than-half-width units at borders, and comply with reflected ceiling plans.

3.3 INSTALLATION

- A. General: Install acoustical ceiling systems to comply with installation standard referenced below, per manufacturer's instructions and CISCA "Ceiling Systems Handbook."
 - 1. Standard for Installation of Ceiling Suspension Systems: Comply with ASTM C 636.
- B. Arrange acoustical units and orient directionally patterned units (if any) in a manner shown by reflected ceiling plans.
- C. Suspend ceiling hangers from building structural members and as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or ceiling suspension system.

- Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, counter-splaying, or other equally effective means.
- Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with the location of hangers at spacings required to support standard suspension system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards.
- Secure wire hangers by looping and wire-tying, either directly to structures or to inserts, eyescrews, or other devices that are secure and appropriate for substrate, and in a manner that will not cause them to deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
- 4. Secure flat, angle, channel, and rod hangers to structure, including intermediate framing members, by attaching to inserts, eyescrews, or other devices that are secure and appropriate for structure to which hangers are attached as well as for type of hanger involved, and in a manner that will not cause them to deteriorate or fail due to age, corrosion, or elevated temperatures.
- 5. Do not support ceilings directly from permanent metal forms; furnish cast-in-place hanger inserts that extend through forms.
- 6. Do not attach hangers to steel deck tabs.
- 7. Do not attach hangers to steel roof deck. Attach hangers to structural members.
- 8. Space hangers not more than 4'-0" o.c. along each member supported directly from hangers, unless otherwise shown, and provide hangers not more than 8 inches from ends of each member.
- D. Install edge moldings of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical units.
 - 1. Sealant Bed: Apply continuous ribbon of acoustical sealant, concealed on back of vertical leg before installing moldings.
 - 2. Screw-attach moldings to substrate at intervals not over 16 inches o.c. and not more than 3 inches from ends, leveling with ceiling suspension system to tolerance of 1/8 inch in 12'-0". Miter corners accurately and connect securely.
- E. Install acoustical panels in coordination with suspension system, with edges concealed by support of suspension members. Scribe and cut panels to fit accurately at borders and at penetrations.
 - Install hold-down clips in areas indicated and in areas where required by governing regulations or for fire-resistance ratings; space as recommended by panel manufacturer, unless otherwise indicated or required.

3.4 CLEANING

A. Clean exposed surfaces of acoustical ceilings, including trim, edge moldings, and suspension members. Comply with manufacturer's instructions for cleaning and touch-up of minor finish damage. Remove and replace work that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION

RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

1.2 DESCRIPTION OF WORK:

A. Extent of resilient accessories is shown on drawings and in schedules.

1.3 QUALITY ASSURANCE

- A. Manufacturer: Provide each type of resilient tile flooring and accessories as produced by a single manufacturer, including recommended primers, adhesives, sealants, and leveling compounds.
- B. Fire Test Performance: Provide resilient tile flooring which complies with the following fire test performance criteria as determined by an independent testing laboratory acceptable to authorities having jurisdiction.
 - 1. Flame Spread: Not more than 75 per ASTM E 84.
 - 2. Smoke Developed: Not more than 450 per ASTM E 84.
 - 3. Smoke Density: Not more than 450 per NFPA 258.

1.4 SUBMITTALS

- A. Product Data: Submit manufacturer's technical data for each type of resilient flooring and accessory.
- B. Samples for Initial Selection Purposes: Submit manufacturer's standard color charts in form of actual sections of resilient flooring, including accessories, showing full range of colors and patterns available, for each type of resilient tile flooring required.
- C. Samples for Verification Purposes: Submit the following samples of each type, color, and pattern of resilient tile flooring required, showing full-range of color and pattern variations.
 - 1. 2-1/2 long samples of resilient flooring accessories.
 - 2. Other materials as requested.
- D. Certification for Fire Test Performance: Submit certification from an independent testing laboratory acceptable to authorities having jurisdiction that resilient tile flooring complies with fire test performance requirements.
- E. Maintenance Instructions: Submit 2 copies of manufacturer's recommended maintenance practices for each type of resilient tile flooring and accessory required.

1.5 PROJECT CONDITIONS

- A. Maintain minimum temperature of 65°F (18°C) in spaces to receive resilient tile flooring for at least 48 hours prior to installation, during installation, and for not less than 48 hours after installation. Store resilient flooring materials in spaces where they will be installed for at least 48 hours before beginning installation. Subsequently, maintain minimum temperature of 55°F (13°C) in areas where work is completed.
- B. Install resilient tile flooring and accessories after other finishing operations, including painting, have been completed. Do not install resilient flooring over concrete slabs until the latter have been cured and are sufficiently dry to achieve bond with adhesive as determined by resilient flooring manufacturer's recommended bond and moisture test.

1.6 EXTRA STOCK:

A. Deliver stock of maintenance materials to Owner. Furnish maintenance materials from same manufactured lot as materials installed and enclosed in protective packaging with appropriate identifying labels.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Resilient Wall Base: Subject to compliance with requirements provide products as follows:
 - 1. RB1 Provide the following:
 - a. Roppe

Rubber Wall Base

Height: 4"

Color: Architect shall select one (1) color from manufacturer's full line.

2.2 ACCESSORIES

- A. Rubber Wall Base: Provide rubber base complying with FS SS-W-40, Type I, with matching end stops and preformed or molded corner units, and as follows:
 - 1. Height: 4".
 - 2. Thickness: 1/8" gage.
 - 3. Style: Standard top-set cove.
 - 4. Finish: Matte.
- B. Adhesives (Cements): Waterproof, stabilized type as recommended by flooring manufacturer to suit material and substrate conditions.
- C. Concrete Slab Primer: Non-staining type as recommended by flooring manufacturer.
- D. Leveling and Patching Compounds: Latex type as recommended by flooring manufacturer.
- E. Caulk: As recommended by flooring manufacturer. Architect shall select color.

PART 3 - EXECUTION

3.1 INSPECTION

- A. Require Installer to inspect substrates to determine that they are satisfactory. A satisfactory substrate is defined as one that is smooth and free from cracks, holes, ridges, coatings preventing adhesive bond, and other defects impairing performance or appearance.
- B. Perform bond and moisture tests on concrete subfloors to determine if surfaces are sufficiently cured and dry as well as to ascertain presence of curing compounds.
- C. Do not allow resilient flooring work to proceed until substrates are satisfactory.

3.2 PREPARATION

- A. Prepare substrates as follows:
 - Use leveling and patching compounds as recommended by resilient flooring manufacturer for filling small cracks, holes and depressions in subfloors.
 - Remove coatings from surfaces that would prevent adhesive bond, including curing compounds incompatible with resilient flooring adhesives, paint, oils, waxes and sealers.
 - 3. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.
- B. Broom clean or vacuum surfaces to be covered.

3.3 INSTALLATION, GENERAL:

- A. Install resilient flooring accessories using method indicated in strict compliance with manufacturer's printed instructions.
- B. Scribe, cut, and fit resilient flooring accessories to permanent fixtures, built-in furniture and cabinets, pipes, outlets and permanent columns, walls and partitions.
- C. Maintain reference markers, holes, or openings that are in place or plainly marked for future cutting by repeating on finish flooring as marked on subfloor. Use chalk or other nonpermanent marking device.
- D. Tightly adhere resilient flooring accessories to substrate without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, or other surface imperfections.

3.4 INSTALLATION OF ACCESSORIES:

- A. Apply wall base to walls, columns, pilasters, casework and other permanent fixtures in rooms or areas where base is required. Install base in lengths as long as practical, with preformed outside corner units, and fabricated with mitered or coped inside corners. Tightly bond base to substrate throughout length of each piece, with continuous contact at horizontal and vertical surfaces.
 - On masonry surfaces, or other similar irregular substrates, fill voids along top edge of resilient wall base with manufacturer's recommended adhesive filler material.

B. Place resilient edge strips tightly butted to flooring and secure with adhesive. Install edging strips at edges of flooring which would otherwise be exposed.

3.5 CLEANING AND PROTECTION:

- A. Perform following operations immediately upon completion of resilient flooring:
 - 1. Remove any excess adhesive or other surface blemishes, using appropriate cleaner recommended by resilient flooring manufacturers.
- B. Clean resilient accessories not more than 4 days prior to date scheduled for inspections intended to establish date of substantial completion in each area of project. Clean resilient accessories by method recommended by resilient flooring manufacturer.

END OF SECTION

EPOXY FLOOR COATINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DESCRIPTION OF WORK

- A. Application of epoxy floor coatings including surface preparation, priming, and topcoats.
- B. Extent of application of epoxy floor coatings is indicated on Drawings and in Room Finish Schedules.

1.3 SUBMITTALS

- A. Product Data: Submit manufacturer's product data for each coating, including generic description, complete technical data, surface preparation, and application instructions.
- B. Samples for Initial Selection: Submit manufacturer's color charts or samples showing full range of standard colors and textures.
- C. Samples for Verification: For each epoxy floor coating required submit the following:
 - 1. Three (3) samples, on hardboard for each color and texture showing the full range of color and texture expected.
- D. Manufacturer's Quality Assurance: Submit manufacturer's certification that epoxy floor coatings comply with specified requirements and are suitable for intended application.
- E. Installer Qualifications.
- F. Warranty: Submit manufacturer's standard warranty.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experienced installer with not less than five (5) years of successful experience in installing epoxy floor coatings similar to that required for this project.
- B. Source Limitations: Obtain each type of epoxy floor coating from one source and by a single manufacturer.
- C. Mockups: Before installing system, construct mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and qualities of materials and execution. Build mockups to comply with the following requirements, using materials indicated for completed Work:
 - 1. Locate mockups in the location and of the size indicated or, if not indicated, as directed by Architect.
 - Notify Architect seven days in advance of the dates and times when mockups will be constructed.

- 3. Demonstrate the proposed range of aesthetic effects and workmanship.
- 4. Obtain Architect's approval of mockups before starting installation of work.
- Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
- 6. Approved mockups in an undisturbed condition at the time of Substantial Completion may become part of the completed Work.

1.5 DELIVERY AND STORAGE

A. Deliver materials to project site in new, original and unopened containers bearing manufacturer's name, trade name, and label analysis. Store in accordance with manufacturer's instructions.

1.6 PROJECT CONDITIONS

- A. Relative Humidity: Do not apply epoxy floor coatings when relative humidity exceeds manufacturer's recommendations.
- B. Air and Surface Temperatures: Do not apply epoxy floor coatings when air and surface temperatures are not in accordance with manufacturer's recommendations.
- C. Do not apply epoxy floor coatings to damp or wet surfaces.
- D. Ventilation: Provide ventilation during epoxy floor coating installation and curing in confined or enclosed areas in accordance with manufacturer's instructions.
- E. Dust and Contaminants: Protect work areas from excessive dust and airborne contaminants during epoxy floor coating installation and curing.

1.7 COORDINATION

A. Coordinate installation of new concrete slabs to allow time for concrete to cure for 28 days prior to installation of epoxy floor coatings.

PART 2 - PRODUCTS

2.1 EPOXY FLOOR COATING (EFS)

- A. Manufacturer: Subject to compliance with requirements, provide Tnemec Series 224 "Deco-Fleck" trowelled epoxy floor coating with acrylic chips or approved equal from one of the following:
 - 1. Tnemec
 - 2. Diamond Polymers
 - 3. Stonhard Stontec Series

2.2 MATERIALS

- A. Radius Cove / Floor Depressions: Tnemec Series 215 Surfacing Epoxy up to ½" thickness with the addition of Series 211-211.
- B. Typical Installation:
 - Base Layer: Tnemec Series 280 Tneme-Glaze at 8.0-10.0 mils DFT with Series 224C Colored Flake broadcast to refusal.
 - Intermediate Layer: Tnemec Series 284 Deco-Clear at 8.0-10.0 mils DFT.
 - Finish Coat: Tnemec Series 295 Clear CRU at 2.0-3.0 mils DFT with series 211 Glass Bead
 - Final level of slip resistance to be approved by Owner.
 - a. Base Layer/Broadcast Color: Architect shall select up to two (2) custom blends.
- C. Rest Room Installation:
 - 1. Epoxy Surfacing of Floor and Depressions: Tnemec Series 215 Surfacing Epoxy. Include in base bid 15% of the total floor area to receive floor leveling/sloping to existing drains, up to ½" thickness.
 - 2. Base Layer:: Tnemec Series 280 Tneme-Glaze at 8.0-10.0 mils DFT with Series 224C Colored Flake broadcast to refusal.
 - 3. Intermediate Layer: Tnemec Series 284 Deco-Clear at 8.0-10.0 mils DFT.
 - Finish Coat: Tnemec Series 295 Clear CRU at 2.0-3.0 mils DFT with series 211 Glass Bead Final level of slip resistance to be approved by Owner.
 - a. Base Layer/Broadcast Color: Architect shall select up to two (2) custom blends.

PART 3 - EXECUTION

3.1 PREPARATION

- A. General: Prepare substrates according to SSPC-SP13/ICRI-CSP 3-5 and manufacturer's written recommendations to ensure adhesion of floor coverings.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.
- B. Concrete Substrates: Prepare according to ASTM F 710.
 - 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 - a. Allow new concrete to cure for 28 days.
 - 2. Alkalinity and Adhesion Testing: Perform tests recommended by manufacturer. Proceed with installation only after substrates pass testing.

3. Moisture Testing:

- a. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with installation only after substrates have a maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. (1.36 kg of water/92.9 sq. m) in 24 hours or have a maximum moisture-vapor-emission rate as recommended by the epoxy floor coating manufacturer.
- C. Mechanically abrade all concrete by means of self-contained, blasting equipment or equal, to remove all laitance and surface contaminants and provide a minimum profile as recommended by epoxy floor coating manufacturer. Comply with ASTM D 4259 and SSPC-SP13.
- D. Mechanically abrade all existing epoxy floors by means of self-contained, blasting equipment or equal, to remove all laitance and surface contaminants and provide a minimum profile as recommended by epoxy floor coating manufacturer. Comply with ASTM D 4259 and SSPC-SP13.
- E. After mechanically abrading, verify that all surfaces are clean, dry and free of any contaminants, which could adversely affect the adhesion of the flooring system.
- F. Apply stippling epoxy and glass bead as directed to maximize anti slip surfaces in accordance with manufacturers product data sheets and application guides.

3.2 INSTALLATION

- A. Install epoxy floor coating using method indicated in strict compliance with manufacturer's written instructions. Extend flooring into toe spaces, door reveals, and into closets and similar openings.
- B. Install cove bases and terminate edges with aluminum termination strip between existing wall tile and new epoxy according to manufacturer's written instructions.
- C. Fit epoxy floor coating to permanent fixtures, built-in furniture and cabinets, pipes, outlets and permanent columns, walls and partitions.
- D. Install epoxy floor coating using roller nap size as indicated in manufacturer's written instructions and incorporate glass bead as necessary to provide anti-slip surfaces to match approved samples and mockups.

3.3 PROTECTION

- A. Protect the completed work from water, airborne particles or other surface contaminants until cured for a minimum of 24 hours after application.
- B. Protect from traffic, physical abuse, immersion and chemical exposure until the complete system has thoroughly cured for 24 hours at 75°F. For different temperatures, consult the manufacturer's representative about curing times.

END OF SECTION

PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes, labor, materials and equipment for Painting and Finishing.
- B. The following sections contain requirements that relate to this Section:
 - 1. Division 6 Section "Interior Architectural Woodwork" for factory finished millwork.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples for Verification: For each type of paint system and in each color and gloss of topcoat indicated.
 - 1. Submit 8-1/2 x 11 color downs on heavy paper to match Architect's color chips for each color and type of paint specified for Architect's approval.
 - Architect will furnish a schedule after beginning of construction. The schedule will include color chips for matching.
 - 2. Step coats on Samples to show each coat required for system.
 - 3. Label each coat of each Sample.
 - 4. Label each Sample for location and application area.
- C. Material Certificates: For scrub resistance and washability, signed by manufacturers.

1.4 QUALITY ASSURANCE

- A. Architect has the option of requesting test patches in place for Architect's approval of final color and finish.
 - 1. Notify Architect 48 hours in advance of the time the test patches will be ready for inspection.
- B. Manufacturer shall certify that tests have been performed on semi-gloss wall finish and others as selected by the Architect. Acceptance of materials is conditional upon demonstration of washability and abrasion resistance of test patches. Testing shall include the following:
 - 1. Scrub resistance per ASTM D2486-79: Value as specified in approved finish schedule but not less than 1200.
 - 2. Washability per ASTM D3450-80: Value as specified in approved finish schedule but not less than 80% for sponge and 90% for brush.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C).
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage areas daily.
 - a. Do not store oil or paint soaked rags inside the building.
 - 3. Do not store materials in any room containing a direct-fired heating unit.
- B. Mix and thin paints in strict accordance with recommendations of the manufacturer.
 - 1. Mix paints only in areas designated, and provided proper protection for walls and floors.

1.6 PROJECT CONDITIONS

- A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C).
- B. Do not apply interior paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.
- C. Do not apply exterior paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce manufacturer and product lists, the following requirements apply for product selection:
 - Products: Subject to compliance with requirements, provide one of the products specified.

2.2 PAINT, GENERAL

- A. Material Compatibility:
 - 1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, provide products recommended in writing by manufacturers of topcoat for use in paint system and on substrate indicated.

2.3 COLORS

- A. The Architect has the option of accenting certain building elements different colors; (i.e.: doors, frames, columns, ceilings, walls) to be defined in a Schedule.
- B. The Architect reserves the right to select colors from manufacturer's standard or premium price groups, including deep tone colors for both interior and exterior products.

- C. Furnish an equal product by the same manufacturer only in those instances where a deep tone color specified by the Architect is not available in the specified product. This is subject to Architect's approval.
- D. Tinted primer shall be used whenever deep tone colors are specified.

2.4 EXTERIOR FINISHES

- A. Ferrous Metals (i.e. doors, railings, fences, lintels, etc.):
 - 1. First Coat: (If flash rusting occurs, use two coats)
 - a. Benjamin Moore: MO4 Acrylic Metal Primer
 - Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - c. PPG Industries: 90-708 Series, Pitt-Tech One-Pack Interior/Exterior Industrial Primer
 - d. Pratt & Lambert: Universal Acrylic Primer Z6631 or Steeltech Acrylic Prime & Finish Z190.
 - e. Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series
 - 2. Second and Third Coats:
 - a. Benjamin Moore: Moorcraft Latex House and Trim Paint 170 except at railings which shall be Impervex Enamel 309
 - b. Glidden Professional: Devoe Coatings Devflex 4216HP High Performance Waterborne Acrylic Semi-Gloss Enamel.
 - c. PPG Industries: 6-2000 Series, Speedhide Exterior Satin Latex except at railings which shall receive 90-474 Series, Pitt-Tech One Pack Interior/Exterior Satin High Performance Industrial Enamel.
 - d. Pratt & Lambert: DTM Acrylic Gloss Z6841 or Semi-Gloss Z6761 or Satin Z6671.
 - e. Sherwin Williams: DTM Acrylic Gloss Coating (Water Reducible), B66-100
- B. Exterior Structural Steel exposed to view.
 - For warranty purposes, the Contractor shall insure that the specified primer in Division 5
 "Structural Steel" and the intermediate and finish coats specified below are from the
 same manufacturer.
 - No coatings shall be applied until approved by the Architect and Owner's Representative.
 - 2. Prime Coat: Refer to Division 5, "Structural Steel."
 - Intermediate Coat:
 - a. Tnemec: One (1) coat TNEMEC Series 161 TNEME Fascure @ 4.0 to 6.0 mils
 - b. Wasser: One (1) component MC-CR @ 3.0-4.0 mils DFT.
 - c. Sherwin Williams: One (1) coat Macropoxy 646 FC @ 5-10 mils DFT.
 - Finish Coat:
 - a. Tnemec: One (1) coat TNEMEC Series 74 Endura-Shield @ 2.0 to 5.0 mil DFT.

- Glidden Professional: One (1) Coat Devoe Coatings DETHANE 379H
 Aliphatic Urethane Enamel @ 2.0 to 3.0 mils DFT.
- c. Wasser: One (1) component MC-Luster @ 2.0-4.0 mils DFT.
- d. Sherwin Williams: One (1) coat Acrolon 218 HS @ 3-6 mils DFT.

2.5 INTERIOR FINISHES

- A. Plaster and Gypsum Board Ceilings and Ceiling Drops
 - 1. First Coat:
 - a. Benjamin Moore: Moorcraft Vinyl Latex Primer-Sealer 273.
 - b. Glidden Professional: High Hide Interior Primer Sealer 1000-1200.
 - c. Pittsburgh Paints:4-603 Permacrete interior/exterior Acrylic Alkali Resistant Primer for plaster; 6-2 Interior Latex Sealer for gypsum board.
 - d. Pratt & Lambert: Plaster: Pro Hide Gold Z1001 Gypsum: Pro Hide Gold High Holdout Latex Primer/Sealer Z8165
 - e. Sherwin Williams: ProMar 200 Zero VOC Primer B28W2600
 - 2. Second Coat:
 - a. Benjamin Moore: Moorcraft Vinyl Latex Flat 275
 - b. Glidden Professional: Ultra-Hide 150 Interior Flat Paint 1210V Series.
 - c. Pittsburgh Paints: Speedhide Latex Flat 6-70 (for all colors)
 - d. Pratt & Lambert: Pro Hide Gold Latex Flat Z8100, Eggshell Z8200, Satin Z9400 or Semi Z8300.
 - e. Sherwin Williams: ProMar 200 Zero VOC Latex Flat B30 Series
 - 3. Third Coat:
 - a. Benjamin Moore: Moorcraft Vinyl Latex Flat 275
 - b. Glidden Professional: Ultra-Hide 150 Interior Flat Paint 1210V Series.
 - c. Pittsburgh Paints: Speedhide Latex Flat 6-70 (for all colors)
 - d. Pratt & Lambert: Pro Hide Gold Latex Flat Z8100, Eggshell Z8200, Satin Z9400, or Semi Z8300.
 - Sherwin Williams: ProMar 200 Zero VOC Latex Flat B30 Series
- B. Plaster and Gypsum Board Walls and Columns Non-epoxy:
 - First Coat:
 - a. Benjamin Moore: Moorcraft Vinyl Latex Primer-Sealer 273
 - b. Glidden Professional: High Hide Interior Primer Sealer 1000-1200.
 - c. Pittsburgh Paints:4-603 Permacrete interior/exterior Acrylic Alkali Resistant Primer for plaster; 6-2 Interior Latex Sealer for gypsum board.
 - d. Pratt & Lambert: Plaster: Pro Hide Gold Z1001 Gypsum: Pro Hide Gold High Holdout Latex Primer/Sealer Z8165.
 - e. Sherwin Williams: ProMar 200 Zero VOC Primer B28W2600
 - 2. Second and Third Coats:
 - a. Benjamin Moore: Moorcraft Latex Eggshell Enamel 274
 - b. Glidden Professional: Ultra-Hide 150 Interior Eggshell Paint 1412V Series.
 - c. Pittsburgh Paints: Speedhide Latex Eggshell 6-411 Pratt & Lambert: Pro Hide + Latex Eggshell Enamel

- d. Pratt & Lambert: Pro Hide Gold Latex Flat Z8100, Eggshell Z8200, Satin Z9400 or Semi Z8300.
- e. Sherwin Williams: ProMar 200 Zero VOC Latex Eg-Shel B20 Series
- C. Plaster and Gypsum Board Walls and Columns Epoxy:
 - First Coat:
 - a. Benjamin Moore: M08/M09 Waterborne Epoxy Primer
 - b. Glidden Professional: High Hide Interior Primer Sealer 1000-1200.
 - c. Pittsburgh Paints:4-603 Permacrete interior/exterior Acrylic Alkali Resistant Primer for plaster; 6-2 Interior Latex Sealer for gypsum board.
 - d. Pratt & Lambert: Plaster: Pro Hide Gold Z1001 Gypsum: Pro Hide Gold High Holdout Latex Primer/Sealer Z8165.
 - e. Sherwin Williams: ProMar 200 Zero VOC Primer B28W2600
 - 2. Second and Third Coats:
 - a. Benjamin Moore: M43/M44 Acrylic Epoxy Gloss Coating
 - Glidden Professional: Devoe Coatings Tru-Glaze-WB Waterborne Epoxy Gloss Coating 4428.
 - c. Pittsburgh Paints: 16-551 Series, Pitt-Glaze High Solids Acrylic-Epoxy.
 - d. Pratt & Lambert: Acrylic Water-Based Epoxy Z7021.
 - e. Sherwin Williams: Water Based Catalyzed Epoxy, B70/B60V25
- D. Masonry Block
 - 1. First Coat: Masonry block filler at rate not to exceed 100 sq. ft. per gal.
 - a. Benjamin Moore: Interior and Exterior Block Filler 173
 - Glidden Professional: Concrete Coatings Block Filler Interior/Exterior Primer 3010-1200.
 - c. Pittsburgh Paints: Speedhide Latex Block Filler 6-15
 - d. Pratt & Lambert: Pro Hide Silver Block Filler Z8485
 - e. Sherwin Williams: Pro Mar Interior/Exterior Block Filler B25W25
 - 2. Second and Third Coats Non-epoxy.
 - a. Semi-Gloss Latex Enamel Finish: Two (2) Coats over filled surface with total dry film thickness not less than 3.5 mils, excluding filler coat.
 - 1) Benjamin Moore: Moorcraft Latex Semi Gloss Enamel 276.
 - 2) Glidden Professional: Ultra-Hide 150 Interior Semi-Gloss Paint 1416V Series.
 - 3) Pittsburgh Paints: 6-512 Series, Speedhide Semi-Gloss Latex Enamel.
 - 4) Pratt & Lambert: Pro Hide Gold Latex, Satin Z9400 or Semi Z8300
 - 5) Sherwin Williams: ProMar 200 Zero VOC Latex Semi-Gloss B31 Series

- 3. Second and Third Coats Epoxy.
 - a. Benjamin Moore: M43/M44 Acrylic Epoxy Gloss Coating
 - Glidden Professional: Devoe Coatings Tru-Glaze-WB Waterborne Epoxy Gloss Coating 4428.
 - c. Pittsburgh Paints: 16-551 Series, Pitt-Glaze High Solids Acrylic-Epoxy.
 - d. Pratt & Lambert: Acrylic Water-Based Epoxy Z7021
 - e. Sherwin Williams: Water Based Catalyzed Epoxy, B70/B60V25
- E. Existing Painted Masonry Block Epoxy.
 - 1. Sample Patch: Prepare a 36" x 36" minimum test area to see if a reaction occurs between existing and new finishes prior to proceeding with the specified work. If a reaction occurs, alert Architect and propose solution(s).
 - First Coat: Barrier Coat Primer
 - a. Benjamin Moore: M08/M09 Waterborne Epoxy Primer
 - b. Glidden Professional: Devoe Coatings Tru-Glaze-WB Waterborne Epoxy Primer 4030.
 - c. Pittsburgh Paints: 17-921 Seal Grip exterior/interior 100% acrylic Primer/Sealer
 - d. Pratt & Lambert: Acrylic Waterborne Bonding Primer Z6650
 - e. Sherwin Williams: Loxon Masonry Primer A24W8300 (patches and bare spots)
 - Second and Third Coats.
 - a. Benjamin Moore: M43/M44 Acrylic Epoxy Gloss Coating
 - Glidden Professional: Devoe Coatings Tru-Glaze-WB Waterborne Epoxy Gloss Coating 4428.
 - c. Pittsburgh Paints: 16-800 Series, Pitt-Glaze High Solids Acrylic-Epoxy.
 - d. Pratt & Lambert: Enducryl Water-Based Epoxy Z7021
 - e. Sherwin Williams: Water Based Catalyzed Epoxy, B70/B60V25
- F. Exposed Ceiling Construction Dry Fall Paint.
 - 1. Preparation: Spot prime any welds, etc.
 - First Coat:
 - a. Benjamin Moore: M04 Acrylic Metal Primer
 - Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - c. Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/Exterior Industrial Primer.
 - d. Pratt & Lambert: Steel Tech Arcylic Metal Primer, Z190
 - Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series
 - 3. Second and Third Coats: (if deep tone colors are specified, the products below shall be factory mixed)
 - a. Benjamin Moore: Moorcraft Dry Fog Sweep Up 272
 - b. Glidden Professional: Waterborne Interior Dryfall Flat 1280-1200.
 - c. Pittsburgh Paints: 6-715X, Speedhide Flat Latex Dry Fog
 - d. Pratt & Lambert: Enducryl Acrylic Dryfall, Flat Z5900 or Semi Z5910
 - e. Sherwin Williams: Low VOC Waterborne Acrylic Dryfall Flat B42W81

G. Ferrous, Galvanized Metals, Aluminum

1. Preparation:

- a. See Divisions 5 and 8 for requirements for priming of ferrous metals.
- Do all touch up and priming of unprimed metals in accordance with requirements of Divisions 5 and 8.
- Apply paint in accordance with Steel Structure Painting Council Paint Application Specifications SSPC-PA1 to a dry film thickness as specified by the manufacturer.
- First Coat Primer:
 - a. Ferrous metal (to be used even at shop primed items except as noted in Division 5):
 - 1) Benjamin Moore: M04 Acrylic Metal Primer
 - 2) Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/Exterior Industrial Primer.
 - 4) Pratt & Lambert: Steel Tech Acryulic Prime & Finish Z190
 - 5) Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series
 - b. Galvanized metal after thorough cleaning per SSPC-SP1 with water soluble degreaser. No hydrocarbons.
 - 1) Benjamin Moore: M04 Acrylic Metal Primer
 - 2) Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - 3) Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/Exterior Industrial Primer.
 - 4) Pratt & Lambert: Steel Tech Acrylic Prime & Finish Z190
 - 5) Sherwin Williams: ProCryl Universal Metal Primer B660310 Series

c. Aluminum:

- 1) Benjamin Moore: M04 Acrylic Metal Primer
- 2) Glidden Professiona; Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
- Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/Exterior Industrial Primer.
- 4) Pratt & Lambert: Steel Tech Acrylic Prime & Finish Z190
- 5) Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series

4. Second and Third Coats:

- a. Benjamin Moore: Moorcraft Latex Semi Gloss Enamel 276
- Glidden Professional: Ultra-Hide 150 Interior Latex Semi-Gloss Paint 1416V Series
- c. Pittsburgh Paint: 6-512 Series, Speedhide Semi-Gloss Latex Enamel.
- d. Pratt & Lambert: Enducryl Acrylic Semi Gloss Z6621
- e. Sherwin Williams: Pro Industrial Zero VOC Acrylic Semi-Gloss B66-600 Series.

- H. Structural Steel, Interior Wet or Severe Exposed:
 - 1. For warranty purposes, the Contractor shall insure that the specified primer in Division 5 "Structural Steel" and the intermediate and finish coats specified below are from the same manufacturer.
 - a. No coatings shall be applied until approved by the Architect and Owner's Representative.
 - Prime Coat: Refer to Division 5, "Structural Steel."
 - Intermediate Coat:
 - a. Tnemec: One (1) coat TNEMEC Series 161 Tneme-fascure @ 4.0 to 6.0 mil DFT.
 - b. Glidden Professional: Devoe Coatings One (1) coat Bar-Rust 231 Multi-Purpose Epoxy Mastic @ 4.0-8.0 mils DFT.
 - c. Wasser: One (1) component MC-CR @ 3.0-4.0 mils DFT.
 - d. Sherwin Williams: One (1) coat Macropoxy 646 FC @ 5-10 mils DFT.

4. Finish Coat:

- a. Tnemec: One (1) coat TNEMEC Series 74 Endura-Shield @ 2.0 to 5.0 mil DFT.
- b. Glidden Professional: One (1) Coat Devoe Coatings DETHANE 379H Aliphatic Urethane Enamel @ 2.0 to 3.0 mils DFT.
- c. Wasser: One (1) component MC-Luster @ 2.0-4.0 mils DFT.
- d. Sherwin Williams: One (1) coat Acrolon 218 HS @ 3-6 mils DFT.

2.6 MECHANICAL

- A. Apparatus, Equipment, and Equipment Supports
 - 1. First Coat:
 - a. Benjamin Moore: M04 Acrylic Metal Primer
 - Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - c. Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/ Exterior.
 - d. Pratt & Lambert: Steel Tech Acrylic Prime & Finish Z190
 - e. Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series

2. Second Coat:

- a. Benjamin Moore: Moorcraft Latex Semi Gloss Enamel 276
- b. Glidden Professional: Devoe Coatings Devflex 4216HP High Performance Waterborne Acrylic Semi-Gloss Enamel.
- c. Pittsburgh Paints: 90-474 Series, Pitt-Tech One Pack Interior/Exterior Satin High Performance Industrial Enamel.
- d. Pratt & Lambert: Enducryl Acrylic Semi Gloss Z6621
- e. Sherwin Williams: Pro Industrial Zero VOC Acrylic Semi-Gloss B66-600 Series.

- B. Exposed Bare Piping, Valves, Fittings, and Hangers:
 - 1. First Coat:
 - a. Benjamin Moore: M04 Acrylic Metal Primer
 - Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - c. Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/Exterior Industrial Primer.
 - d. Pratt & Lambert: Steel Tech Acrylic Prime & Finish Z190
 - e. Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series.
 - 2. Second Coat:
 - a. Benjamin Moore: Moorcraft Latex Semi Gloss 276
 - b. Glidden Professional: Devoe Coatings Devflex 4216HP High Performance Waterborne Acrylic Semi-Gloss Enamel.
 - c. Pittsburgh Paints: 90-474 Series, Pitt-Tech One Pack Interior/Exterior Satin High Performance Industrial Enamel.
 - d. Pratt & Lambert: Enducryl Acrylic Semi Gloss Z6621
 - e. Sherwin Williams: Pro Industrial Zero VOC Acrylic Semi-Gloss B66-600 Series.
- C. Exposed Insulation Piping, Valves, Fittings, and Hangers when canvas wrapped:
 - 1. First Coat:
 - a. Benjamin Moore: Moorcraft Vinyl Latex Primer-Sealer 273
 - b. Glidden Professional: High Hide Interior Primer Sealer 1000-1200.
 - c. Pittsburgh Paints: Speedhide Latex Primer-Sealer 6-2
 - d. Pratt & Lambert: Pro Hide Gold High Holdout Latex Primer Z8165
 - e. Sherwin Williams: ProMar 200 Zero VOC Primer B28W2600
 - 2. Second Coat:
 - a. Benjamin Moore: Moorcraft Vinyl Latex Flat 275
 - b. Glidden Professional: Ultra-Hide 150 Interior Flat Paint 1210V Series.
 - c. Pittsburgh Paints: Speedhide Latex Interior Flat 6-70
 - d. Pratt & Lambert: Pro Hide Gold Flat Z8100
 - e. Sherwin Williams: ProMar 200 Zero VOC Flat B30 Series.
- D. Insulated Ductwork and Piping with Canvas Covering Inc. Hangers for any kind of ductwork.
 - 1. One Brush Coat:
 - a. Pittsburgh Paints: 42-7, Speedhide Interior Fire Retardant Flat Latex.
- E. Grilles, Registers, and Diffusers
 - First Coat:
 - a. Benjamin Moore: M04 Acrylic Metal Primer
 - Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - c. Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/Exterior Industrial Primer.

- d. Pratt & Lambert: Steel Tech Acrylic Prime & Finish Z190
- e. Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series.

2. Second and Third Coats:

- a. Benjamin Moore: Moorcraft Latex Semi Gloss Enamel 276
- b. Glidden Professional: Devoe Coatings Devflex 4216HP High Performance Waterborne Acrylic Semi-Gloss Enamel.
- Pittsburgh Paints: 90-474 Series, Pitt-Tech One Pack Interior/Exterior Satin High Performance Industrial Enamel.
- d. Pratt & Lambert: Enducryl Acrylic Semi Gloss Z6621
- e. Sherwin Williams: Pro Industrial Zero VOC Acrylic Semi-Gloss B66-600 Series.

F. Exterior Ductwork Exposed to Weather

- 1. First Coat (Heavy coat of one of the following):
 - a. Glidden Professional: Devoe Coatings Devran 201H Universal Epoxy Primer.
 - b. Koppers: Bitumastic-Super Service Black
 - c. Pittsburgh Paints: 95-240 Series, Pitt-Guard Rapid Coat D-T-R.
 - d. Sherwin Williams: Macropoxy 646 Fast Cure, B58-600/B58V600.
 - e. Wasser: MC Tar.
- 2. Second and Third Coats (allow 24 hours drying time after first coat):
 - a. Glidden Professional: One (1) Coat Devoe Coatings DETHANE 379H Aliphatic Urethane Enamel @ 2.0 to 3.0 mils DFT.
 - b. Koppers: Bituglas Aluminum
 - c. Pittsburgh Paints: 95-240 Series, Pitt-Guard Rapid Coat D-T-R.
 - d. Sherwin Williams: Hi-Solids Polyurethane B65-300.
 - e. Wasser: MC Tar.

2.7 ELECTRICAL

- A. Exterior Exposed Electrical Conduit Fittings, Boxes, and other miscellaneous exterior electrical items.
 - 1. First Coat Galvanized:
 - a. Benjamin Moore: M04 Acrylic Metal Primer
 - Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - c. Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/Exterior Industrial Primer.
 - d. Pratt & Lambert: Steel Tech Acrylic Prime & Finish Z190
 - e. Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series.
 - 2. First Coat Ferrous Metal:
 - a. Benjamin Moore: M04 Acrylic Metal Primer
 - Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - c. Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/Exterior Industrial Primer.
 - d. Pratt & Lambert: Steel Tech Acrylic Prime & Finish Z190
 - e. Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series.

- 3. Second and Third Coats:
 - a. Benjamin Moore: Impervex Enamel 309
 - b. Glidden Professional: Devoe Coatings Devflex 4216HP High Performance Waterborne Acrylic Semi-Gloss Enamel.
 - c. Pittsburgh Paints: 90-374 Series, Pitt-Tech One Pack Interior/Exterior Gloss High Performance Industrial Enamel.
 - d. Pratt & Lambert: Enducryl Acrylic Gloss Z6611
 - e. Sherwin Williams: DTM Acrylic Gloss Coating (Water Reducible), B66 Series
- B. Interior Exposed Electrical Items in areas where walls and/or ceilings are painted including electrical panels, cabinets, exposed conduit, etc.
 - 1. First Coat Galvanized:
 - a. Benjamin Moore: M04 Acrylic Metal Primer
 - Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - c. Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/Exterior Industrial Primer.
 - d. Pratt & Lambert: Steel Tech Acrylic Prime & Finish Z190
 - e. Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series.
 - First Coat Ferrous Metal:
 - a. Benjamin Moore: M04 Acrylic Metal Primer
 - Glidden Professional: Devoe Coatings Devflex 4020PF Direct to Metal Primer & Flat Finish.
 - c. Pittsburgh Paints: 90-708 Series, Pitt-Tech One Pack Interior/Exterior Industrial Primer.
 - d. Pratt & Lambert: Steel Tech Acrylic Prime & Finish Z190
 - e. Sherwin Williams: ProCryl Universal Metal Primer B66-310 Series.
 - 3. Second and Third Coats:
 - a. Benjamin Moore: Moorcraft Latex Semi Gloss Enamel 276
 - b. Glidden Professional: Devoe Coatings Devflex 4216HP High Performance Waterborne Acrylic Semi-Gloss Enamel.
 - c. Pittsburgh Paint: 90-474 Series, Pitt-Tech One Pack Interior/Exterior Satin High Performance Industrial Enamel.
 - d. Pratt & Lambert: Enducryl Acrylic Gloss Z6611
 - e. Sherwin Williams: Pro Industrial Zero VOC Acrylic Semi-Gloss B66-600 Series.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - 1. Concrete: 12 percent.
 - 2. Masonry (Clay and CMU): 12 percent.

3. Wood: 15 percent.

4. Gypsum Board: 12 percent.

5. Plaster: 12 percent.

- C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.
- D. Begin coating application only after unsatisfactory conditions have been corrected and surfaces are dry.
 - Beginning coating application constitutes Contractor's acceptance of substrates and conditions.

3.2 PREPARATION OF NEW SUBSTRATES

- A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.
- B. Remove plates, machined surfaces, and similar items already in place that are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
 - 2. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
- C. Clean substrates of substances that could impair bond of paints, including dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers as required to produce paint systems indicated.
- D. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions.
- E. Clay Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content of surfaces or alkalinity of mortar joints to be painted exceed that permitted in manufacturer's written instructions.
- F. Concrete Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions.
- G. Ferrous Metals, Galvanized Metal, Aluminum: Clean surfaces according to the Steel Structure Painting Council Surface Preparation Specifications: SSPC-SP1 Solvent Cleaning, SSPC-SP2 Hand Tool Cleaning, or SSPC-SP3 Power Tool Cleaning, as appropriate.
 - 1. Steel Substrates: Remove any rust and loose mill scale. Clean using methods recommended in writing by paint manufacturer.
 - 2. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal fabricated from coil stock by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

- a. Thoroughly clean galvanized metal per SSPC-SP1 with water soluble degreaser. No hydrocarbons.
- Aluminum Substrates: Remove surface oxidation.

H. Wood Substrates:

- Refer to Division 6 Section "Finish Carpentry and Millwork" for preparation specified under other trades.
- Countersink all nails and finish with putty or plastic wood filler. Sand smooth when dried.
- Sand surfaces that will be exposed to view, and dust off.
- 4. Prime edges, ends, faces, undersides, and backsides of wood.
- After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.
- I. Gypsum Board Substrates: Do not begin paint application until finishing compound is dry and sanded smooth.
- J. Plaster Substrates: Do not begin paint application until plaster is fully cured and dry.
- K. Plastic Trim Fabrication Substrates: Remove dust, dirt, and other foreign material that might impair bond of paints to substrates.

3.3 PREPARATION OF EXISTING SUBSTRATES

- A. Preparation of Previously Painted Surfaces: Comply with requirements as specified for preparation of new substrates as well as the following:
 - 1. Scrub clean existing surfaces with a stiff brush and a solution of clean water and mild detergent.
 - 2. Scuff sand surface to allow new finish to hold.
 - 3. De-gloss painted surfaces in a manner appropriate to the substrate.
 - 4. Fill cracks, holes, voids and defects, and leave a smooth surface ready for application of primer.
 - 5. Remove loose paint and feather edges or patch as required to provide a smooth, seamless finish.
 - 6. Prepare a 36" x 36" minimum test area to see if a reaction occurs between existing and new finishes prior to proceeding with the specified work. If a reaction occurs, alert Architect and propose solution(s).

3.4 PRIMING AND BACKPRIMING OF WOOD

A. All wood, factory finished or otherwise, must be back-primed immediately upon delivery with interior trim primer specified for wood which is to be painted, or finish manufacturer's recommended protective pre-treatment for wood which is to have natural finish.

- B. Apply first coat to all wood scheduled to receive natural finish before material is handled at the site by other trades.
- C. Furnish sealer to other trades for touching up any bare wood caused by mortising or butting of surfaces, or any kind of assembly or installation.
- D. Avoid painting over or otherwise staining edges of wood where natural finish is scheduled.

3.5 APPLICATION

- A. General: Apply paints according to manufacturer's written instructions.
 - 1. Use applicators and techniques suited for paint and substrate indicated.
 - Except where specifically authorized by the Architect to do otherwise: Apply flat or eggshell wall paint by brush or roller; apply gloss or semi-gloss with brush only.
 - 2. Sanding: In addition to preparatory sanding, fine sand between succeeding coats of all varnish enamel or flat enamel, using sandpaper appropriate to the finish. Use fine production paper between coats.
 - 3. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 - 4. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 - 5. Doors: Finish all edges, including tops and bottoms, of wood and metal doors same as faces. Fill edges of exposed plywood doors, panels, similar materials.
 - 6. Finish interior of all closets and cabinets same as adjoining rooms, unless otherwise scheduled.
 - 7. Apply one coat of sanding sealer and one coat of semi-gloss varnish to insides of all drawers unless otherwise specified.
- B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.
- C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance. The number of coats scheduled are minimums.
- D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
 - 1. Holidays and restrikes in painted surfaces shall be considered sufficient cause to require recoating of entire surface.
- E. Painting Mechanical and Electrical Work: Paint items exposed in equipment rooms and occupied spaces including, but not limited to, the following:

Mechanical Work:

- a. Uninsulated metal piping.
- b. Uninsulated plastic piping.
- c. Pipe hangers and supports.
- d. Tanks that do not have factory-applied final finishes.
- e. Visible portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets.
- f. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
- Mechanical equipment that is indicated to have a factory-primed finish for field painting.

Electrical Work:

- a. Switchgear.
- b. Panelboards.
- c. Electrical equipment that is indicated to have a factory-primed finish for field painting.

3.6 FIELD QUALITY CONTROL

- A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure at any time and as often as Owner deems necessary during the period when paints are being applied:
 - 1. Owner will engage the services of a qualified testing agency to sample paint materials being used. Samples of material delivered to Project site will be taken, identified, sealed, and certified in presence of Contractor.
 - Testing agency will perform tests for compliance of paint materials with product requirements.
 - 3. Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying-paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

3.7 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

END OF SECTION

TOILET COMPARTMENTS (Solid-Polymer)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes solid-polymer units as follows:
 - Toilet Enclosures: Floor mounted, overhead braced.
- B. Related Sections include the following:
 - 1. Division 6 Section "Rough Carpentry" for blocking.
 - Division 10 Section "Toilet and Bath Accessories" for toilet accessories.

1.3 SUBMITTALS

- A. Product Data: Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Shop Drawings:
 - 1. Show plans of toilet compartments, elevations, details of construction and attachment to existing adjacent construction.
 - 2. Show anchoring locations to existing adjacent construction and accessory items.
 - 3. Verify dimensions and anchoring locations with field measurements prior to final production of toilet compartments.
- C. Samples for Initial Selection: For each type of unit indicated.
- D. Samples for Verification: Of each type of color and finish required for units, prepared on 6-inch- (150-mm) square Samples of same thickness and material indicated for Work.

1.4 QUALITY ASSURANCE

- A. Comply with the following requirements:
 - ASTM International: ASTM E 84 Standard Test Method for Surface Burning Characteristics of Building Materials.
 - 2. National Fire Protection Association: NFPA 286 Standard Methods of Fire Test for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth.

1.5 PROJECT CONDITIONS

A. Field Measurements: Verify actual locations of walls, columns, ceilings, and other construction contiguous with toilet compartments by field measurements before fabrication and indicate measurements on Shop Drawings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: Not greater than 75 (Class B).
 - 2. Smoke-Developed Index: 450 or less.
- B. Comply with the standard acceptance criteria per Annex C of NFPA 286.

2.2 SOLID-POLYMER UNITS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Accurate Partitions Corporation.
 - 2. Global Partitions.
 - 3. Scranton Products. Basis of Design
- B. Door, Panel, and Pilaster Construction: Solid, high-density polyethylene (HDPE) or polypropylene (PP) panel material, not less than 1 inch (25 mm) thick, seamless, with eased edges, with homogenous color and pattern throughout thickness of material.
 - 1. Color and Pattern: Basis of Design: Scranton Products, Color Paisley.
- C. Pilaster Shoes and Sleeves (Caps): Manufacturer's standard design; stainless steel.
- D. Brackets (Fittings):
 - 1. Continuous Type: Ear or U-brackets, stainless steel.
- E. Heat-Sink Strip: Manufacturer's standard continuous, extruded-aluminum strip fastened to exposed bottom edges of solid-polymer components to prevent burning.

2.3 ACCESSORIES

- A. Hardware and Accessories: Manufacturer's standard design, heavy-duty operating hardware and accessories.
 - 1. Material: Stainless steel.

- B. Overhead Bracing: Manufacturer's standard continuous, extruded-aluminum head rail with antigrip profile and in manufacturer's standard finish.
- C. Anchorages and Fasteners: Manufacturer's standard exposed fasteners of stainless steel or chrome-plated steel or brass, finished to match hardware, with theft-resistant-type heads. Provide sex-type bolts for through-bolt applications. For concealed anchors, use hot-dip galvanized or other rust-resistant, protective-coated steel.

2.4 FABRICATION

- A. Overhead-Braced Units: Provide manufacturer's standard corrosion-resistant supports, leveling mechanism, fasteners, and anchors at pilasters to suit floor conditions. Make provisions for setting and securing continuous head rail at top of each pilaster. Provide shoes at pilasters to conceal supports and leveling mechanism.
- B. Doors: Unless otherwise indicated, provide 24-inch (610-mm) wide out-swinging doors for toilet compartments.
- C. Hinges: Manufacturer's standard self-closing type that can be adjusted to hold doors open at any angle up to 90 degrees.
 - 1. Latch and Keeper: Manufacturer's standard recessed latch unit designed for emergency access and with combination rubber-faced door strike and keeper.
 - 2. Door Bumper: Manufacturer's standard rubber-tipped bumper where out-swinging doors open against existing adjacent walls.
 - 3. Door Pull: Manufacturer's standard unit at out-swinging doors that complies with accessibility requirements of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with manufacturer's written installation instructions. Install units rigid, straight, level, and plumb. Secure units in position with manufacturer's recommended anchoring devices.
 - 1. Maximum Clearances:
 - a. Pilasters and Panels: 1/2 inch (13 mm).
 - b. Panels and Walls: 1 inch (25 mm).
 - 2. Continuous Brackets: Secure panels to walls and to pilasters.
 - a. To the greatest extent possible, reuse existing anchor locations to avoid creating new holes in existing walls. If new holes must be created, review locations with Architect prior to start of installation.
- B. Overhead-Braced Units: Secure pilasters to floor and level, plumb, and tighten. To the greatest extent possible, reuse existing anchor locations to avoid creating new holes in existing floor. If new holes must be created, review locations with Architect prior to start of installation. Secure continuous head rail to each pilaster with not less than two fasteners. Hang doors to align tops of doors with tops of panels and adjust so tops of doors are parallel with overhead brace when doors are in closed position.

3.2 ADJUSTING

A. Hardware Adjustment: Adjust and lubricate hardware according to manufacturer's written instructions for proper operation. Set hinges on in-swinging doors to hold doors open approximately 30 degrees from closed position when unlatched. Set hinges on out-swinging doors to return doors to fully closed position.

END OF SECTION

TOILET AND BATH ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Framed mirrors.
 - 2. Liquid soap dispenser surface mounted. (Owner furnished and installed)
 - 3. Paper towel dispenser sirfaced mounted. (Owner furnished and installed).
 - 4. Multi-roll toilet tissue dispenser surface mounted. (Owner furnished and installed)
 - 5. Grab bars.
- B. Related Sections include the following:
 - 1. Division 06 Section "Finish Carpentry and Millwork" for countertops.

1.3 SUBMITTALS

- A. Product Data: Include construction details, material descriptions and thicknesses, dimensions, profiles, fastening and mounting methods, specified options, and finishes for each type of accessory specified.
- B. Samples: For each accessory item to verify design, operation, and finish requirements.
- C. Setting Drawings: For cutouts required in other work; include templates, substrate preparation instructions, and directions for preparing cutouts and installing anchoring devices.
- D. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required. Use designations indicated in the Toilet and Bath Accessory Schedule and room designations indicated on Drawings in product schedule.
- E. Maintenance Data: For accessories to include in maintenance manuals specified in Division 1. Provide lists of replacement parts and service recommendations.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Provide products of same manufacturer for each type of accessory unit and for units exposed to view in same areas, unless otherwise approved by Architect.
- B. Product Options: Accessory requirements, including those for materials, finishes, dimensions, capacities, and performance, are established by specific products indicated in the Toilet and Bath Accessory Schedule.

- 1. Products of other manufacturers listed in Part 2 with equal characteristics, as judged solely by Architect, may be provided.
- 2. Other manufacturers' products with equal characteristics may be considered. See Division 1 for product substitutions.
- 3. Do not modify aesthetic effects, as judged solely by Architect, except with Architect's approval. Where modifications are proposed, submit comprehensive explanatory data to Architect for review.
- C. Comply with applicable provisions of the following specification and documents:
 - ICC/ANSI A11.1-2003 American National Standard Accessible and Useable Buildings and Facilities.
 - 2. Michigan Building Code.
 - 3. ADA, Accessibility Guidelines for Buildings and Facilities, Federal Register Volume 56, Number 144, Rules and Regulations.
 - 4. Michigan Barrier Free.

1.5 COORDINATION

- A. Coordinate accessory locations with other work to prevent interference with clearances required for access by disabled persons, proper installation, adjustment, operation, cleaning, and servicing of accessories.
- B. Deliver inserts and anchoring devices set into concrete or masonry as required to prevent delaying the Work.

1.6 WARRANTY

- A. General Warranty: Special warranty specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.
- B. Furnish a one (1) year guarantee against defects in material and workmanship on all accessories from date of substantial completion.
- C. Manufacturer's Mirror Warranty: Written warranty, executed by mirror manufacturer agreeing to replace mirrors that develop visible silver spoilage defects within minimum warranty period indicated.
 - 1. Minimum Warranty Period: 15 years from date of Substantial Completion.
- D. Manufacturer's Hand Dryer Warranty: Written warranty, executed by hand dryer manufacturer, against defects in material and workmanship within minimum warranty periods indicated.
 - 1. Minimum Warranty Period for Motor Brushes: Three (3) years from date of Substantial Completion.
 - 2. Minimum Warranty period for all other parts: Ten (10) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide accessories by one of the following:
 - 1. Toilet and Bath Accessories:
 - a. American Specialties, Inc.
 - b. Bobrick Washroom Equipment, Inc.
 - c. Bradley Corporation.

2.2 MATERIALS

- A. Stainless Steel: ASTM A 666, Type 304, with No. 4 finish (satin), in 0.0312-inch (0.8-mm) minimum nominal thickness, unless otherwise indicated.
- B. Brass: ASTM B 19, leaded and unleaded flat products; ASTM B 16 (ASTM B 16M), rods, shapes, forgings, and flat products with finished edges; ASTM B 30, castings.
- C. Sheet Steel: ASTM A 366/A 366M, cold rolled, commercial quality, 0.0359-inch (0.9-mm) minimum nominal thickness; surface preparation and metal pretreatment as required for applied finish.
- D. Galvanized Steel Sheet: ASTM A 653/A 653M, G60 (Z180).
- E. ABS Plastic: Acrylonitrile-butadiene-styrene resin formulation.
- F. Chromium Plating: ASTM B 456, Service Condition Number SC 2 (moderate service), nickel plus chromium electrodeposited on base metal.
- G. Baked-Enamel Finish: Factory-applied, gloss-white, baked-acrylic-enamel coating.
- H. Mirror Glass: ASTM C 1036, Type I, Class 1, Quality q2, nominal 6.0 mm thick, with silvering, electroplated copper coating, and protective organic coating complying with FS DD-M-411.
- Galvanized Steel Mounting Devices: ASTM A 153/A 153M, hot-dip galvanized after fabrication.
- J. Fasteners: Screws, bolts, and other devices of same material as accessory unit, tamper and theft resistant when exposed, and of galvanized steel when concealed.

2.3 FABRICATION

- A. General: One, maximum 1-1/2-inch- (38-mm-) diameter, unobtrusive stamped manufacturer logo, as approved by Architect, is permitted on exposed face of accessories. On interior surface not exposed to view or back surface of each accessory, provide printed, waterproof label or stamped nameplate indicating manufacturer's name and product model number.
- B. Surface-Mounted Toilet Accessories: Unless otherwise indicated, fabricate units with tight seams and joints, and exposed edges rolled. Hang doors and access panels with continuous stainless-steel hinge. Provide concealed anchorage where possible.
- C. Recessed Toilet Accessories: Unless otherwise indicated, fabricate units of all-welded construction, without mitered corners. Hang doors and access panels with full-length, stainless-steel hinge. Provide anchorage that is fully concealed when unit is closed.

- D. Framed Glass-Mirror Units: Fabricate frames for glass-mirror units to accommodate glass edge protection material. Provide mirror backing and support system that permits rigid, tamper-resistant glass installation and prevents moisture accumulation.
 - 1. Provide galvanized steel backing sheet, not less than 0.034 inch (0.85 mm) and full mirror size, with nonabsortive filler material. Corrugated cardboard is not an acceptable filler material.
- E. Mirror-Unit Hangers: Provide mirror-unit mounting system that permits rigid, tamper- and theftresistant installation:
- F. Keys: Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of six keys to Owner's representative.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.
- B. Secure mirrors to walls in concealed, tamper-resistant manner with special hangers, toggle bolts, or screws. Set units level, plumb, and square at locations indicated, according to manufacturer's written instructions for substrate indicated.
- C. Install grab bars to withstand a downward load of at least 250 lbf (1112 N), when tested according to method in ASTM F 446.

3.2 ADJUSTING AND CLEANING

- A. Adjust accessories for unencumbered, smooth operation and verify that mechanisms function properly. Replace damaged or defective items.
- B. Remove temporary labels and protective coatings.
- C. Clean and polish exposed surfaces according to manufacturer's written recommendations.

3.3 TOILET AND BATH ACCESSORY SCHEDULE

- A. Framed Mirror: Provide mirror unit complying with the following:
 - 1. Products: Bobrick Washroom Equipment, Inc. Series B-165.
 - 2. Stainless-Steel, Channel-Framed Mirror: Fabricate frame from stainless-steel channels in manufacturer's standard satin or bright finish with square corners mitered to hairline joints and mechanically interlocked.
 - 3. Mounting: Concealed brackets and wall hangers.
 - 4. Refer to Drawings for size(s).
- B. Soap Dispenser, Surface Mounted: (Owner furnished and installed)
 - 1. Contractor to provide proper blocking.

- C. Paper Towel Dispenser, Surface Mounted: (Owner furnished and installed)
 - 1. Contractor to provide proper blocking.
- D. Multi-Roll Toilet Tissue Dispenser, Surface Mounted: (Owner furnished and installed)
 - 1. Contractor to provide proper blocking.
- E. Grab Bars: Provide stainless-steel grab bar with satin finish complying with the following:
 - 1. Products: Bobrick Washroom Equipment, Inc., Series B-5806.99
 - 2. Stainless-Steel Nominal Thickness: Minimum 0.05 inch (1.3 mm).
 - 3. Mounting: Concealed with manufacturer's standard flanges and anchors.
 - 4. Gripping Surfaces: Manufacturer's standard slip-resistant texture.
 - 5. Outside Diameter: 1-1/4 inches (32 mm) for medium-duty applications.

END OF SECTION

MECHANICAL GENERAL REQUIREMENTS

	GENERAL
1.1	RELATED DOCUMENTS
1.2	SUMMARY
1.3	INDUSTRY STANDARDS1
1.4	PERFORMANCE REQUIREMENTS
1.5	QUALITY ASSURANCE
1.6	CODES, PERMITS AND FEES
1.7	DRAWINGS
1.8	MATERIAL AND EQUIPMENT MANUFACTURERS
1.9	INSPECTION OF SITE
1.10	ITEMS REQUIRING PRIOR APPROVAL
1.11	SUBMITTALS
1.12	OPERATION AND MAINTENANCE INSTRUCTIONAL MANUALS6
1.13	RECORD DRAWINGS
	INSTRUCTION OF OWNER PERSONNEL
1.15	WARRANTY
DADT 2	PRODUCTS
PART 3 -	EXECUTION
3.1	MECHANICAL DEMOLITION WORK
3.2	REFRIGERANT HANDLING
3.3	WORK IN EXISTING BUILDINGS
3.4	TEMPORARY SERVICES
3.5	WORK INVOLVING OTHER TRADES
3.6	ACCEPTANCE PROCEDURE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to work of this Section.

1.2 SUMMARY

A. This Section includes mechanical general administrative and procedural requirements. The following requirements are included in this Section to supplement the requirements specified in Division 01 Specification Sections.

1.3 INDUSTRY STANDARDS

- A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.
 - 1. AABC Associated Air Balance Council.
 - 2. ABMA American Bearing Manufacturers Association.
 - 3. ABMA American Boiler Manufacturers Association.

- 4. AHRI Air-Conditioning, Heating, and Refrigeration Institute (The).
- 5. AMCA Air Movement and Control Association International, Inc.
- 6. ANSI American National Standards Institute.
- 7. ASHRAE American Society of Heating, Refrigeration and Air Conditioning Engineers.
- 8. ASTM American Society for Testing Materials.
- 9. CDA Copper Development Association.
- 10. CGA Compressed Gas Association.
- 11. CSA CSA International.
- 12. HI Hydraulic Institute.
- 13. Intertek Intertek Group.
- 14. NAIMA North American Insulation Manufacturers Association.
- 15. NEBB National Environmental Balancing Bureau.
- 16. NEC National Electrical Code.
- 17. NECA National Electrical Contractors Association.
- 18. NEMA National Electrical Manufacturer's Association.
- 19. NFPA National Fire Protection Association.
- 20. SMACNA Sheet Metal and Air Conditioning Contractors National Association.
- 21. UL Underwriter's Laboratories, Inc.
- B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.
- C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.
 - 1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

1.4 PERFORMANCE REQUIREMENTS

A. Systems Components Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

1.5 QUALITY ASSURANCE

- A. Scope of Work: Furnish all labor, material, equipment, technical supervision, and incidental services required to complete, test and leave ready for operation the mechanical systems as specified and as indicated on Drawings.
 - Contract Documents are complimentary, and what is required by one shall be as binding as if required by all. In the event of inconsistencies or disagreements within the Construction Documents bids shall be based on the most expensive combination of quality and quantity of the work indicated.
- B. Ordinances and Codes: Perform all Work in accordance with applicable Federal, State and local ordinances and regulations, the Rules and Regulations of ASHRAE, NFPA, SMACNA and UL, unless otherwise indicated.
 - 1. Notify the Architect/Engineer in writing before submitting a proposal should any changes in Drawings or Specifications be required to conform to the above codes, rules or regulations.
 - 2. If the Contractor performs any work knowing it to be contrary to such laws, ordinances, rules and regulations, and without notice to A/E, the Contractor shall bear all costs arising from corrective measures.
- C. Source Limitations: Obtain equipment and other components of the same or similar systems through one source from a single manufacturer.
- D. Tests and Inspections: Perform all tests required by state, city, county and/or other agencies having jurisdiction. Provide all materials, equipment, etc., and labor required for tests.
- E. Performance Requirements: Perform all work in a first class and workmanlike manner, in accordance with the latest accepted standards and practices for the trades involved.
- F. Sequence and Schedule: Perform work to avoid interference with the work of other trades. Remove and relocate work which in the opinion of the Owner's Representatives causes interference.
- G. Labeling Requirement for Packaged Equipment: Electrical panels on packaged mechanical equipment shall bear UL label or label of other Nationally Recognized Testing Laboratory (NRTL) (Intertek, CSA, etc.).

1.6 CODES, PERMITS AND FEES

- A. Unless otherwise indicated, all required permits, licenses, inspections, approvals and fees for Mechanical Work shall be secured and paid for by the Contractor. All Work shall conform to all applicable codes, rules and regulations.
- B. Rules of local utility companies shall be complied with. Check with each utility company supplying service to the installation and determine all devices including, but not limited to, all valves, meter boxes, and meters which will be required and include the cost of all such items in proposal.
- C. All work shall be executed in accordance with the rules and regulations set forth in local and state codes. Prepare any detailed drawings or diagrams which may be required by the governing authorities. Where the drawings and/or specifications indicate materials or construction in excess of code requirements, the drawings and/or specifications shall govern.

D. Refer to Division 22 Section "Domestic Water Piping" for purchase and installation of potable water meters.

1.7 DRAWINGS

- A. The drawings show the location and general arrangement of equipment, piping and related items. They shall be followed as closely as elements of the construction will permit.
- B. Examine the drawings of other trades and verify the conditions governing the work on the job site. Arrange work accordingly. Provide fittings, valves, and accessories as required to meet actual conditions.
- C. Deviations from the drawings, with the exception of minor changes in routing and other such incidental changes that do not affect the functioning or serviceability of the systems, shall not be made without the written approval of the Architect/Engineer.
- D. The Architectural and Structural Drawings take precedence in all matters pertaining to the building structure, Mechanical Drawings in all matters pertaining to Mechanical Trades and Electrical Drawings in all matters pertaining to Electrical Trades. Where there are conflicts or differences between the drawings for the various trades, report such conflicts or differences to the Architect/Engineer for resolution.
- E. Drawings are not intended to be scaled for rough-in or to serve as shop drawings. Take all field measurements required to complete the Work.

1.8 MATERIAL AND EQUIPMENT MANUFACTURERS

- A. Equipment: All items of equipment shall be furnished complete with all accessories normally supplied with the catalog items listed and all other accessories necessary for a complete and satisfactory operating system. All equipment and materials shall be new and shall be standard products of manufacturers regularly engaged in the production of plumbing, heating, ventilating and air conditioning equipment and shall be the manufacturer's latest design.
- B. If an approved manufacturer is other than the manufacturer used as the basis for design, the equipment or product provided shall be equal in size, quality, durability, appearance, capacity, and efficiency through all ranges of operation, shall conform with arrangements and space limitations of the equipment shown on the plans and/or specified, shall be compatible with the other components of the system and shall comply with the requirements for Items Requiring Prior Approval specified in this section of the Specifications. All costs to make these items of equipment comply with these requirements including, but not limited to, piping, sheet metal, electrical work, and building alterations shall be included in the original Bid.
- C. All package unit equipment and skid mounted mechanical components that are factory assembled shall meet, in detail, the products named and specified within each section of the Mechanical and Electrical Specifications.
- D. Changes Involving Electrical Work: The design of the mechanical systems is based on the equipment scheduled on the Drawings. Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified with no additional cost to project. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1. Where equipment changes are made that involve additional Electrical Work (larger size motor, additional wiring of equipment, etc.) the Mechanical Trades involved shall compensate the Electrical Trades for the cost of the additional Work required.

1.9 INSPECTION OF SITE

- A. Visit the site, examine and verify the conditions under which the Work must be conducted before submitting Proposal. The submitting of a Proposal implies that the Contractor has visited the site and understands the conditions under which the Work must be conducted. No additional charges will be allowed because of failure to make this examination or to include all materials and labor to complete the Work.
- B. No contract sum adjustments or contract time extensions will be made for Contractor claims arising from conditions which were or could have been observable, ascertainable or reasonably foreseeable from a site visit or inquiry into local conditions affecting the execution of the work.

1.10 ITEMS REQUIRING PRIOR APPROVAL

- A. Bids shall be based upon manufactured equipment specified. All items that the Contractor proposes to use in the Work that are not specifically named in the Contract Documents must be submitted for review prior to bids. Such items must be submitted in compliance with Division 01 specifications. Requests for prior approval must be accompanied by complete catalog information, including but not limited to, model, size, accessories, complete electrical information and performance data in the form given in the equipment schedule on the drawings at stated design conditions. Where items are referred to by symbolic designations on the drawings, all requests for prior approval shall bear the same designations.
 - Equipment to be considered for prior approval shall be equal in quality, durability, appearance, capacity and efficiency through all ranges of operation, shall fulfill the requirements of equipment arrangement and space limitations of the equipment shown on the plans and/or specified and shall be compatible with the other components of the system.
 - 2. All costs incurred to make equipment comply with other requirements, including providing maintenance, clearance, piping, sheet metal, electrical, replacement of other components, and building alterations shall be included in the original bid.
- B. Voluntary alternates may be submitted for consideration, with listed addition or deduction to the bid, but will not affect the awarding of the contract.

1.11 SUBMITTALS

- A. Submit project specific submittals for review in compliance with Division 01.
- B. Prepare shop drawings to scale for the Architect/Engineer for review. Equipment and material submittals required are indicated in the Mechanical; Fire Suppression; Plumbing; and Heating, Ventilating and Air Conditioning Sections. Refer to Division 01 for submittal quantities.
- C. All submittals shall be submitted in groupings of similar and/or related items. Plumbing fixture submittals shall be submitted as one package including all fixtures intended to be used for this project. Incomplete submittal groupings will be returned "Rejected". Submit shop drawing with identification mark number or symbol numbers as specified or scheduled on the Mechanical Drawings.

- D. All submittals shall be project specific. Standard detail drawings and schedule not clearly indicating which data is associated with this Project will be returned "Rejected".
- E. Shop drawings shall be reviewed by the Mechanical Contractor for completeness and accuracy prior to submitting to the Architect/Engineer for review. The shop drawings shall be dated and signed by the Mechanical Contractor prior to submission.
- F. No equipment shall be shipped from stock or fabricated until shop drawings for them have been reviewed by the Architect/Engineer. Review is only for general conformance with the design concept of the project and general compliance with the information given in the Contract Documents. Any action indicated is subject to the requirement of the plans and specifications.
 - By the review of shop drawings, the Architect/Engineer does not assume responsibility
 for actual dimensions or for the fit of completed work in position, nor does such review
 relieve Mechanical Trades of full responsibility for the proper and correct execution of the
 work required.
 - 2. Contractor is responsible for:
 - a. Dimensions, which shall be confirmed and correlated at the job site.
 - b. Fabrication processes and techniques of construction.
 - c. Quantities.
 - d. Coordination of Contractor's work with all other trades.
 - e. Satisfactory performance of Contractor's work.
 - f. Temporary aspects of the construction process.
- G. If deviations (not substitutions) from Contract Documents are deemed necessary by the Contractor, details of such deviations, including changes in related portions of the project and the reasons therefore, shall be submitted with the submittal for approval.

1.12 OPERATION AND MAINTENANCE INSTRUCTIONAL MANUALS

- A. Submit project specific Operation and Maintenance Instructional Manuals for review in compliance with Division 01 Specification Sections.
- B. Provide complete operation and maintenance instructional manuals covering all mechanical equipment herein specified, together with parts lists. Maintenance and operating instructional manuals shall be job specific to this project. Generic manuals are not acceptable. One copy of all manuals shall be furnished for Owner. Maintenance and operating instructional manuals shall be provided when construction is approximately 75 percent complete.
- C. Format: Submit operations and maintenance manuals in the following format:
 - 1. PDF electronic file. Assemble each manual into a composite electronically indexed file. Submit on digital media acceptable to Architect.
 - Name each indexed document file in composite electronic index with applicable item name. Include a complete electronically linked operation and maintenance directory.
 - b. Enable inserted reviewer comments on draft submittals.
- D. The operating and maintenance instructions shall include a brief, general description for all mechanical systems including, but not limited to:
 - 1. Routine maintenance procedures.

- 2. Lubrication chart listing all types of lubricants to be used for each piece of equipment and the recommended frequency of lubrication.
- 3. Trouble-shooting procedures.
- 4. Contractor's telephone numbers for warranty repair service.
- 5. Submittals.
- 6. Recommended spare parts lists.
- 7. Names and telephone numbers of major material suppliers and subcontractors.
- 8. System schematic drawings.

1.13 RECORD DRAWINGS

- A. Submit record drawings in compliance with Division 01.
- B. Contractor shall submit to the Architect/Engineer, record drawings on electronic media or vellum which have been neatly marked to represent as-built conditions for all new mechanical work.
- C. The Contractor shall keep accurate note of all deviations from the construction documents and discrepancies in the underground concealed conditions and other items of construction on field drawings as they occur. The marked up field documents shall be available for review by the Architect, Engineer and Owner at their request.

1.14 INSTRUCTION OF OWNER PERSONNEL

- A. Before final inspection, instruct Owner's designated personnel in operation, adjustment, and maintenance of mechanical equipment and systems at agreed upon times. A minimum of 24 hours of formal instruction to Owner's personnel shall be provided for each building. Additional hours are specified in individual specification sections.
- B. For equipment requiring seasonal operation, perform instructions for other seasons within six months.
- C. Use operation and maintenance manuals as basis for instruction. Review contents of manual with personnel in detail to explain all aspects of operation and maintenance.
- D. In addition to individual equipment training provide overview of each mechanical system. Utilize the as-built documents for this overview.
- E. Prepare and insert additional data in operation and maintenance manual when need for such data becomes apparent during instruction.

1.15 WARRANTY

A. Warranty: Comply with the requirements in Division 01 Specification Sections. Contractor shall warranty that the mechanical installation is free from defects and agrees to replace or repair, to the Owner's satisfaction, any part of this mechanical installation which becomes defective within a period of one year (unless specified otherwise in other Mechanical; Fire Suppression; Plumbing; or Heating, Ventilating and Air Conditioning Sections) from the date of substantial completion following final acceptance, provided that such failure is due to defects in the equipment, material, workmanship or failure to follow the contract documents.

B. File with the Owner any and all warranties from the equipment manufacturers including the operating conditions and performance capacities they are based on.

PART 2 - PRODUCTS

Not Applicable

PART 3 - EXECUTION

3.1 MECHANICAL DEMOLITION WORK

- A. All demolition of existing mechanical equipment and materials shall be done by the Contractor unless otherwise indicated. Include all items such as, but not limited to, existing piping, draining of piping, pumps, ductwork, supports and equipment where such items are not required for the proper operation of the modified system.
- B. In general, demolition work is indicated on the Drawings. However, the Contractor shall visit the job site to determine the full extent and character of this Work.
- C. Unless specifically noted to the contrary, removed materials shall not be reused in the work. Salvaged materials that are to be reused shall be stored safe against damage and turned over to the appropriate trade for reuse. Salvaged materials of value that are not to be reused shall remain the property of the Owner unless such ownership is waived. Remove items from the systems and turn over to the Owner in their condition prior to removal. The Owner shall move and store these materials. Items on which the Owner waives ownership shall become the property of the Contractor, who shall remove and legally dispose of same, away from the premises.
- D. Work that has been cut or partially removed shall be protected against damage until covered by permanent construction.
- E. Clean and flush the interior and exterior of all existing relocated equipment and its related piping, valves, and accessories that are to be reused of all mud, debris, pipe dope, oils, welding slag, loose mill scale, rust and other extraneous material so that the existing equipment and all accessories can be repainted and repaired as required to place in first-class working condition.
- F. Where existing equipment is to be removed, cap piping under floor, behind face of wall, above ceiling or at mains. Cap or plug piping with same or compatible piping material.
- G. Cap ductwork and cap piping immediately adjacent to demolition as soon as demolition commences in order to allow existing systems to remain in operation.
 - 1. Cap or plug piping with same or compatible piping material.
 - 2. Cap or plug ducts with same or compatible ductwork material.

3.2 REFRIGERANT HANDLING

- A. Refrigerant Installation and Disposal: Perform all work related to refrigerant contained in chillers, cooling coils, air conditioners, and similar equipment, including related piping, in strict accordance with the following requirements:
 - 1. ASHRAE Standard 15 and Related Revisions: Safety Code for Mechanical Refrigeration.
 - 2. ASHRAE Standard 34 and Related Revisions: Number Designation and Safety Classification of Refrigerants.

- 3. United States Environmental Protection Agency (US EPA) requirements of Section 8 08 (Prohibition of Venting and Regulation of CFC) and applicable State and Local regulations of authorities having jurisdiction.
- B. Recovered refrigerant is the property of the Contractor. Dispose of refrigerant legally, in accordance with applicable rules and regulations.

3.3 WORK IN EXISTING BUILDINGS

- A. The Owner will provide access to existing buildings as required. Access requirements to occupied buildings shall be identified on the project schedule. The Contractor, once Work is started in the existing building, shall complete same without interruption so as to return work areas as soon as possible to Owner.
- B. Adequately protect and preserve all existing and newly installed Work. Promptly repair any damage to same at Contractor's expense.
- C. Consult with the Owner's Representative as to the methods of carrying on the Work so as not to interfere with the Owner's operation any more than absolutely necessary. Accordingly, all service lines shall be kept in operation as long as possible and the services shall only be interrupted at such time as will be designated by the Owner's Representative.
- D. Prior to starting work in any area, obtain approval for doing so from a qualified representative of the Owner who is designated and authorized by the Owner to perform testing and abatement, if necessary, of all hazardous materials including but not limited to, asbestos. The Contractor shall not perform any inspection, testing, containment, removal or other work that is related in any way whatsoever to hazardous materials under the Contract.

3.4 TEMPORARY SERVICES

- A. Provide temporary service as described in Division 01.
- B. The existing building will be occupied during construction. Maintain mechanical services and provide necessary temporary connections and their removal at no additional cost to the Owner.

3.5 WORK INVOLVING OTHER TRADES

A. Certain items of equipment or materials specified in the Mechanical Division may have to be installed by other trades due to code requirements or union jurisdictional requirements. In such instances, the Contractor shall complete the work through an approved, qualified subcontractor and shall include the full cost for same in proposal.

3.6 ACCEPTANCE PROCEDURE

- A. Upon successful completion of start-up and recalibration, but prior to building acceptance, substantial completion and commencement of warranties, the Architect/Engineer shall be requested in writing to observe the satisfactory operation of all mechanical control systems.
- B. The Contractor shall demonstrate operation of equipment and control systems, including each individual component, to the Owner and Architect/Engineer.
- C. After correcting all items appearing on the punch list, make a second written request to the Owner and Architect/Engineer for observation and approval.

- D. After all items on the punch list are corrected and formal approval of the mechanical systems is provided by the Architect/Engineer, the Contractor shall indicate to the Owner in writing the commencement of the warranty period.
- E. Operation of the following systems shall be demonstrated:
 - 1. Air Handling Systems.
 - 2. Refrigeration Systems.
 - 3. Heating Systems.
 - 4. Steam Pressure Reducing Stations.
 - 5. Domestic Hot Water Heaters.
 - 6. Domestic Hot Water Mixing Stations.
 - 7. Energy Recovery Systems.
 - 8. Temperature Controls.
 - 9. Building Automation System.
 - 10. Exhaust Systems.
- F. For systems requiring seasonal operation, demonstrate system performance within six months when weather conditions are suitable.

END OF SECTION

BASIC MECHANICAL MATERIALS AND METHODS

PART 1	- GENERAL	
1.1		
1.2	SUMMARY	
1.3	DEFINITIONS	2
1.4	SUBMITTALS	
1.5	QUALITY ASSURANCE	3
1.6	DELIVERY, STORAGE, AND HANDLING	4
1.7	COORDINATION	4
	PRODUCTS	_
	MANUFACTURERSPIPE, TUBE, AND FITTINGS	
2.3	JOINING MATERIALS	
2.4	PIPE THREAD COMPOUNDS	
2.5	TRANSITION FITTINGS	
2.6	DIELECTRIC FITTINGS	
2.7	MODULAR MECHANICAL SEALS	
	SLEEVES	
	ESCUTCHEONS	
	GROUT	
	EPOXY BONDING COMPOUND	
2.12	LEAK DETECTOR SOLUTION	. 10
2.13	PIPE ROOF PENETRATION ENCLOSURES	. 10
PART 3	- EXECUTION	11
3.1	PIPING SYSTEMS - COMMON REQUIREMENTS	11
	PIPING JOINT CONSTRUCTION	
3.3	ACCESS DOORS	
3.4	EQUIPMENT CONNECTIONS	17
	PIPING CONNECTIONS	
3.6	EQUIPMENT INSTALLATION - COMMON REQUIREMENTS	17
3.7	PAINTING	
3.8	CONCRETE BASES	
	ERECTION OF METAL SUPPORTS AND ANCHORAGES	18
3 10	EPOXY BONDING TO EXISTING MATERIALS	19
	JACKING OF PIPE	
3 12	ERECTION OF WOOD SUPPORTS AND ANCHORAGES	10
	GROUTING	
	CUTTING, CORING AND PATCHING	
	EXCAVATION AND BACKFILLING	
	FLASHING	
	LUBRICATION	
	FILTERS	
3.19	CLEANING	. ZU

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 22 Section "Domestic Water Piping" for flushing and cleaning of potable water piping.
 - 3. Division 23 Section "Piping Systems Flushing and Chemical Cleaning" for flushing and cleaning of HVAC piping.

1.2 SUMMARY

A. This section includes mechanical materials and installation methods common to mechanical piping systems, sheetmetal systems and equipment. This section supplements all other Division 20, 21, 22, and 23 Mechanical Sections, and Division 01 Specification Sections.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. The following are industry abbreviations for plastic materials:
 - 1. ABS: Acrylonitrile-butadiene-styrene plastic.
 - 2. CPVC: Chlorinated polyvinyl chloride plastic.
 - 3. PE: Polyethylene plastic.
 - 4. PVC: Polyvinyl chloride plastic.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For the following:

- 1. Transition fittings.
- 2. Dielectric fittings.
- Mechanical sleeve seals.
- 4. Escutcheons.
- B. Welding certificates.
- C. Brazing Certificates: As required by ASME Boiler and Pressure Vessel Code, Section IX, or AWS B2.2.

1.5 QUALITY ASSURANCE

- A. Regulatory Requirements: Comply with requirements in Public Law 111-380, "Reduction of Lead in Drinking Water Act," about lead content in materials that will be in contact with potable water for human consumption.
- B. Comply with NSF 14, "Plastics Piping System Components and Related Materials," for plastic, potable domestic water piping and components. Include marking "NSF-pw" on piping.
- C. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9," for potable domestic water piping and components.
- D. Comply with NSF 372, "Drinking Water System Components Lead Content" for potable domestic water piping and components.
- E. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- F. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- G. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications," or AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."
- H. Soldering: Qualify processes and operators according to AWS B2.3/2.3M, "Specification for Soldering Procedure and Performance Qualification."
- I. Installer Qualifications:
 - 1. Installers of Grooved Components: Installers shall be certified by the grooved component manufacturer as having been trained and qualified to join piping with grooved couplings, fittings, and specialties.

2. Installers of Pressure-Sealed Joints: Installers shall be certified by the pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Storage and Protection: Provide adequate weather protected storage space for all mechanical equipment and materials deliveries to the job site. Storage locations will be designated by the Owner's Representative. Equipment stored in unprotected areas must be provided with temporary protection.
 - 1. Protect equipment and materials from theft, injury or damage.
 - 2. Protect equipment outlets, pipe and duct openings with temporary plugs or caps.
 - 3. Materials with enamel or glaze surface shall be protected from damage by covering and/or coating as recommended in bulletin "Handling and Care of Enameled Cast Iron Plumbing Fixtures", issued by the Plumbing Fixtures Manufacturer Association, and as approved.
 - 4. Electrical equipment furnished by Mechanical Trades and installed by the Electrical Trades: Turn over to Electrical Trades in good condition, receive written confirmation of same.
 - 5. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt. debris. and moisture.
 - 6. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for mechanical installations. Coordinate with other trades to ensure accurate locations and sizes of mechanical spaces, chases, slots, shafts, recesses and openings.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Install Work to avoid interference with work of other trades including, but not limited to, Architectural and Electrical Trades. Remove and relocate any work that causes an interference at Contractor's expense.
- D. Coordinate requirements for and provide access panels and doors for mechanical items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."
- E. The mechanical trades shall be responsible for all damage to other work caused by their work or through the neglect of their workers.
 - 1. All patching and repair of any such damaged work shall be performed by the trades which installed the work. The cost shall be paid by the Mechanical Trades.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 21, 22, and 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 21, 22, and 23 piping Sections for special joining materials not listed below.
- B. Unions: Pipe Size 2 Inches and Smaller:
 - 1. Ferrous pipe: Malleable iron ground joint type unions.
 - 2. Unions in galvanized piping system shall be galvanized.
 - 3. Copper tube and pipe: Bronze unions with soldered joints.
- C. Flanges: Pipe Sizes 2-1/2 Inch and Larger:
 - 1. Ferrous pipe: Standard weight, forged steel weld neck flanges.
 - 2. Copper tube and pipe: Slip-on bronze flanges.
- D. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- E. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated. Square head bolts and nuts are not acceptable.
- F. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

- G. Solder Filler Metals: ASTM B 32, lead-free, antimony-free, silver-bearing alloys. Include water-flushable flux according to ASTM B 813.
- H. Brazing Filler Metals: Alloys meeting AWS A5.8.
 - Use Type BcuP Series, silver-bearing, copper-phosphorus alloys for joining copper or bronze socket fittings with copper pipe. Flux is prohibited unless used with bronze fittings.
 - 2. Use Type Bag Series, cadmium-free silver alloys for joining copper with steel, stainless steel, or other ferrous alloys.
- I. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- J. Welding Materials: Comply with Section II, Part C, of ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.
- K. Solvent Cements for Joining CPVC Piping and Tubing: ASTM F 493.
- L. Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
- M. Solvent Cements for Joining ABS Piping: ASTM D 2235.
- N. Solvent Cements for Joining PVC to ABS Piping Transition: ASTM D 3138.
- O. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.
- 2.4 PIPE THREAD COMPOUNDS
 - A. Pipe thread compounds for the fluid service compatible with piping materials provided.
 - B. Compounds for potable water service and similar applications acceptable to U.S. Department of Agriculture (USDA) or Food and Drug Administration (FDA). Compounds containing lead are prohibited.
 - C. Inorganic zinc-rich coatings or corrosion inhibited proprietary compounds for galvanized carbon steel systems to coat raw carbon steel surfaces, in lieu of subsequent painting.
 - 1. Manufacturers:
 - a. Carboline "Carbo-Zinc 12."
 - b. Tnemec.
 - c. Koppers.
 - D. Graphite and oil or proprietary corrosion inhibited compounds suitable for system temperatures for steam or condensate.
 - Manufacturers:
 - a. WKM; Division of Cooper Industries, Inc., Key "Graphite Paste."
 - b. Other approved.

- E. Use tetrafluoroethylene (Teflon) tape 2 to 3 mils thick for natural gas system threaded joints.
 - 1. Manufacturers:
 - a. Cadillac Plastic.
 - b. Permacel.
 - c. Other approved.

2.5 TRANSITION FITTINGS

- A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 - 1. Manufacturers:
 - a. Cascade Waterworks Mfg. Co.
 - b. Dresser Industries, Inc.; DMD Div.
 - c. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
 - d. JCM Industries.
 - e. Smith-Blair, Inc.
 - f. Viking Johnson.
 - 2. Underground Piping NPS 1-1/2 and Smaller: Manufactured fitting or coupling.
 - 3. Underground Piping NPS 2 and Larger: AWWA C219, metal sleeve-type coupling.
 - 4. Aboveground Pressure Piping: Pipe fitting.
- B. Plastic-to-Metal Transition Fittings: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. IPEX Inc. (formerly Eslon Thermoplastics).
- C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Thompson Plastics, Inc.
- D. Plastic-to-Metal Transition Unions: MSS SP-107, CPVC and PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 - 1. Manufacturers:
 - a. NIBCO INC.
 - b. NIBCO, Inc.; Chemtrol Div.

- E. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
 - Manufacturers:
 - Cascade Waterworks Mfg. Co.
 - b. Fernco, Inc.
 - c. Mission Rubber Company.
 - d. Plastic Oddities, Inc.
 - e. Can-Tex Industries Division of Harsco Corp. "CT-Adaptors".
 - f. Joint Inc., "Caulder".

2.6 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Brass Unions, Brass Nipples, Brass Couplings: For systems up to 286 deg F.
- D. Dielectric-Flange Kits: Include full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Capitol Manufacturing Co.
 - d. Central Plastics Company.
 - e. Epco Sales, Inc.
 - f. Pipeline Seal and Insulator, Inc.
 - g. Watts Water Technologies, Inc.; Watts Regulator Co.
 - h. Zurn Industries, Inc.; Wilkins Div.
 - 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
- E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; female NPT threaded ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Lochinvar Corp.; V-Line Insulating Couplings.
- F. Dielectric Nipple/Waterway Fittings: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, male NPT threaded, or grooved ends; and 300-psig minimum working pressure at 230 deg F.
 - Manufacturers:
 - a. Anvil International, Inc.; Gruvlok Manufacturing; DI-LOK Nipples.
 - b. Elster Group; Perfection Corp.; ClearFlow.

- c. Precision Plumbing Products, Inc.; ClearFlow.
- d. Sioux Chief Manufacturing Co., Inc.
- e. Tyco Fire & Building Products; Grinnell Mechanical Products; Figure 407 ClearFlow.
- f. Victaulic Co. of America; Style 47 ClearFlow.

2.7 MODULAR MECHANICAL SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve or pipe and core drilled hole.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.; Innerlynx.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.; Thunderline Link Seal.
 - 2. Sealing Elements: EPDM NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Carbon steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.8 SLEEVES

- A. Steel Pipe: ASTM A53, Type E, Grade B, Schedule 40, and 0.375 inch wall black.
- B. Steel Pipe: ASTM A53, Type E, Grade B, Schedule 40, and 0.375 inch wall galvanized, plain ends.
- C. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.9 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping or Piping in High Humidity Areas: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - d. Bare Piping in Finished Spaces: One-piece, stamped-steel type.
 - e. Bare Piping in Unfinished Service Spaces or Equipment Rooms: Split-plate, stamped-steel type with concealed hinge and set screw.

- 2. Existing Piping: Use the following:
 - a. Chrome-Plated Piping or Piping in High Humidity Areas: Split-casting, cast-brass type with chrome-plated finish.
 - b. Insulated Piping: Split-plate, stamped-steel type with concealed hinge and spring clips.
 - c. Bare Piping: Split-plate, stamped-steel type with set screw or spring clips.

2.10 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.11 EPOXY BONDING COMPOUND

- Two-component system suitable for bonding wet or dry concrete to each other and to other materials.
- B. Manufacturers:
 - 1. Euco 452 #450; Euclid Chemical Co.
 - 2. Epobond; L & M Construction Chemicals.
 - 3. Sikadur 87; Sika Corp.

2.12 LEAK DETECTOR SOLUTION

- A. Commercial leak detector solution for pipe system testing.
- B. Manufacturers:
 - 1. American Gas and Chemicals Inc.; Leak Tec.
 - 2. Cole-Parmer Inst. Co.; Leak Detector.
 - 3. Guy Speaker Co. Inc.; Squirt 'n Bubbles.

2.13 PIPE ROOF PENETRATION ENCLOSURES

- A. Manufacturers:
 - 1. Pate Company (The).
 - 2. Portals Plus, Inc.
 - 3. Thybar Corporation; Thycurb.

- B. Minimum 18 gage welded galvanized steel construction.
- C. Integral base plate.
- D. Built-in fully mitered cant.
- E. Factory installed insect and decay resistant wood nailer.
- F. Factory installed 1-1/2 inch thick, 3 pounds per cubic foot density rigid insulation.
- G. EPDM compression molded rubber cap for single or multiple pipes as required.
- H. Stainless steel draw-band clamps.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Refer to piping application schedules on the Drawings.
- B. Install piping according to the following requirements and Division 21, 22, and 23 Sections specifying piping systems, and in accordance with manufacturer's instructions.
- C. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. The Drawings shall be followed as closely as elements of construction will permit.
- D. During the progress of construction, protect open ends of pipe, fittings, and valves to prevent the admission of foreign matter. Place plugs or flanges in the ends of all installed work whenever work stops. Plugs shall be commercially manufactured products.
- E. Prior to and during laying of pipe, maintain excavations dry and clear of water and extraneous materials. Provide minimum 4 inches of clearance in all directions for pipe passing under or through building grade beams.
- F. Weld-o-lets and thread-o-lets can be used for annular flow measuring devices, temperature control components, and thermal wells in steel pipe. Pipe taps shall be drilled and deburred. Torch cutting is not acceptable.
- G. Brazolets can be used for annular flow measuring devices, temperature control components, and thermal wells in copper tube. Pipe taps shall be drilled and deburred. Torch cutting is not acceptable.
- H. Clean and lubricate elastomer joints prior to assembly.
- I. Clean damaged galvanized surfaces and touch-up with a zinc rich coating.
- J. Install piping to conserve building space and not interfere with use of space.
- K. Group piping whenever practical at common elevations.
- L. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment.
- M. Slope piping and arrange systems to drain at low points.

- N. Slope horizontal piping containing noncondensible gases 1 inch per 100 feet, upward in the direction of the flow.
- O. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- P. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- Q. In concealed locations where piping, other than black steel, cast-iron, or galvanized steel, is installed through holes or notches in studs, joists, rafters or similar members less than 1-1/2 inches from the nearest edge of the member, the pipe shall be protected by shield plates. Protective shield plates shall be a minimum of 1/16 inch thick steel, shall cover the area of the pipe where the member is notched or bored, and shall extend a minimum of 2 inches above sole plates and below top plates.
- R. Do not penetrate building structural members unless specifically indicated on drawings.
- S. Install piping above accessible ceilings to allow sufficient space for ceiling panel and light fixture removal.
- T. Install valves with stems upright or horizontal, not inverted.
- U. Provide clearance for installation of insulation and access to valves and fittings.
- V. Install piping to permit valve and equipment servicing. Do not install piping below valves and/or terminal equipment. Do not install piping above electrical equipment.
- W. Install piping at indicated slopes. Provide drain valves with hose end connections and caps at all piping low points, where piping is trapped and at all equipment.
- X. Install piping free of sags and bends.
- Y. Install fittings for changes in direction and branch connections.
- Z. Unless otherwise indicated or specified, install branch connections to mains using tee fittings in main pipe:
 - 1. Branch connected to bottom of main pipe for HVAC systems. Side connection is acceptable. Connection above centerline of main is unacceptable. For up-feed risers, connect branch to top of main pipe.
 - 2. Branch connected to top of main for steam and condensate, plumbing systems, compressible gasses, and vacuum.
- AA. Install piping to allow application of insulation.
- BB. Select system components with pressure rating equal to or greater than system operating pressure.
- CC. After completion, fill, clean, and treat systems. Refer to Division 23 Sections "Hydronic Piping," "Piping Systems Flushing and Chemical Cleaning," and "HVAC Water Treatment."
- DD. Install escutcheons for penetrations of walls below ceiling, and ceilings.

- EE. Sleeves are not required for core-drilled holes in poured concrete walls.
- FF. Permanent sleeves are not required for holes formed by removable PE sleeves in poured concrete walls.
- GG. Install sleeves for pipes passing through footings and foundation walls, masonry walls, gypsumboard partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces of walls.
 - a. Exception: Extend sleeves installed in floors 2 inches above finished floor level.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - Schedule 40 Black Steel Sleeves: For pipes smaller than NPS 12 penetrating interior walls.
 - 0.375 Inch Wall Black Steel Sleeves: For pipes NPS 12 and larger penetrating interior walls.
 - c. Schedule 40 Galvanized Steel Sleeves: For pipes smaller than NPS 12 penetrating floors, and roof slabs.
 - d. 0.375 Inch Wall Galvanized Steel Sleeves: For pipes NPS 12 and larger penetrating floors and roof slabs.
 - e. For pipes penetrating floors with membrane water proofing provide cast iron sleeve with clamping flanges. Secure/seal membrane to sleeves with clamping flanges.
 - 4. Seal sleeves in concrete floors roof slabs and masonry walls with grout.
 - 5. Seal sleeves in plaster/gypsumboard partitions with plaster or dry wall compound and caulk with non-hardening silicone sealant to provide airtight installation.
 - 6. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 Section "Joint Sealants" for materials and installation.
- HH. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and modular mechanical seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing modular mechanical seals.
 - 1. Install Schedule 40 galvanized steel pipe for sleeves smaller than 12 inches in diameter.
 - 2. Install 0.375 galvanized steel pipe for sleeves 12 inches and larger in diameter.
 - 3. Modular Mechanical Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble modular mechanical seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- II. New, Poured Concrete, Underground, Exterior-Wall and Slab on Grade Pipe Penetrations: Install water stop sleeves prior to pour. Seal pipe penetrations using modular mechanical seals.

Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing modular mechanical seals.

- Modular Mechanical Seal Installation: Select type and number of sealing elements
 required for pipe material and size. Position pipe in center of sleeve. Assemble modular
 mechanical seals and install in annular space between pipe and sleeve. Tighten bolts
 against pressure plates that cause sealing elements to expand and make watertight seal.
- JJ. Existing Underground, Exterior-Wall and Slab on Grade Pipe Penetrations: Seal core drilled pipe penetrations using modular mechanical seals. Allow for 1-inch annular clear space between pipe and cored opening for installing modular mechanical seals.
 - Modular Mechanical Seal Installation: Select type and number of sealing elements
 required for pipe material and size. Position pipe in center of cored hole. Assemble
 modular mechanical seals and install in annular space between pipe and cored opening.
 Tighten bolts against pressure plates that cause sealing elements to expand and make
 watertight seal.
- KK. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Specification Sections for materials.
- LL. Seal openings around pipes in sleeves and around duct openings through walls, floors and ceilings, and where floors, fire rated walls and smoke barriers are penetrated. Fire and/or smoke barriers shall be UL listed firestopping and shall have a fire rating equal to or greater than the penetrated barrier. Refer to Division 07 Specification Sections for materials.
- MM. Pipe Roof Penetration Enclosures:
 - 1. Coordinate delivery of roof penetration enclosures to jobsite.
 - 2. Locate and set curbs on roof.
 - 3. Framing, flashing, and attachment to roof structure are specified under Division 07.
 - 4. Attach cap to curbs, cut pipe boots to fit pipe, and clamp boots to pipe or conduit.
- NN. Verify final equipment locations for roughing-in.
- OO. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.
- 3.2 PIPING JOINT CONSTRUCTION
 - A. Join pipe and fittings according to the following requirements and Division 21, 22, and 23 Sections specifying piping systems.
 - B. Cut piping square.
 - C. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
 - D. Remove scale, slag, dirt, oil, and debris from inside and outside of pipe and fittings before assembly.

- E. Clean damaged galvanized surfaces and touch-up with a zinc rich coating.
- F. Use standard long sweep pipe fittings for changes in direction. No mitered joints or field fabricated pipe bends will be permitted. Short radius elbows may be used where specified or specifically authorized by the Architect.
- G. Make tee connections with screwed tee fittings, soldered fittings or specified welded connections. Make welded branch connections with either welding tees or forged branch outlet fittings in accordance with ASTM A234, ANSI B16.9 and ANSI B16.11. For forged branch outlets, furnish forged fittings flared for improved flow where attached to the run, reinforced against external strains and to full pipe-bursting strength requirements. "Fishmouth" connections are not acceptable.
- H. Use eccentric reducers for drainage and venting of pipe lines; bushings are not permitted.
- I. Provide pipe openings using fittings for all systems control devices, thermometers, gauges, etc. Drilling and tapping of pipe wall for connections is prohibited.
- J. Provide temperature sensing device thermal wells and similar piping specialty connections.
- K. Provide instrument connections except thermal wells with specified isolating valves at point of connection to system.
- Locate instrument connections in accordance with manufacturer's instructions for accurate read-out of function sensed. Locate instrument connections for easy reading and service of devices.
- M. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
- N. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- O. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- P. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
 - Weld-o-lets and thread-o-lets can be used for annular flow measuring devices, temperature control components, and thermal wells. Pipe taps shall be drilled and deburred. Torch cutting is not acceptable.
- Q. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on gaskets and bolt threads.

- 1. Assemble flanged joints with fresh-stock gasket and hex head nuts, bolts or studs. Make clearance between flange faces such that the connections can be gasketed and bolted tight without strain on the piping system. Align flange faces parallel and bores concentric; center gaskets on the flange faces without projection into the bore.
- 2. Lubricate bolts before assembly to insure uniform bolt stressing. Draw up and tighten bolts in staggered sequence to prevent unequal gasket compression and deformation of the flanges. Do not mate a flange with a raised face to a companion flange with a flat face; machine the raised face down to a smooth matching surface and use a full face gasket. After the piping system has been tested and is in service at its maximum temperature, check bolting torque to provide required gasket stress.
- R. Grooved Joints: Assemble joints with grooved-end-pipe or grooved-end-tube coupling housing, gasket, lubricant, and bolts according to coupling and fitting manufacturer's written instructions. Grooved ends shall be clean and free from indentations, projections, and roll marks in the area from pipe end to groove. Galvanized piping shall be cut grooved to prevent damage to galvanizing on internal pipe surfaces. The grooved coupling manufacturer's factory trained representative shall provide on-site training for contractor's field personnel in the use of grooving tools, application of groove, and installation of grooved joint products. The manufacturer's representative shall periodically visit the jobsite and review installation. Contractor shall remove and replace any joints deemed improperly installed.
- S. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.
- T. Pressure-Sealed Joints: Use manufacturer-recommended tool and procedure. Leave insertion marks on pipe after assembly.
- U. Dissimilar-Metal Piping Joints: Construct joints using dielectric fittings compatible with both piping materials. Refer to Application Schedules on the Drawings.
- V. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 - 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 - 5. PVC Nonpressure Piping: Join according to ASTM D 2855.
 - 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.
- W. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- X. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

Y. Remake joints which fail pressure tests with new materials including pipe, fittings, gaskets and/or a filler.

3.3 ACCESS DOORS

- A. Provide access doors for installation by architectural trades unless noted otherwise. Provide access doors in the walls, as required to make all valves, controls, coils, motors, air vents, filters, electrical boxes and other equipment installed by the Contractor accessible. Minimum size 12 inches x 12 inches. Provide access doors in the ceiling, for accessibility as mentioned above, 24 inches x 24 inches minimum size. Areas with accessible ceilings (ceilings where layin panels are not fastened in place and can be individually removed without removal of adjacent tiles) will not require access doors. Refer to Division 08 Section "Access Doors and Frames" for manufacturers and model numbers and additional information.
- B. When access doors are in fire resistant walls or ceilings, they shall bear the Underwriters' Laboratories, Inc., Label, with time design rating equal to or greater than the wall or ceiling unless they were a part of the tested assembly.

3.4 EQUIPMENT CONNECTIONS

- A. Make connections to equipment, fixtures, and other items included in the work in accordance with the submittals and rough-in measurements furnished by the manufacturers of the particular equipment furnished.
 - 1. Any and all additional connections not shown on the drawings but shown on the equipment manufacturer's submittal or required for the successful operation of the equipment shall be installed as part of this Contract at no additional charge to the Owner.
- B. All piping connections to pumps, coils, and other equipment shall be installed without strain at the pipe connection of this equipment. When directed, remove the bolts in flanged connections or disconnect piping to demonstrate that piping has been so connected.

3.5 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, where indicated on Drawings, at final connection to each piece of equipment and at all control valves.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, where indicated on Drawings, at final connection to each piece of equipment and at all control valves.

3.6 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are indicated. Housekeeping pad locations and sizes shall be coordinated by mechanical contractor prior to the placement of concrete slabs.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

- D. Install equipment to allow right of way for piping installed at required slope.
- E. For suspended equipment, furnish and install all inserts, rods, structural steel frames, brackets and platforms required. Obtain approval of Architect for same including loads, locations and methods of attachment.
- F. Equipment Rigging Over Roof Areas: Protect building structure against damage during equipment rigging. Make provisions to distribute load of equipment to main roof structure, and to prevent damage to roof decking, roofing, or purlins.
- G. The Contract Documents indicate items to be purchased and installed. The items are noted by a manufacturer's name, catalog number and/or brief description. The catalog number may not designate all the accessory parts for a particular application. Arrange with the manufacturer for the purchase of all items required for a complete installation.

3.7 PAINTING

- A. Painting of mechanical systems, equipment, and components is specified in Division 09.
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.8 CONCRETE BASES

- A. Concrete housekeeping pads for floor mounted mechanical equipment shall be provided by Architectural Trades.
- B. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases as shown on Drawings or specified, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section.

3.9 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.
- C. Where pipe and/or equipment support members must be welded to structural building framing, Contractor shall seek prior approval from Architect and structural engineer. Scrape, brush clean, and apply one coat of zinc rich primer after welding.
- D. Field Welding: Comply with AWS D1.1.

3.10 EPOXY BONDING TO EXISTING MATERIALS

- A. Use epoxy bonding compound to set sleeves or pipes in existing concrete to bond new concrete and/or grout to existing materials or to bond dissimilar materials.
- B. The compound, when applied in accordance with the manufacturer's instructions, shall be capable of initial curing within 48 hours at temperatures as low as 40 deg F and shall be capable of bonding any combination of the following properly prepared materials: Wet or dry, cured or uncured concrete or mortar; vitrified clay; cast iron and carbon steel.

3.11 JACKING OF PIPE

A. Do not jack pipe in place except upon prior approval of proposed materials and complete details of methods.

3.12 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor mechanical materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.13 GROUTING

- A. Mix and install grout for mechanical equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

3.14 CUTTING, CORING AND PATCHING

- A. Refer to Division 01 Specification Sections for requirements for cutting, coring, patching and refinishing work necessary for the installation of mechanical work.
- B. All cutting, coring, patching and repair work shall be performed by the Contractor through approved, qualified subcontractors. Contractor shall include full cost of same in bid.

3.15 EXCAVATION AND BACKFILLING

- A. Refer to Division 31 Specification Sections.
- B. Provide all excavation, trenching, tunneling and backfilling required for the mechanical work.
- C. Provide all pumping and/or well pointing required for the mechanical work.
- D. Provide foundations if required to support underground piping.
- E. Backfill all excavations with well-tamped granular material. Backfill all excavations under wall footings with lean mix concrete up to underside of footings and extend concrete within excavation a minimum of four (4) feet each side of footing. Granular backfill shall be placed in layers not more than 8 inches in thickness, 95 percent compaction throughout with approved compaction equipment. Tamp, roll as required. Excavated material shall not be used.

3.16 FLASHING

A. Provide all flashing required for mechanical work. Refer to Division 07 Specification Sections.

3.17 LUBRICATION

A. Provide all lubrication for the operation of the equipment until acceptance by the Owner. Contractor is responsible for all damage to bearings up to the date of acceptance of the equipment. Protect all bearings and shafts during installation. Thoroughly grease steel shafts to prevent corrosion. Provide covers as required for proper protection of all motors and other equipment during construction.

3.18 FILTERS

- A. Provide and maintain filters in air handling systems throughout the construction period and prior to final acceptance of the building. Do not run air handling equipment, without all prefilters and final filters as specified.
- B. Immediately prior to final building acceptance by the Owner, Contractor shall:
 - 1. Replace all disposable type air filters with new units.

3.19 CLEANING

- A. Each Mechanical Trade shall be responsible for removing all debris daily as required to maintain the work area in a neat, orderly condition.
- B. After equipment and HVAC water piping systems have been completed and tested, each entire system shall be cleaned and flushed. Refer to Division 23 Section "Piping Systems Flushing and Chemical Cleaning" for requirements. Provide temporary bypass piping and fittings, temporary valves and strainers, temporary water make-up piping with approved means of

- backflow prevention, and temporary pumps as needed to perform specified flushing and cleaning requirements.
- C. Prior to connection of new HVAC piping to existing HVAC piping systems, all new piping shall be subject to initial flushing, cleaning and final flushing. Refer to Division 23 Section "Piping Systems Flushing and Chemical Cleaning" for requirements. Provide temporary bypass piping and fittings, temporary valves and strainers, temporary water make-up piping with approved means of backflow prevention, and temporary pumps as needed to perform specified flushing and cleaning requirements.
- D. Flushing, cleaning, and disinfection of domestic water piping is specified in Division 22 Section "Domestic Water Piping."
- E. Exterior surfaces of all piping, ductwork and equipment shall be wiped down to remove excess dirt and debris prior to concealment by Architectural Trades work.
- F. Upon completion of work in each respective area, clean and protect work. Just prior to final acceptance, perform additional cleaning as necessary to provide clean equipment and areas to the Owner.

END OF SECTION

MOTORS

PART 1 -	- GENERAL	. 1
1.1	RELATED DOCUMENTS	. 1
1.2	SUMMARY	
1.3	DEFINITIONS	2
1.4	QUALITY ASSURANCE	2
1.5	COORDINATION	2
PART 2.	- PRODUCTS	3
2.1	MANUFACTURERS	3
2.2	MOTOR REQUIREMENTS	
2.3	MOTOR CHARACTERISTICS	
2.4	POLYPHASE MOTORS	4
2.5	POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS	7
2.6	SINGLE-PHASE MOTORS	7
2.7	ENCLOSED CONTROLLERS	8
2.8	ENCLOSED SWITCHES AND CIRCUIT BREAKERS	
2.9	FUSES	9
PART 3	- EXECUTION	g
3.1	FIELD QUALITY CONTROL	
3.2	ADJUSTING	
3.3	CLEANING	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 "Mechanical General Requirements."
 - 2. Division 20 Section "Mechanical Vibration Controls" for mounting motors and vibration isolation devices.
 - 3. Division 20 Section "Variable Frequency Controllers".
 - 4. Division 21, 22, and 23 Sections for application of motors and reference to specific motor requirements for motor-driven equipment.
 - 5. Division 26 Section "Enclosed Switches and Circuit Breakers".
 - 6. Division 26 Section "Enclosed Controllers".
 - 7. Division 26 Section "Fuses".

1.2 SUMMARY

A. This Section includes basic requirements for factory-installed and field-installed motors, enclosed controllers, disconnect switches, and fuses.

1.3 DEFINITIONS

- A. ABMA: American Bearing Manufacturers Association. (Formerly AFBMA: Anti-Friction Bearing Manufacturers Association.)
- B. Factory-Installed Motor: A motor installed by motorized-equipment manufacturer as a component of equipment.
- C. Field-Installed Motor: A motor installed at Project site and not factory installed as an integral component of motorized equipment.
- D. Packaged Self Contained Equipment: Equipment which includes component mechanical and electrical equipment mounted on common bases, skids or frames or in common enclosures with internal control and power wiring factory installed and ready to accept a single electrical service connection. Provide the equipment complete with enclosed controllers, main disconnect switches, control transformers, control devices, wiring and accessories as required.

1.4 QUALITY ASSURANCE

- A. Testing Agency Qualifications: A Nationally Recognized Testing Laboratory (NRTL), acceptable to authorities having jurisdiction, with the experience and capability to conduct the testing indicated.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.

1.5 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices. Provide motors that are:
 - 1. Compatible with the following:
 - a. Magnetic controllers.
 - b. Multispeed controllers.
 - c. Reduced-voltage controllers.
 - d. Solid-state controllers.
 - e. Variable frequency controllers.
 - 2. Designed and labeled for use with variable frequency controllers, and suitable for use throughout speed range without overheating.
 - 3. Matched to torque and horsepower requirements of the load.
 - 4. Matched to ratings and characteristics of supply circuit and required control sequence.
- B. Coordinate electrical scope of work to be provided by Division 20, 21, 22, and 23 with this Section, related Division 20, 21, 22, and 23 Specifications, Division 26 Specifications and the Drawings.
- C. Electrical work provided under Division 20, 21, 22, and 23: Furnish UL Listed components in accordance with this section, Division 26, and applicable NEMA and NEC (ANSI C 1) requirements. Provide wiring, external to electrical enclosures, in conduit.
- D. Furnished, installed and wired under Division 20, 21, 22, and 23 unless otherwise indicated:

- 1. Disconnected components in packaged self-contained equipment that are so constructed that components of wiring must be disconnected for shipment and reconnected after installation.
- E. Furnished and installed under Division 20, 21, 22, and 23 and wired under Division 26 unless otherwise indicated:
 - 1. Motors required for mechanical equipment
 - 2. Packaged Self-Contained Equipment:
 - Provide equipment ready to accept a single electrical service connection.
 - b. For equipment with remote mounted control panels, provide mounting of the control panel and external wiring from the control panel to the package self-contained equipment.
 - 3. Variable frequency controllers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Subject to compliance with requirements, provide products by one of the following:
 - 1. Dayton.
 - 2. Toshiba Intl.
 - Baldor Electric/Reliance.
 - 4. Rockwell Automation/Allen-Bradley.
 - 5. Nidec Motor Corporation; U.S. Electrical Motors.
 - 6. Regal Beloit/GE Commercial Motors.
 - 7. Regal Beloit/Leeson.
 - 8. Regal Beloit/Marathon.
 - 9. Siemens.

2.2 MOTOR REQUIREMENTS

- A. Motor requirements apply to factory-installed motors except as follows:
 - Different ratings, performance, or characteristics for a motor are specified in another Section.
 - 2. Manufacturer for a factory-installed motor requires ratings, performance, or characteristics, other than those specified in this Section, to meet performance specified.
 - 3. Submersible motors integral to pumps and excluded from NEMA and EISA standards.
- B. Electrical Power Supply Characteristics: Coordinate electrical system requirements with Division 26.

- C. Electrical Power System Characteristics: As scheduled on the Drawings.
- D. Electrical Connection: Conduit connection boxes, threaded for conduit. For fractional horsepower motors where connection is made directly, provide screwed conduit connection in end frame.

2.3 MOTOR CHARACTERISTICS

- A. Motors 1/2 HP and Larger: Three phase, unless otherwise indicated.
- B. Motors Smaller Than 1/2 HP: Single phase, unless otherwise indicated.
- C. Frequency Rating: 60 Hz.
- D. Voltage Rating: NEMA standard voltage selected to operate on nominal circuit voltage to which motor is connected.
- E. Duty: Continuous duty at ambient temperature of 105 deg F and at altitude of 3300 feet above sea level.
- F. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
- G. Brake Horsepower Input: Shall not exceed 90 percent of the rated motor horsepower.
- H. Enclosure: Open dripproof (ODP) for motors installed indoors and out of the airstream. Totally-enclosed fan-cooled (TEFC) for motors installed outdoors or within the airstream.

2.4 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

1800 RPM

B. Efficiency: Fire pump motors, C-face motors, JP and JM frame motors, and motors over 200 horsepower shall be energy efficient motors. Efficiency of the motor shall be determined based on the NEMA MG1. The minimum efficiencies, nominal efficiencies and shall meet or exceed Table 12-11.

	OPEN DRIP-PROOF MOTORS 4 POLE			D MOTORS OLE
	NOMINAL	MINIMUM	NOMINAL	MINIMUM
<u>HP</u>	<u>EFF</u>	<u>EFF</u>	<u>EFF</u>	<u>EFF</u>
1	82.5	81.5	82.5	81.5
1.5	84	82.5	84	82.5
2	84	82.5	84	82.5
3	86.5	85.5	87.5	86.5
5	87.5	86.5	87.5	86.5
7.5	88.5	87.5	89.5	88.5
10	89.5	88.5	89.5	88.5
15	91	90.2	91	90.2
20	91	90.2	91	90.2
25	91.7	91	92.4	91.7
30	92.4	91.7	92.4	91.7
40	93	92.4	93	92.4
50	93	92.4	93	93
60	93.6	93	93.6	93

1800 RPM

1800 RPM
OPEN DRIP-PROOF MOTORS
4 POLF

1800 RPM ENCLOSED MOTORS 4 POLE

	NOMINAL	MINIMUM	NOMINAL	MINIMUM
<u>HP</u> 75	<u>EFF</u>	<u>EFF</u>	<u>EFF</u>	<u>EFF</u>
75	94.1	93.6	94.1	93.6
100	94.1	93.6	94.5	94.1
125	94.5	94.1	94.5	94.1
150	95	94.5	95	94.5
200	95	94.5	95	94.5

1200 RPM OPEN DRIP-PROOF MOTORS 6 POLE 3600 RPM OPEN DRIPPROOF MOTORS 2 POLE

	NOMINAL	MINIMUM	NOMINAL	MINIMUM
<u>HP</u>	<u>EFF</u>	<u>EFF</u>	<u>EFF</u>	<u>EFF</u>
1	80	78.5		
1.5	84	82.5	82.5	81.5
2	85.5	84	84	82.5
3	86.5	85.5	84	82.5
5	87.5	86.5	85.5	84
7.5	88.5	87.5	85.5	86.5
10	90.2	89.5	88.5	87.5
15	90.2	89.5	89.5	88.5
20	91	90.2	90.2	89.5
25	91.7	91	91	90.2
30	92.4	91.7	91	90.2
40	93	92.4	91.7	91
50	93	93	92.4	91.7
60	93.6	93	93	92.4
75	93.6	93	93	92.4
100	94.1	93.6	93	92.4
125	94.1	93.6	93.6	93
150	94.5	94.1	93.6	93
200	94.5	94.1	94.5	94.1

C. Efficiency: Motors 1 horsepower to 200 horsepower shall be premium efficient motors meeting requirements of NEMA Premium Efficiency Motor Program. Efficiency of the motor shall be determined based on the NEMA MG1. The nominal efficiencies shall meet or exceed Table 12-12.

Nominal Efficiencies For "NEMA Premium™" Induction Motors Rated 600 Volts or Less (Random Wound)

Open	Drip-	Proof
------	-------	-------

Totally Enclosed Fan-Cooled

<u>HP</u>	6-pole	4-pole	2-pole	6-pole	4-pole	2-pole
1	82.5	85.5	77.0	82.5	85.5	77.0
1.5	86.5	86.5	84.0	87.5	86.5	84.0
2	87.5	86.5	85.5	88.5	86.5	85.5
3	88.5	89.5	85.5	89.5	89.5	86.5
5	89.5	89.5	86.5	89.5	89.5	88.5

Nominal Efficiencies For "NEMA Premium™" Induction Motors Rated 600 Volts or Less (Random Wound)

Open Drip-Proof Totally Enclosed Fan-Cooled

<u>HP</u>	6-pole	4-pole	2-pole	6-pole	4-pole	2-pole
7.5	90.2	91.0	88.5	91.0	91.7	89.5
10	91.7	91.7	89.5	91.0	91.7	90.2
15	91.7	93.0	90.2	91.7	92.4	91.0
20	92.4	93.0	91.0	91.7	93.0	91.0
25	93.0	93.6	91.7	93.0	93.6	91.7
30	93.6	94.1	91.7	93.0	93.6	91.7
40	94.1	94.1	92.4	94.1	94.1	92.4
50	94.1	94.5	93.0	94.1	94.5	93.0
60	94.5	95.0	93.6	94.5	95.0	93.6
75	94.5	95.0	93.6	94.5	95.4	93.6
100	95.0	95.4	93.6	95.0	95.4	94.1
125	95.0	95.4	94.1	95.0	95.4	95.0
150	95.4	95.8	94.1	95.8	95.8	95.0
200	95.4	95.8	95.0	95.8	96.2	95.4

Nominal Efficiencies For "NEMA Premium™" Induction Motors Rated Medium Volts for 5kV or Less (Form Wound)

<u>HP</u>	<u>6-pole</u>	<u>4-pole</u>	<u>2-pole</u>	<u>6-pole</u>	<u>4-pole</u>	<u>2-pole</u>
250	95.0	95.0	94.5	95.0	95.0	95.0
300	95.0	95.0	94.5	95.0	95.0	95.0
350	95.0	95.0	94.5	95.0	95.0	95.0
400	95.0	95.0	94.5	95.0	95.0	95.0
450	95.0	95.0	94.5	95.0	95.0	95.0
500	95.0	95.0	94.5	95.0	95.0	95.0

- D. Stator: Copper windings, unless otherwise indicated.
 - 1. Multispeed motors shall have separate winding for each speed.
- E. Rotor: Squirrel cage, unless otherwise indicated.
- F. Bearings: Grease lubricated anti-friction ball bearings with housings equipped with plugged provision for relubrication, rated for minimum ABMA 9, L-10 life of 120,000 hours. Calculate bearing load with NEMA minimum V- belt pulley with belt center line at end of NEMA standard shaft extension. Stamp bearing sizes on nameplate.
- G. Temperature Rise: Match insulation rating, unless otherwise indicated.
- H. Insulation: Class F, unless otherwise indicated.
- I. Code Letter Designation:
 - 1. Motors 10 HP and Larger: NEMA starting Code (KVA Code) F or G.
 - 2. Motors Smaller Than 10 HP: Manufacturer's standard starting characteristic.
- J. Enclosure: Cast iron for motors 7.5 hp and larger; rolled steel for motors smaller than 7.5 hp.

- 1. Finish: Gray enamel.
- K. Sound Level: Not to exceed NEMA MG-1 12.54.
- 2.5 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS
 - A. Motors Used with Reduced-Inrush Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
 - B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - C. Shaft Grounding: Provide a means to protect motor from common mode currents.
 - 1. Required for:
 - a. Motors used with variable frequency controllers.
 - b. Motors 100 HP and larger.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Electro Static Technology, Inc.; Aegis SGR Conductive Microfiber.
 - D. Severe-Duty Motors: Totally enclosed, with 1.25 minimum service factor, greased bearings, integral condensate drains, and capped relief vents. Windings insulated with nonhygroscopic material.
 - 1. Finish: Chemical-resistant paint over corrosion-resistant primer.
 - E. Source Quality Control: Perform the following tests on each motor according to NEMA MG 1:
 - 1. Measure winding resistance.
 - 2. Read no-load current and speed at rated voltage and frequency.
 - 3. Measure locked rotor current at rated frequency.
 - 4. Perform high-potential test.
- 2.6 SINGLE-PHASE MOTORS
 - A. Type: One of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split-phase start, capacitor run.
 - 3. Capacitor start, capacitor run.

- B. Shaded-Pole Motors: For motors 1/20 hp and smaller only.
- C. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.
- D. Bearings: Ball type for belt-connected motors and other motors with high radial forces on motor shaft; sealed, prelubricated-sleeve type for other single-phase motors.

2.7 ENCLOSED CONTROLLERS

- A. Provide enclosed controllers in accordance with requirements specified in Division 26 Section "Enclosed Controllers".
- B. Multispeed Enclosed Controllers:
 - 1. Multispeed Enclosed Controller: Match controller to motor type, application, and number of speeds; include the following accessories:
 - a. Compelling relay to ensure that motor will start only at low speed.
 - Accelerating relay to ensure properly timed acceleration through speeds lower than that selected.
 - c. Decelerating relay to ensure automatically timed deceleration through each speed.

C. Enclosures:

- 1. Description: Flush- or surface-mounting cabinets as indicated. NEMA 250, Type 1, unless otherwise indicated to comply with environmental conditions at installed location.
 - a. Outdoor Locations: NEMA 250, Type 3R.
 - b. Kitchen Areas: NEMA 250, Type 4X, stainless steel.
 - c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - d. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.

D. Accessories:

- 1. Devices shall be factory installed in controller enclosure, unless otherwise indicated.
- 2. Push-Button Stations, Pilot Lights, and Hand-Off-Auto Selector Switches: NEMA ICS 2, heavy-duty type.
- 3. Selector Switches: NEMA ISC 2, mounted in front cover to read "HAND/OFF/AUTO". Provide auxiliary contact for auto positioning monitoring.
- 4. Indicating Lights: NEMA ICS 2, mounted in front cover; run (Red), off or ready (Green).
- 5. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.
- 6. Control Relays: Auxiliary and adjustable time-delay relays.
- 7. Elapsed Time Meters: Heavy duty with digital readout in hours.

2.8 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

A. Provide enclosed switches and circuit breakers in accordance with requirements specified in Division 26 Section "Enclosed Switches and Circuit Breakers".

2.9 FUSES

A. Provide fuses in accordance with requirements specified in Division 26 Section "Fuses".

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

- A. All three phase motors 1/2 HP and above shall be tested by the Testing Agency.
- B. Prepare for acceptance tests as follows:
 - 1. Check motor nameplates for horsepower, speed, phase and voltage.
 - 2. Check coupling alignment and shaft end play.
 - 3. Run each motor with its controller. Demonstrate correct rotation, alignment, and speed at motor design load.
 - 4. Test interlocks and control features for proper operation.
 - 5. Verify that current in each phase is within nameplate rating.
- C. Testing: Engage a qualified testing agency to perform the following field quality-control testing:

3.2 ADJUSTING

A. Align motors, bases, shafts, pulleys and belts. Tension belts according to manufacturer's written instructions.

3.3 CLEANING

- A. After completing equipment installation, inspect unit components. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.
- B. Clean motors, on completion of installation, according to manufacturer's written instructions.

END OF SECTION

PIPE FLEXIBLE CONNECTORS, EXPANSION FITTINGS AND LOOPS

1.1 1.2	RELA DEFI PERF SUBI	ERAL 1 ATED DOCUMENTS 1 NITIONS 1 FORMANCE REQUIREMENTS 1 MITTALS 2 LITY ASSURANCE 2	
PART 2 - 2.1	- PRODUCTSMANUFACTURERS		
PART 3 - 3.1	- EXECUTION		
PART 1 -	- GEN	ERAL	
1.1	RELATED DOCUMENTS		
A.	Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.		
B.	Related Sections include the following:		
	1.	Division 20 Section "Mechanical General Requirements."	
	2.	Division 20 Section "Basic Mechanical Materials and Methods."	
	3.	Division 23 Section "Refrigerant Piping."	
1.2	DEFINITIONS		
A.	BR: Butyl rubber.		
B.	CR: Chlorosulfonated polyethylene synthetic rubber (Neoprene).		
C.	CSM: Chlorosulfonyl-polyethylene rubber (Hypalon).		
D.	EPDM: Ethylene-propylene-diene terpolymer rubber.		
E.	NBR: Buna-N/Nitrile rubber.		
F.	NR: Natural rubber.		
G.	PTFE	E: Polytetrafluoroethylene plastic.	

1.3 PERFORMANCE REQUIREMENTS

- A. Compatibility: Products shall be suitable for piping system fluids, materials, working pressures, and temperatures.
- B. Capability: Products shall absorb 150 percent of maximum axial movement between anchors.

1.4 SUBMITTALS

- A. Product Data: For each type of pipe flexible connector, expansion joint and alignment guide indicated.
- B. Delegated-Design Submittal:
 - 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
 - 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
- C. Shop Drawings: Signed and sealed by a qualified professional engineer.
 - 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and bends.
 - 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 - 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 - 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.
- D. Product Certificates: For each type of pipe expansion joint, signed by product manufacturer.
- E. Welding certificates.
- F. Operation and Maintenance Data: For pipe expansion joints to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to the following:
 - 1. Steel Shapes and Plates: AWS D1.1, "Structural Welding Code Steel."
 - 2. Welding to Piping: ASME Boiler and Pressure Vessel Code: Section IX.
- B. Regulatory Requirements: Comply with requirements in Public Law 111-380, "Reduction of Lead in Drinking Water Act," about lead content in materials that will be in contact with potable water for human consumption.
- C. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9," and NSF 372 Drinking Water System Components Lead Content for potable domestic water piping and components.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

PART 3 - EXECUTION

3.1 SWING CONNECTIONS

- A. Connect risers and branch connections to mains with at least five pipe fittings, including tee in main.
- B. Connect risers and branch connections to terminal units with at least four pipe fittings, including tee in riser.
- C. Connect mains and branch connections to terminal units with at least four pipe fittings, including tee in main.

END OF SECTION

METERS AND GAGES				
1.1 1.2 1.3	- GENERAL RELATED DOCUMENTS DEFINITIONS SUBMITTALS QUALITY ASSURANCE	. 1 . 1		
2.1 2.2		. 2		
3.1 3.2 3.3	- EXECUTION	. 5 . 6 . 6		
PART 1	- GENERAL			
1.1	RELATED DOCUMENTS			
A.	Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.			
В.	Related Sections include the following:			

- 1. Division 22 Section "Water Distribution" for domestic and fire-protection water service meters outside the building.
- 2. Division 21 Section "Fire-Suppression Piping" for listed or approved pressure gages.
- 3. Division 20 Section "Mechanical General Requirements."
- 4. Division 20 Section "Basic Mechanical Materials and Methods."
- 5. Division 22 Section "Domestic Water Piping" for domestic and fire-protection water service meters inside the building.
- 6. Division 23 Section "Steam and Condensate Piping" for steam and condensate meters.
- 7. Division 23 Section "Fuel Gas Piping" for gas utility meters.

1.2 DEFINITIONS

- A. CR: Chlorosulfonated polyethylene synthetic rubber.
- B. EPDM: Ethylene-propylene-diene terpolymer rubber.
- C. FPR: Fiberglass reinforced plastic.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated; include performance curves.
- B. Shop Drawings: Schedule for thermometers gages flowmeters indicating manufacturer's number, scale range, and location for each.
- C. Product Certificates: For each type of thermometer gage flowmeter, signed by product manufacturer.
- D. Operation and Maintenance Data: For flowmeters to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Regulatory Requirements: Comply with requirements in Public Law 111-380, "Reduction of Lead in Drinking Water Act," about lead content in materials that will be in contact with potable water for human consumption.
- B. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9," and NSF 372 Drinking Water System Components Lead Content for potable domestic water piping and components.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 METAL-CASE, LIQUID-IN-GLASS THERMOMETERS

A. Manufacturers:

- 1. AMETEK, Inc.; U.S. Gauge Div.
- 2. Miljoco Corporation.
- 3. REOTEMP Instrument Corporation.
- 4. Trerice, H. O. Co.
- 5. Weiss Instruments, Inc.
- 6. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- B. Case: Die-cast aluminum or Chrome-plated brass, 9 inches long.
- C. Tube: Red, blue, or green reading, organic-liquid filled, with magnifying lens.
- D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- E. Window: Glass or plastic.

- F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
- G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.
- H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.3 THERMOWELLS

- A. Manufacturers: Same as manufacturer of thermometer being used.
- B. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer. Brass for compatible services less than 353 degrees F (178 degrees C); ANSI 18-8 stainless steel for all others to suit service. Furnish extension neck to accommodate insulation where applicable.

2.4 PRESSURE GAGES

- A. Manufacturers:
 - 1. AMETEK, Inc.; U.S. Gauge Div.
 - 2. Cambridge.
 - 3. Dwyer Instruments, Inc.
 - 4. Marsh Bellofram.
 - 5. Miljoco Corporation.
 - 6. Trerice, H. O. Co.
 - 7. Weiss Instruments, Inc.
 - 8. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.
 - 1. Case: Stainless steel, aluminum, or FRP, 4-1/2-inch diameter.
 - 2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
 - 3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 5. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
 - 6. Pointer: Red or other dark-color metal.
 - 7. Window: Glass or plastic.

- 8. Ring: Stainless steel or chrome plated metal.
- 9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
- 10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
- 11. Water: 0-100 PSIG (1 psi divisions to 50 psi; 5 psi divisions above 50 psi), liquid filled.
- 12. Steam (15 psig and less): 30 inches Hg vacuum-30 PSIG (1 inch divisions below 0 psi; 1 psi divisions above 0 psi), silicone dampened.
- 13. Steam (16 to 60 psig): 30 inches Hg vacuum-100 PSIG, silicone dampened.
- 14. Range for Fluids under Pressure: 1-1/2 times expected working pressure. If not a standard scale, select next largest scale.

C. Pressure-Gage Fittings:

- 1. Valves: NPS 1/4 brass ball type.
- 2. Syphons: NPS 1/4 coil of brass tubing with threaded ends.
- 3. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

2.5 TEST PLUGS

- A. Manufacturers:
 - 1. Peterson Equipment Co., Inc.
- B. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.
- C. Minimum Pressure and Temperature Rating: 500 psig at 200 deg Ffor cold services, and 500 psig at 275 deg Ffor hot services.
- D. Core Inserts: One or two self-sealing rubber valves.
 - 1. Insert material for air, water, oil, or gas service at 20 to 200 deg F shall be Neoprene.
 - 2. Insert material for air or water service at minus 30 to plus 275 deg F shall be Nordel.
- E. Test Kit: Furnish test kit(s) containing one pressure gage and adaptor, thermometer(s), and carrying case. Pressure gage, adapter probes, and thermometer sensing elements shall be of diameter to fit test plugs and of length to project into piping.
 - 1. Pressure Gage: Small bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be 0 to 200 psig.
 - 2. Low-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial ranges shall be 25 to 125 deg F.
 - 3. High-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial ranges shall be 0 to 220 deg F.

4. Carrying case shall have formed instrument padding.

2.6 FLOW MEASURING DEVICES

A. Manufacturers:

- 1. Dietrich Standard Subsidiary of Rosemount Division of Emerson Process Management; Diamond II Flo-Tap Model.
- 2. Preso Meters Corporation.
- 3. Taco, Inc.
- B. Flow measuring device shall be used where indicated on the drawings and in sizes NPS 6 and larger and shall be annular primary flow elements. The annular primary flow elements shall be type 316, stainless steel, diamond shape or elliptical shape in cross-section. Pressure rating shall meet or exceed system minimum pressure rating as indicated for each system. Provide permanent, rust-proof metal identification tag on a chain indicating design flow rates, metered fluid and line size. Flow measuring devices shall be weld insert type. Units shall be capable of being inserted without system shut-down.
- C. Accuracy shall be plus or minus 1 percent over a flow turndown at least 10 to 1, independent of Reynold's number. Repeatability shall be plus or minus 0.1 percent.
- D. Sensors shall be installed in strict accordance with the manufacturer's recommendations with special attention given to alignment and straight run requirements.
- E. Flow gages which read in actual GPM shall be provided for all flow measuring devices on pumps 200 GPM or larger, and for both flow directions on the chilled water system de-coupler pipe flow measuring device. Gage scale shall be linear to flow. Maximum flow rate on scale shall be selected at 120 percent of the pump's scheduled flow rate (120 percent of the scheduled flow rate of one chiller for the chilled water system de-coupler). Gage scale shall be 2.5 inch x 6 inch minimum, or 4 inch diameter minimum, and shall be mounted at eye level on unistrut support.

PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS

- A. Install liquid-in-glass thermometers in the following locations:
 - 1. Inlet and outlet of each hydronic zone.
 - 2. Inlet and outlet of each hydronic coil in air-handling units and built-up central systems.
 - 3. Inlet and outlet of each hydronic heat exchanger.
 - 4. Outside-air, return-air, and mixed-air ducts.
- B. Provide the following temperature ranges for thermometers:
 - 1. Domestic Hot Water: 30 to 180 deg F, with 2-degree scale divisions.
 - 2. Domestic Cold Water: 0 to 100 deg F, with 2-degree scale divisions.
 - 3. Heating Hot Water: 30 to 240 deg F, with 2-degree scale divisions.

4. Air Ducts: Minus 40 to plus 110 deg F, with 2-degree scale divisions.

3.2 GAGE APPLICATIONS

- A. Install dry-case-type pressure gages on inlet and outlet of each pressure-reducing valve.
- B. Install dry-case-type pressure gages at chilled- and condenser-water inlets and outlets of chillers.
- C. Install dry-case-type pressure gages at suction and discharge of each pump.
- D. Except where noted otherwise, select range for twice normal operating pressure.
 - 1. Water (CW and HW): 0 to 100 psig.

3.3 INSTALLATIONS

- A. Install direct-mounting thermometers and adjust vertical and tilted positions.
- B. Install thermowells with socket extending one-third of diameter of pipe and in vertical position in piping tees where thermometers are indicated.
- C. Duct Thermometer Support Flanges: Install in wall of duct where duct thermometers are indicated. Attach to duct with screws.
- D. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.
- E. Install ball valve and snubber fitting in piping for each pressure gage for fluids (except steam).
- F. Install ball valve and syphon fitting in piping for each pressure gage for steam.
- G. Install test plugs in tees in piping.
- H. Install flow indicators, in accessible positions for easy viewing, in piping systems.
- I. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters as prescribed by manufacturer's written instructions.
- J. Install flowmeter elements in accessible positions in piping systems.
- K. Install differential-pressure-type flowmeter elements with at least minimum straight lengths of pipe upstream and downstream from element as prescribed by manufacturer's written instructions.
- L. Install wafer-orifice flowmeter elements between pipe flanges.
- M. Install permanent indicators on walls or brackets in accessible and readable positions.
- N. Install connection fittings for attachment to portable indicators in accessible locations.
- O. Install flowmeters at discharge of hydronic system pumps and at inlet of hydronic air coils.
- P. Assemble components and install thermal-energy meters.
- Q. Mount meters on wall if accessible; if not, provide brackets to support meters.

3.4 CONNECTIONS

- A. Install meters and gages adjacent to machines and equipment to allow service and maintenance for meters, gages, machines, and equipment.
- B. Connect flowmeter-system elements to meters.
- C. Connect flowmeter transmitters to meters.
- D. Connect thermal-energy-meter transmitters to meters.
- E. Ground equipment according to Division 26 Section "Grounding and Bonding."
- F. Connect wiring according to Division 26 Section "Conductors and Cables."

3.5 ADJUSTING

- A. Calibrate meters according to manufacturer's written instructions, after installation.
- B. Adjust faces of meters and gages to proper angle for best visibility.

END OF SECTION

HANGERS AND SUPPORTS

PART 1 -	- GENERAL	. 1
1.1	RELATED DOCUMENTS	. 1
1.2	DEFINITIONS	. 2
1.3	PERFORMANCE REQUIREMENTS	. 2
1.4	SUBMITTALS	. 2
1.5	QUALITY ASSURANCE	. 2
PART 2 -	- PRODUCTS	. 3
2.1	MANUFACTURERS	. 3
2.2	HANGER ROD MATERIAL	
2.3	STEEL PIPE HANGERS AND SUPPORTS	
2.4	TRAPEZE PIPE HANGERS	. 3
2.5	METAL FRAMING SYSTEMS	. 4
2.6	METAL INSULATION SHIELDS	. 4
2.7	PIPE COVERING PROTECTION SADDLES	. 4
2.8	PLASTIC INSULATION SHIELDS	
2.9	THERMAL-HANGER SHIELDS	. 5
	FASTENER SYSTEMS	
	ROOF AND GRADE MOUNTED PIPING SUPPORTS	
	ROOF MOUNTED EQUIPMENT SUPPORTS	
	EQUIPMENT SUPPORTS	
2.14	MISCELLANEOUS MATERIALS	11
PART 3 -	- EXECUTION	11
3.1	HANGER AND SUPPORT APPLICATIONS	 11
3.2	HANGER AND SUPPORT INSTALLATION	
3.3	EQUIPMENT SUPPORTS	
3.4	METAL FABRICATIONS	
3.5	ADJUSTING	_
3.6	PAINTING	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 - 2. Division 21 Section "Fire-Suppression Piping" for pipe hangers for fire-protection piping.
 - 3. Division 20 Section "Mechanical General Requirements."
 - 4. Division 20 Section "Basic Mechanical Materials and Methods."
 - 5. Division 20 Section "Mechanical Vibration Controls" for vibration isolation devices.
 - 6. Division 20 Section "Pipe Expansion Fittings and Loops" for pipe guides and anchors.

7. Division 23 Section(s) "Metal Ducts" and "Nonmetal Ducts" for duct hangers and supports.

1.2 DEFINITIONS

- A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.
- B. MFMA: Metal Framing Manufacturers Association.

1.3 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Thermal-hanger shield inserts.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
 - 3. Pipe stands. Include Product Data for components.
 - 4. Equipment supports.
- C. Welding certificates.

1.5 QUALITY ASSURANCE

- A. MSS Standards: Pipe hangers, supports, and accessories shall comply with the following:
 - 1. MSS SP-58, Pipe Hangers and Supports Materials, Design and Manufacture.
 - 2. MSS SP-69, Pipe Hangers and Supports Selection and Application.
 - 3. MSS SP-89, Pipe Hangers and Supports Fabrication and Installation Practices.
- B. Welding: Qualify procedures and personnel according to the following:
 - AWS D1.1, "Structural Welding Code--Steel."
 - 2. AWS D1.2, "Structural Welding Code--Aluminum."
 - 3. AWS D1.3, "Structural Welding Code--Sheet Steel."

- 4. AWS D1.4, "Structural Welding Code--Reinforcing Steel."
- 5. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 HANGER ROD MATERIAL

- A. Threaded, hot rolled, steel rod conforming to ASTM A 36 or A575.
 - 1. Rod continuously threaded.
 - 2. Use of rod couplings is prohibited.

2.3 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-69, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article, and schedules and details on the Drawings for where to use specific hanger and support types.
 - 1. Hangers and Supports for Fire Protection Piping: UL listed or FMG approved.

B. Manufacturers:

- 1. Anvil International, Inc.
- 2. B-Line by Eaton.
- 3. Carpenter & Paterson, Inc.
- 4. Hilti USA.
- 5. ERICO International Corp.
- 6. PHD Manufacturing, Inc.
- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.4 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.5 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Manufacturers:
 - 1. Anvil International, Inc.; Anvil-Strut.
 - 2. B-Line by Eaton.
 - 3. Power-Strut Div.; Tyco International, Ltd.
 - 4. Unistrut Corp.; Tyco International, Ltd.
 - 5. Hilti USA.
- C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.
- D. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- E. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- 2.6 METAL INSULATION SHIELDS
 - A. Manufacturers:
 - 1. Anvil International, Inc.
 - 2. B-Line by Eaton.
 - 3. Carpenter & Paterson, Inc.
 - 4. ERICO International Corp.
 - 5. PHD Manufacturing, Inc.
 - B. Description: MSS SP-69, Type 40, protective shields. Shields shall span an arc of 180 degrees.
 - C. Shield Dimensions for Pipe: Not less than the following:
 - 1. NPS 1/4 to NPS 2: 12 inches long and 0.048 inch thick.
- 2.7 PIPE COVERING PROTECTION SADDLES
 - A. Manufacturers:
 - 1. Anvil International, Inc.
 - 2. B-Line by Eaton.
 - 3. Carpenter & Paterson, Inc.
 - 4. ERICO International Corp.

- 5. PHD Manufacturing, Inc.
- B. Description: MSS SP-69, Type 39A and Type 39B, for suspension of insulated hot pipe where heat losses are to be kept to a minimum.
 - 1. Saddles shall match insulation thickness.
 - 2. Saddle length: 12 inches.
 - 3. Furnish with center rib for pipe sized NPS 12 and larger.

2.8 PLASTIC INSULATION SHIELDS

- A. Manufacturers:
 - 1. B-Line by Eaton; Snap'N Shield.
- B. Description: Polypropylene copolymer protective shields designed to snap directly onto strut channel. Shields shall span an arc of 180 degrees.
 - 1. Operating Temperature Range: Minus 40 deg F to plus 178 deg F.
- C. Certifications:
 - 1. UL Classified for USA: UL-723 (ASTM E 84).
 - 2. UL listed for Canada: ULC-S102.2.
 - 3. Meets UL94 HB flammability standards.
- D. Shield Dimensions for Pipe: Not less than the following:
 - 1. NPS 1/4 to NPS 2: 12 inches long.
- 2.9 THERMAL-HANGER SHIELDS
 - A. Manufacturers:
 - 1. B-Line by Eaton.
 - 2. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 - 3. Rilco Manufacturing Company, Inc.
 - 4. American Mechanical Insulation Sales Inc. (AMIS).
 - 5. ERICO International Corp.
 - 6. Value Engineered Products, Inc.
 - B. Description: Manufactured assembly consisting of insulation insert encased in 360 degree sheet metal shield.
 - 1. Minimum Compressive Strength of Insert Material:

- a. 100-psig- for sizes smaller than NPS 6.
- b. 600-psig- for sizes NPS 6 and larger.
- C. Insulation-Insert Material for Cold Piping: Full 360 degree, water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Full 360 degree, water-repellent treated, ASTM C 533, Type I calcium silicate.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
- F. Include carbon steel ASTM A36 load distribution plates as required by load, pipe movement, hanger style, and hanger spacing.
- G. Thermal-Hanger Shields for Flexible Foamed Elastomeric Insulated Piping:
 - 1. Manufacturer:
 - a. B-Line by Eaton/Armacell; Armafix IPH.
 - 2. Insulation-Insert Material for Copper Piping with Flexible Foamed Elastomeric Insulation: Use the following:
 - a. Flexible foamed elastomeric, ASTM 534, Type I-Tubular Grade 1 with PUR/PIP support inserts.
- H. Thermal-Hanger Shields for Small Diameter Piping:
 - Manufacturer:
 - a. Hydra-Zorb Company; Klo-Shure Insulation Couplings.
 - 2. Insulation-Insert Material for Small Diameter Piping with Flexible Foamed Elastomeric or Glass Fiber Insulation: Use the following:
 - a. Rigid Hytrel thermoplastic insulation coupling designed for use with pipe or tube NPS 1-1/2 and smaller, and insulation from 3/8 inch to 1-1/2 inch thick.

2.10 FASTENER SYSTEMS

- A. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. B-Line by Eaton.
 - b. Empire Industries, Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head.
 - e. MKT Fastening, LLC.
 - f. Powers Fasteners.

- B. Chemical Fasteners: Insert-type-stud bonding system anchor for use with hardened portland cement concrete, and tension and shear capacities appropriate for application. Exception: Do not use chemical fasteners to support hanger systems for fire protection piping.
 - Manufacturers:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head.
 - c. MKT Fastening, LLC.
 - d. Powers Fasteners.
 - 2. Bonding Material: ASTM C 881, Type IV, Grade 3, 2-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.
 - Stud: ASTM A 307, zinc-coated carbon steel with continuous thread on stud, unless otherwise indicated.
 - 4. Washer and Nut: Zinc-coated steel.
- C. Threaded Inserts: Galvanized malleable iron or galvanized steel for 3/4 inch bolts.
 - Manufacturers:
 - a. Superior Concrete Accessories: Threaded Insert.
 - b. Dayton Sure-Grip and Shore Co.
 - c. Richmond Screw Anchor Co.
- D. Slotted Inserts: Continuous galvanized steel with temporary slot fillers and complete with nuts, studs, washers and the like, for 3/4 inch bolts.
 - Manufacturers:
 - a. B-Line by Eaton; B22-I Continuous Concrete Insert.
 - b. Unistrut Corp.; P-3200 Continuous Insert.
 - c. Hohman and Barnard, Inc.
 - d. Richmond Screw Anchor Co.
 - e. Hilti, Inc.; CIS13812/PG.

2.11 ROOF AND GRADE MOUNTED PIPING SUPPORTS

- A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Low, Fixed-Height, Single-Base Stand: Assembly of base and horizontal member, and pipe support, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. B-Line by Eaton; Dura-Blok.
 - b. Eco Support Products.
 - c. ERICO International Corp.
 - d. MIRO Industries; Conduit and Condensate Supports.
 - e. Portable Pipe Hangers.

- 2. Base: Plastic, stainless steel, or recycled rubber.
- 3. Horizontal Member: Cadmium-plated-steel or galvanized-steel strut designed for use with standard strut clamps and accessories.
- C. Low, Adjustable-Height, Single-Base Stand: Assembly of base, horizontal member, and adjustable vertical members, and pipe support, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. B-Line by Eaton; Dura-Blok.
 - b. Eco Support Products.
 - c. ERICO International Corp.
 - d. MIRO Industries; Conduit and Condensate Supports.
 - e. Portable Pipe Hangers.
 - 2. Base: Plastic, stainless steel, or recycled rubber.
 - 3. Horizontal Member: Cadmium-plated-steel or galvanized-steel strut designed for use with standard strut clamps and accessories.
 - 4. Vertical Members: Threaded, hot rolled, steel rod conforming to ASTM A 36 or A575 with cadmium plated nuts and washers. Rod continuously threaded.
- D. High, Adjustable-Height, Single-Base Stand: Assembly of base, horizontal member, and adjustable vertical members, and clevis type pipe support, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. B-Line by Eaton; Dura-Blok.
 - b. Eco Support Products.
 - c. ERICO International Corp.
 - d. MIRO Industries; Water and Steam Supports.
 - e. Portable Pipe Hangers.
 - 2. Base: Plastic, stainless steel, or recycled rubber.
 - 3. Horizontal Member: Cadmium-plated-steel or galvanized-steel strut designed for use with standard strut clamps and accessories.
 - 4. Vertical Members: Threaded, hot rolled, steel rod conforming to ASTM A 36 or A575 with cadmium plated nuts and washers. Rod continuously threaded.
- E. Low, Fixed-Height, Single-Base Roller Stand: Assembly of base and horizontal roller, for roof installation without membrane penetration.
 - Manufacturers:
 - a. B-Line by Eaton; Dura-Blok.
 - b. Eco Support Products.
 - c. ERICO International Corp.
 - d. MIRO Industries; Gas and Mechanical Supports.

- e. Portable Pipe Hangers.
- 2. Base: Plastic, stainless steel, or recycled rubber.
- 3. Horizontal Member: Cadmium-plated-steel rod and corrosion resistant roller designed for use with standard accessories.
- F. Low, Adjustable-Height, Single-Base Roller Stand: Assembly of base and horizontal roller, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. B-Line by Eaton; Dura-Blok.
 - b. Eco Support Products.
 - c. ERICO International Corp.
 - d. MIRO Industries; Gas and Mechanical Supports.
 - e. Portable Pipe Hangers.
 - 2. Base: Plastic, stainless steel, or recycled rubber.
 - 3. Horizontal Member: Cadmium-plated-steel rod and corrosion resistant roller designed for use with standard accessories.
 - 4. Vertical Members: Threaded, hot rolled, steel rod conforming to ASTM A 36 or A575 with cadmium plated nuts and washers. Rod continuously threaded.
- G. High, Multiple-Base Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 1. Manufacturer:
 - a. B-Line by Eaton; Dura-Blok.
 - b. Eco Support Products.
 - c. ERICO International Corp.
 - d. MIRO Industries; Water and Steam Supports.
 - e. Portable Pipe Hangers.
 - 2. Bases: Two or more plastic, steel, or recycled rubber.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- H. Custom, Multiple-Base Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports or rollers, for roof installation without membrane penetration.
 - Manufacturer:
 - a. B-Line by Eaton; Dura-Blok.
 - b. Eco Support Products.
 - c. ERICO International Corp.
 - d. MIRO Industries; Custom Design Products.

- e. Portable Pipe Hangers.
- 2. Bases: Four or more plastic, steel, or recycled rubber.
- 3. Vertical Members: Two or more protective-coated-steel channels.
- 4. Horizontal Member: Protective-coated-steel channel.
- 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- 6. Pipe Rollers: Cadmium-plated-steel rod and corrosion resistant roller designed for use with standard accessories.
- I. Curb-Mounting Pipe Stands: Shop- or field-fabricated pipe support made from structural-steel shape, continuous-thread rods, and rollers for mounting on permanent stationary roof curb.
 - 1. Roof Curb Type Supports: Coordinate installation and type with Architectural Trades. Top shall be level and extend a minimum of 10 inches above top of roof insulation.
 - a. Manufacturers:
 - 1) Pate.
 - 2) Thybar; Thycurb.
 - 3) Roof Products and Systems.
 - 4) Greenheck.
 - 5) Creative Metals.

2.12 ROOF MOUNTED EQUIPMENT SUPPORTS

- A. Equipment Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted equipment.
- B. Non-Penetrating Equipment Supports: Assembly of two or more bases and horizontal members, for roof installation without membrane penetration.
 - 1. Manufacturers:
 - a. B-Line by Eaton; Dura-Blok.
 - b. ERICO International Corp.
 - c. MIRO Industries; HD and LD Mechanical Unit Supports.
 - d. Portable Pipe Hangers.
 - 2. Base: Plastic, stainless steel, or recycled rubber.
 - 3. Horizontal Member: Cadmium-plated-steel, galvanized-steel, or stainless steel strut, and planking; designed for use with standard strut clamps, all-thread rood, and accessories.
- C. Roof Rail-Type Equipment Stands: Welded 18 gage galvanized steel shell, base plate and counter flashing. Factory installed chemically treated wood nailer. Fully mitered end sections. Internal bulkhead reinforcement.
 - 1. Roof Rail Type Supports: Coordinate installation and type with Architectural Trades. Top shall be level and extend a minimum of 10 inches above top of roof insulation.
 - a. Manufacturers:

- 1) Pate.
- 2) Thybar; TEMS Series.
- 3) Roof Products and Systems.
- 4) Greenheck.
- 5) Creative Metals.

2.13 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.14 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Refer to application schedules on the Drawings.
- B. For insulated pipe, oversize hanger elements to accommodate insulation thickness.
- C. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- D. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- E. Use hangers and supports with galvanized, metallic coatings for outdoor applications or where exposed to outdoor conditions.
- F. Use hangers and supports with plastic coating, or galvanized metallic coatings for applications in corrosive atmospheres.
- G. Use metal framing, with plastic coating, or galvanized metallic coatings for metal framing in corrosive atmospheres.
- H. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- I. Use padded hangers for piping that is subject to scratching.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. MSS Type 8 or spring type to meet system requirements.
- K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
- 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
- 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
- 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- L. Concrete Structure Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - Anchor Devices, Concrete and Masonry: in accordance with Group I, Group II, Type 2, Class 2, Style 1 and Style 2, Group III and Group VIII or FS FF-S-325A. Furnish cast-in floor type equipment anchor devices with adjustable positions. Furnish built in anchor devices for masonry, unless otherwise approved by the Architect. Powder actuated anchoring devices shall not be used to support any mechanical systems components.
 - 2. Inserts, Concrete: TYPE 18 or 19. When applied to loads equivalent to piping in sizes NPS 2 and larger, and where otherwise required by imposed loads, a one foot length of 1/2 inch NPS 4 reinforcing rod shall be inserted and wired through wing slots. Proprietary type continuous inserts may be proposed and shall be submitted for approval.
 - 3. Use mechanical-expansion anchors where required in concrete construction.
 - 4. Use chemical fasteners where required in concrete construction.
- M. Steel Frame Structure Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Beam Clamps:
 - a. Center Loading: TYPE 21, 28, 29 and 30, unless otherwise indicated. Type 27 shall be allowed to support single pipes NPS 6 size or smaller only.
 - b. "C" Clamps: Type 19, 20 or 23, for supporting single pipes NPS 2-1/2 size or smaller only. Use of "C" clamps, or beam clamps of "C" pattern, or any modification thereof, is prohibited for supporting multiple pipes or pipes larger than NPS 2-1/2.
- N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Use spring supports and sway braces TYPES 48, 49, 50, 51, 52, 53, 54, 55 or 56. For specific points:
 - a. Provide spring supports at point of support where vertical movement will occur.
 - b. For light loads and vertical movement less than 1/4 inch, TYPES 48 or 49 spring cushion supports.
 - c. For vertical movements in excess of 1/4 inch but less than 1/2 inch, TYPES 51, 52 or 53 variable spring supports shall be used, loaded to not more than 75 percent of published load rating.
 - d. For vertical movements of 1/2 inch and more, TYPES 54, 55 and 56 constant support spring hangers.

- e. Sway braces; TYPE 50.
- f. Variable spring hangers in accordance with referenced MSS Standards with "medium" allowable load change.
- O. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- P. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structural frame.
- B. Provide necessary piping and equipment supporting elements including: building structure attachments, supplementary steel, hanger rods, stanchions and fixtures, vertical pipe attachments, horizontal pipe attachments, anchors, guides, spring supports in accordance with the referenced codes, standards, and requirements specified. Support piping and equipment from building structure, not from roof deck, floor slab, other pipe, duct or equipment.
- C. At connections between piping systems, hangers and equipment of dissimilar metals, insulate, using dielectric insulating material, nonferrous piping against direct contact with the building steel by insulating the contact point of the hanger and pipe or the hanger and building steel. Test each point of dielectric insulation with an ohm meter to ensure proper isolation of dissimilar materials. Test shall be observed by the Owner's Representative and/or Architect.
- D. Use copper plated or plastic coated supporting element in contact with copper tubing or glass piping.
- E. File and paint cut ends and shop or field prime paint supporting element components.
- F. Hang piping parallel with the lines of the building, unless otherwise indicated. Route piping in an orderly manner and maintain gradient. Space piping and components so a threaded pipe fitting may be removed between adjacent pipes and so there will be not less than 1/2 inch of clear space between finished surfaces and piping. Arrange hangers on adjacent parallel service lines in line with each other.
- G. Flange loads on connected equipment shall not exceed 75 percent of maximum allowed by equipment manufacturer. Flange loads in liquid containing systems shall be checked in the presence of the Architect when piping is full of liquid. No flange load is allowed on pumps, vibration isolated equipment or flexible connectors.
- H. Spring supports, within specified limitations: Constant support type, where necessary to avoid transfer of load from support to support or onto connected equipment; otherwise, variable support type located at points subject to vertical movement.
- I. Incorporate pipe anchors into piping systems to maintain permanent pipe positions. Install alignment guides for the piping adjacent to and on each side of pipe expansion loops and expansion joints to maintain alignment.
- J. Where necessary, brace piping and supports against reaction, sway and vibration.
- K. Do not hang piping from joist pans, floor decks, roof decks, equipment, ductwork, or other piping.

- L. Install turnbuckles, swing eyes and clevises to accommodate temperature changes, pipe accessibility, and adjustment for load pitch. Rod couplings are not acceptable.
- M. Install hangers and supports for piping at intervals specified, at locations not more than 3 feet from the ends of each runout, not more than 3 feet from connections to equipment, and not over 25 percent of specified interval from each change in direction of piping and for concentrated loads such as valves, etc.
- N. Base the load rating for pipe support elements on loads imposed by insulated weight of pipe filled with water. The span deflection shall not exceed slope gradient of pipe.
- O. If structural steel, roofs, or tunnels will allow support spacing greater than that shown above, Contractor shall submit proposed support system along with structural calculations documenting the allowance of such spacing, in accordance with ANSI, B31.1, and MSS Guidelines.
- P. Support vertical risers independently of connected horizontal piping whenever practical, with supports at the base and at intervals to accommodate system range of load with thermal conditions. Support vertical risers at each floor penetration for piping in shafts or chases. Guide for lateral stability. Fit horizontal piping connected to moving risers with two spring supports connected adjacent to riser, spaced according to required hanger spacing.
- Q. For risers at temperatures of 100 deg F or less place riser clamps under fittings. Support carbon steel pipe at each operating level or floor and at not more than 15-foot intervals for pipe 2 inches and smaller, and at not more than 20 foot intervals for pipe 2-1/2 inches and larger.
- R. After the piping systems have been installed, tested and placed in satisfactory operation, firmly tighten hanger rod nut and jam nut and upset threads to prevent movement of fasteners.
- S. Attach pipe anchors and pipe alignment guides to the building structure where indicated. If not indicated, the method used is optional to the Contractor, subject to approval by the Architect. In the case of structural steel, make attachment by clamping in accordance with the American Institute of Steel Construction Specification for the Design, Fabrication and Erection of Structural Steel for Building.
- T. Attach supporting elements connected to structural steel columns to preclude vertical slippage and cascading failure.
- U. Attach pipe hangers and other supporting elements to roof purlins and trusses at panel points.
- V. Where eccentric loading beam clamps are approved and where other work is supported by similar eccentric loading support element from the same structural member, locate eccentric loading support elements to minimize structural member torsion load.
- W. Limit the location of supporting elements for piping and equipment, when supported from roof, to panel points of the bar joists.
- X. Building structure shall not be reinforced except as approved by the Architect in writing.
- Y. Use approved cast-in-place inserts or built-in anchors for attachment to concrete structure. Size inserts and anchors for the total applied load with a safety factor in accordance with applicable codes but in no case less than 5. Coordinate installation of all imbedded items in accordance with manufacturer's instructions. Position anchorage and imbedded items as indicated and/or where required and support against displacement during placing of concrete. Cutting or repositioning of concrete beam or girder or reinforcing steel to accommodate inserts will not be allowed. Provide removable closures in imbedded device openings to prevent entry of concrete.

- Z. Support piping and equipment from concrete building frame, not from roof or floor slabs unless otherwise indicated.
- AA. Use cast-in-place inserts in concrete beams and girders. Drilled anchors/wedge type inserts shall be used on vertical surfaces only. Coordinate with structural engineer.
- BB. Attach piping supports to the side of concrete beams and concrete joist. Provide supplementary support steel as required. Cast-in-place or drilled anchors will not be permitted in the bottom of concrete beams and concrete joist.
- CC. Attach piping supports to the side of concrete beams or concrete joist. Where intermediate hangers are required to meet the hanger spacing schedule, the Contractor may propose attachment of intermediate pipe supports to the bottom of the concrete slab pending submittal of a satisfactory pull out test. The Contractor shall submit pull out test criteria, pull out test results, proposed hanger detail and hanger point loads to the Architect for written approval.
- DD. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- EE. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- FF. Fastener System Installation:
 - 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- GG. Roof-Mounting Pipe and Equipment Stand Installation:
 - 1. Stand Types except Curb-Mounting Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 - 2. Curb or Rail Mounting Type Stands: Assemble components or fabricate stand and mount on permanent, stationary roof curb or rail. Refer to Division 07 Section "Roof Accessories" for curb and rail installation.
 - 3. Maintain support manufacturer's recommended spacing.
- HH. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- II. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- JJ. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- KK. Install lateral bracing with pipe hangers and supports to prevent swaying.

- LL. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- MM. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- NN. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.
- OO. Refer to individual piping sections for hanger spacing and hanger rod sizes.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

- 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Equipment Supports: Painting is specified in Division 09 painting Sections.
- C. Touch Up: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.
- D. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION

MECHANICAL VIBRATION CONTROLS

PART 1	- GENERAL	. 1
1.1	RELATED DOCUMENTS	. 1
1.2	SUBMITTALS	
1.3	QUALITY ASSURANCE	. 2
1.4	COORDINATION	. 2
PART 2	- PRODUCTS	2
2.1	VIBRATION ISOLATION EQUIPMENT BASES	
2.2	VIBRATION ISOLATORS	
2.3	VIBRATION ISOLATION HANGERS	. 8
2.4	FACTORY FINISHES	. 9
PART 3	- EXECUTION	. 9
3.1	EXAMINATION	
3.2	INSTALLATION	10
3.3	CONNECTIONS	
3.4	EQUIPMENT BASES	10
3.5	FIELD QUALITY CONTROL	
3.6	ADJUSTING	11
3.7	CLEANING	11

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."

1.2 SUBMITTALS

- A. Product Data: Include load deflection curves for each vibration isolation device.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Include the following:
 - 1. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 - Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, and spring deflection changes. Include certification that riser system has been examined for excessive stress and that none will exist.
 - 3. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.

C. Welding certificates.

1.3 QUALITY ASSURANCE

 Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code-Steel."

1.4 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into base. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. Installation of these items is specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATION EQUIPMENT BASES

- A. **Type A**: Direct Isolator Attachment
 - Unit to be isolated is so constructed that vibration isolators of the type specified may be directly attached, provided that the edge deflection of the isolated unit base over unsupported span between mountings does not exceed specified or manufacturer's limits. If units to be isolated will not meet required deflection provisions, Type B bases shall be provided.
- B. **Type B**: Factory-fabricated, welded, structural-steel bases or rails.
 - 1. Structural Steel Bases:
 - a. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type WF or a comparable product by one of the following:
 - 1) Amber/Booth; a VMC Group Company.
 - 2) Kinetics Noise Control, Inc.
 - 3) Korfund Dynamics; a VMC Group Company.
 - 4) Vibration Eliminator Co., Inc.
 - 5) Vibration Isolation Co., Inc. (Pump Bases Only)
 - 6) Vibration Mountings & Controls; a VMC Group Company.
 - 7) Vibro-Acoustics.
 - b. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails. Include supports for suction and discharge elbows for pumps.
 - c. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 - d. Support Brackets: Factory-welded steel angles on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
 - 2. Structural-Steel Rails:
 - a. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type ICS or a comparable product by one of the following:

- 1) Amber/Booth; a VMC Group Company.
- 2) Kinetics Noise Control, Inc.
- 3) Korfund Dynamics; a VMC Group Company.
- 4) Vibration Eliminator Co., Inc.
- 5) Vibration Isolation Co., Inc. (Pump Bases Only)
- 6) Vibration Mountings & Controls; a VMC Group Company.
- 7) Vibro-Acoustics.
- b. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails. Include supports for suction and discharge elbows for pumps.
- c. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
- d. Support Brackets: Factory-welded steel angles on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
- C. **Type C** Inertia Base: Factory-fabricated, welded, structural-steel bases and rails ready for field-applied, cast-in-place concrete.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type BMK/KSL or a comparable product by one of the following:
 - 1) Amber/Booth; a VMC Group Company.
 - 2) Kinetics Noise Control, Inc.
 - 3) Korfund Dynamics; a VMC Group Company.
 - 4) Vibration Eliminator Co., Inc.
 - 5) Vibration Isolation Co., Inc. (Pump Bases Only)
 - 6) Vibration Mountings & Controls; a VMC Group Company.
 - 7) Vibro-Acoustics.
 - 2. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails. Include supports for suction and discharge elbows for pumps.
 - 3. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 - 4. Support Brackets: Factory-welded steel angles on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
 - 5. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.
- D. **Type D** Curb Mounted Aluminum Bases:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type CMAB or a comparable product by one of the following:
 - a. Kinetics Noise Control, Inc.
 - b. ThyCurb/Thybar.
 - c. Vibro-Acoustics.

- 2. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment.
- Upper Frame: Corrosion resistant extruded aluminum. Upper frame shall overlap lower frame for water runoff. Mitered ends heliarc welded to prevent water leakage through corners.
- 4. Lower Frame: Corrosion resistant extruded aluminum. Lower framed shall overlap roof curb for water runoff. Mitered ends heliarc welded to prevent water leakage through corners.
- 5. Safety Stops: Neoprene, mounted in corners of lower frame for extreme wind conditions and mild seismic disturbances under normal conditions.
- 6. Isolators: Cadmium plated free-standing springs with positive spring retainer and flexible ties.
- 7. Splicing Kit: Required for bases shipped in multiple pieces.
- 8. Weatherseal: Flexible frictionless EPDM.
- 9. Static Deflection: Nominal 1 inch.
- E. **Type E** Rooftop Spring Curb:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type RSC or a comparable product by one of the following:
 - a. Kinetics Noise Control, Inc.
 - b. ThyCurb/Thybar.
 - c. Vibro-Acoustics.
 - 2. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment; and to withstand wind forces as required by local codes.
 - 3. Lower Support Assembly: Sheet-metal "Z" section containing adjustable and removable steel springs that support upper floating frame. Upper frame shall provide continuous support for equipment and shall be captive to resiliently resist wind forces. Lower support assembly shall have a means for attaching to building structure and a wood nailer for attaching roof materials, and shall be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly.
 - 4. Spring Isolators: Adjustable, restrained spring isolators shall be mounted on 1/4-inch-thick, elastomeric vibration isolation pads and shall have access ports, for level adjustment, with removable waterproof covers at all isolator locations. Isolators shall be located so they are accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.
 - Restrained Spring Isolators: Freestanding, steel, open-spring isolators with restraint.
 - 1) Housing: Steel with resilient vertical-limit stops and adjustable equipment mounting and leveling bolt.

- 2) Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 3) Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 4) Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
- 5) Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- b. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers (maximum 3 layers separated by steel shims) to achieve 90 percent efficiency, molded with a nonslip pattern and galvanized steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.
 - 1) Material: Bridge-bearing neoprene, complying with AASHTO M 251.
 - 2) Durometer Rating: 40.
- 5. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch thick.
- Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflashed over roof materials.
- 7. Sound Isolation: Within perimeter of roof curb rails and as detailed on the Drawings:
 - Two layers of 2-inch thick board insulation, minimum 3-lb/cu. ft. density, glass fibers bonded with a thermosetting resin. Comply with ASTM C 612 Type IA or Type IB.
 - b. Two layers of 5/8-inch thick water-resistant gypsum core wall panel surfaced with paper on front, back, and long edges. Comply with ASTM C 1396.
 - c. One layer of 6-inch thick fiberglass blanket insulation.
- 8. Static Deflection: Nominal 1 inch, 2 inches, or 3 inches.

2.2 VIBRATION ISOLATORS

- A. Type 1a Elastomeric Isolator Pads: Oil- and water-resistant elastomer, arranged in single or multiple layers (maximum 3 layers separated by steel shims) to achieve 90 percent efficiency, molded with a nonslip pattern and galvanized steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type W, Super W, WSW, and WSWSW or comparable products by one of the following:
 - a. Amber/Booth; a VMC Group Company.
 - b. Kinetics Noise Control, Inc.
 - c. Korfund Dynamics; a VMC Group Company.
 - d. Vibration Eliminator Co., Inc.
 - e. Vibration Mountings & Controls; a VMC Group Company.
 - f. Vibro-Acoustics.
 - 2. Material: Standard neoprene for indoor applications.

- 3. Material: Bridge-bearing neoprene, complying with AASHTO M 251 for outdoor applications.
- B. **Type 1b** Elastomeric Isolator Pads: Oil- and water-resistant elastomer, single layer, molded with a nonslip pattern and galvanized steel baseplates of sufficient stiffness for uniform loading over pad area, and 1/4 inch steel load bearing plate. Factory cut to sizes that match requirements of supported equipment.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type Super WMSW and MBSW or a comparable product by one of the following:
 - a. Amber/Booth; a VMC Group Company.
 - b. Kinetics Noise Control, Inc.
 - c. Korfund Dynamics; a VMC Group Company.
 - d. Vibration Eliminator Co., Inc.
 - e. Vibration Mountings & Controls; a VMC Group Company.
 - f. Vibro-Acoustics.
 - 2. Material: Standard neoprene for indoor applications.
 - 3. Material: Bridge-bearing neoprene, complying with AASHTO M 251 for outdoor applications.
- C. **Type 2** Elastomeric Mounts: Double-deflection type, with molded, oil-resistant rubber or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type ND or a comparable product by one of the following:
 - a. Amber/Booth; a VMC Group Company.
 - b. Kinetics Noise Control, Inc.
 - c. Korfund Dynamics; a VMC Group Company.
 - d. Vibration Eliminator Co., Inc.
 - e. Vibration Mountings & Controls; a VMC Group Company.
 - f. Vibro-Acoustics.
 - 2. Durometer Rating: Selected for maximum possible static deflection with the loading of each piece of equipment.
 - 3. Materials: Cast-ductile-iron housing containing two separate and opposing, molded, bridge-bearing neoprene elements that prevent central threaded sleeve and attachment bolt from contacting the casting during normal operation.
 - 4. Neoprene: Bridge-bearing neoprene as defined by AASHTO.
- D. **Type 3** Spring Isolators: Freestanding, open-spring isolators.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type SLF or a comparable product by one of the following:
 - a. Amber/Booth; a VMC Group Company...

- b. Kinetics Noise Control, Inc.
- c. Korfund Dynamics; a VMC Group Company.
- d. Vibration Eliminator Co., Inc.
- e. Vibration Mountings & Controls; a VMC Group Company.
- f. Vibro-Acoustics.
- 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 100 psig.
- 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- E. **Type 4** Restrained Spring Isolators: Restrained single and multiple spring mounts.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Types SLR and SLRS or comparable products by one of the following:
 - a. Amber/Booth; a VMC Group Company...
 - b. Kinetics Noise Control, Inc.
 - c. Korfund Dynamics; a VMC Group Company.
 - d. Vibration Eliminator Co., Inc.
 - e. Vibration Mountings & Controls; a VMC Group Company...
 - f. Vibro-Acoustics.
 - 2. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to wind loads or if weight is removed; factory-drilled baseplate bonded to 1/4-inch- thick, elastomeric isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

F. **Type 5** Thrust Restraints

- 1. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression or tension as required, and with a load stop. Include rod and angle-iron brackets with back-up plates for attaching to equipment and ductwork.
 - a. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type WBI for fan inlet connections, and Type WBD for fan outlet connections, or comparable products by one of the following:

- 1) Amber/Booth; a VMC Group Company.
- 2) Kinetics Noise Control, Inc.
- 3) Korfund Dynamics; a VMC Group Company.
- 4) Vibration Eliminator Co., Inc.
- 5) Vibration Mountings & Controls; a VMC Group Company.
- 6) Vibro-Acoustics.
- b. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
- c. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- d. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- e. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
- f. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- g. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
- h. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.3 VIBRATION ISOLATION HANGERS

- A. **Type 8a** Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type 30N or a comparable product by one of the following:
 - a. Amber/Booth; a VMC Group Company..
 - b. Kinetics Noise Control, Inc.
 - c. Korfund Dynamics; a VMC Group Company.
 - d. Vibration Eliminator Co., Inc.
 - e. Vibration Mountings & Controls; a VMC Group Company.
 - f. Vibro-Acoustics.
 - 2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
- B. **Type 8b** Spring Hangers with Vertical-Limit Stop: Precompressed combination coil-spring and elastomeric-insert hanger with spring and insert in compression and with a vertical-limit stop.

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries, Inc.; Type PC30N or a comparable product by one of the following:
 - a. Amber/Booth; a VMC Group Company...
 - b. Kinetics Noise Control. Inc.
 - c. Korfund Dynamics; a VMC Group Company.
 - d. Vibration Eliminator Co., Inc.
 - e. Vibration Mountings & Controls; a VMC Group Company.
 - f. Vibro-Acoustics.
- 2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
- 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 5. Lateral Stiffness: More than 80 percent of the rated vertical stiffness.
- 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 7. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
- 8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.

2.4 FACTORY FINISHES

- A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be electrogalvanized. Hot-dip galvanize metal components for exterior use.
 - 3. Baked enamel for metal components on isolators for interior use.
 - 4. Color-code or otherwise mark vibration isolation devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation devices for compliance with requirements, installation tolerances, and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install roof curbs, equipment supports, and roof penetrations as specified in Division 07 Section "Roof Accessories."
- B. Install thrust limits at centerline of thrust, symmetrical on either side of equipment.

3.3 CONNECTIONS

- A. Provide flexible electrical connections in the form of large radius, 360 degree loop of flexible conduit for all vibrating isolated equipment. Any cooling water lines, compressed air, or other piping services (except inlet and outlet water connections for pumps, chillers or cooling tower) shall be made with 360 degree loops of reinforced neoprene hose, which are attached using nipples of appropriate gender. All service connections made with neoprene hose shall have shut-off valves between the hose and the supply service.
- B. Vibration isolate piping connected to vibration isolated equipment using Type 8a or 8b spring hangers, and with distance to be isolated as scheduled on the Drawings. Maximum spacing between isolators same as maximum distance between pipe hangers and supports.
- C. Vibration isolate ductwork connected to air handling units, return air fans, and vibration isolated equipment using Type 8a or 8b spring hangers, and in accordance with isolation distances scheduled on the Drawings.

3.4 EQUIPMENT BASES

- A. Fill concrete inertia bases, after installing base frame, with 3000-psi concrete; trowel to a smooth finish.
 - Cast-in-place concrete materials and placement requirements are specified in Division 03.
- B. Concrete Bases: Anchor equipment to concrete base according to supported equipment manufacturer's written instructions.
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 2. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use Setting Drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 5. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - Cast-in-place concrete materials and placement requirements are specified in Division 03.

3.5 FIELD QUALITY CONTROL

A. Testing: Perform the following field quality-control testing:

- 1. Isolator deflection.
- 2. Snubber minimum clearances.

3.6 ADJUSTING

- A. Adjust isolators after piping systems have been filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's written recommendations.

3.7 CLEANING

A. After completing equipment installation, inspect vibration isolation devices. Remove paint splatters and other spots, dirt, and debris.

END OF SECTION

MECHANICAL IDENTIFICATION

PART 1-	- GENERAL	. 1
1.1	RELATED DOCUMENTS	. 1
1.2	SUBMITTALS	
1.3	QUALITY ASSURANCE	
1.4	COORDINATION	
PART 2	- PRODUCTS	. 2
2.1	MANUFACTURERS	
2.2	EQUIPMENT IDENTIFICATION DEVICES	
2.3	PIPING IDENTIFICATION DEVICES	
2.4	DUCT IDENTIFICATION DEVICES	. 4
2.5	VALVE TAGS	. 4
2.6	VALVE SCHEDULES	. 4
2.7	WARNING TAGS	
PART 3 -	- EXECUTION	. 5
3.1	APPLICATIONS, GENERAL	
3.2	EQUIPMENT IDENTIFICATION	
3.3	PIPING IDENTIFICATION	
3.4	DUCT IDENTIFICATION	
3.5	VALVE-TAG INSTALLATION	
3.6	VALVE-SCHEDULE INSTALLATION	
3.7	WARNING-TAG INSTALLATION	
3.8	ADJUSTING	8
3.9	CLEANING	. 8
3.10	SCHEDULES	. 8

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system. Furnish extra copies (in addition to mounted copies) to include in Maintenance Manuals.

1.3 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME (ANSI) A13.1, "Scheme for the Identification of Piping Systems," for letter size, length of color field, colors, and viewing angles of identification devices for piping.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with location of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified:
 - 1. Seton.
 - 2. Brady.
 - 3. EMED.
 - 4. Craftmark.
 - 5. Brimar Industries, Inc.
 - 6. Marking Services Inc. (MSI).
 - 7. Kolbi Pipe Marker Co.

2.2 EQUIPMENT IDENTIFICATION DEVICES

- A. Equipment Nameplates: Metal, with data engraved or stamped, for permanent attachment on equipment.
 - 1. Data:
 - a. Manufacturer, product name, model number, and serial number.
 - b. Capacity, operating and power characteristics, and essential data.
 - c. Labels of tested compliances.
 - Location: Accessible and visible.
 - 3. Fasteners: As required to mount on equipment.
- B. Equipment Markers: Engraved, color-coded laminated plastic. Include contact-type, permanent adhesive.
 - 1. Terminology: Match schedules as closely as possible.
 - 2. Data:
 - a. Name and plan number.
 - b. Equipment service.
 - c. Design capacity.

- d. Other design parameters such as pressure drop, entering and leaving conditions, and speed.
- 3. Size: 2-1/2 by 4 inches for control devices, dampers, and valves; 4-1/2 by 6 inches for equipment.
- C. Equipment Signs: ASTM D 709, Type I, cellulose, paper-base, phenolic-resin-laminate engraving stock; Grade ES-2, black surface, black phenolic core, with white melamine subcore, unless otherwise indicated. Fabricate in sizes required for message. Provide holes for mechanical fastening.
 - 1. Data: Instructions for operation of equipment and for safety procedures.
 - 2. Engraving: Manufacturer's standard letter style, of sizes and with terms to match equipment identification.
 - 3. Thickness: Minimum 1/16 inch, unless otherwise indicated.
 - 4. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.
- D. Access Panel and Door Markers: 1/16-inch- thick, engraved laminated plastic, with abbreviated terms and numbers corresponding to identification. Provide 1/8-inch center hole for attachment.
 - 1. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.

2.3 PIPING IDENTIFICATION DEVICES

- A. Manufactured Pipe Markers, General: Preprinted, color-coded, with lettering indicating service, and showing direction of flow.
 - 1. Colors: Comply with ASME (ANSI) A13.1, unless otherwise indicated.
 - 2. Type and Size of Letters: Comply with ANSI A13.1, unless otherwise indicated.
 - 3. Legends: Spelled out in full or commonly used and accepted abbreviations.
 - 4. Pipes with OD, Including Insulation, Less Than 6 Inches: Full-band pipe markers extending 360 degrees around pipe at each location.
 - 5. Pipes with OD, Including Insulation, 6 Inches and Larger: Either full-band or strip-type pipe markers at least three times letter height and of length required for label.
 - 6. Arrows: Integral with piping system service lettering to accommodate both directions; or as separate unit on each pipe marker to indicate direction of flow.
- B. Pretensioned Pipe Markers: Precoiled semirigid plastic formed to cover full circumference of pipe and to attach to pipe without adhesive.
- C. Shaped Pipe Markers: Preformed semirigid plastic formed to partially cover circumference of pipe and to attach to pipe with mechanical fasteners that do not penetrate insulation vapor barrier.
- D. Self-Adhesive Pipe Markers: Plastic with pressure-sensitive, permanent-type, self-adhesive back.

- E. Plastic Tape: Continuously printed, vinyl tape at least 3 mils thick with pressure-sensitive, permanent-type, self-adhesive back.
 - 1. Width for Markers on Pipes with OD, Including Insulation, Less Than 6 Inches: 3/4 inch minimum.
 - 2. Width for Markers on Pipes with OD, Including Insulation, 6 Inches or Larger: 1-1/2 inches minimum.
- F. Underground Pipe Markers: Bright colored continuously printed plastic ribbon tape of not less than 6 inches wide by 4mil thick, manufactured for direct burial service.
- G. Detectable Underground Pipe Markers: Continuously printed plastic ribbon tape with detectable aluminum core and with colors meeting APWA requirements, not less than 6 inches wide by 4 mil thick, manufactured for direct burial service.

2.4 DUCT IDENTIFICATION DEVICES

- A. Duct Markers: Engraved, color-coded laminated plastic. Include direction and quantity of airflow, air handling unit or fan number, and duct service (such as supply, return, and exhaust). Include contact-type, permanent adhesive.
- B. Duct Markers: Vinyl, 2-inch minimum character height, with permanent pressure sensitive adhesive. Include direction and quantity of airflow, air handling unit or fan number, and duct service (such as supply, return, and exhaust).

2.5 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers, with numbering scheme approved by Architect/Engineer. Provide 5/32-inch hole for fastener.
 - 1. Material: 0.032-inch- thick brass.
 - 2. Valve-Tag Fasteners: Brass wire-link chain or beaded chain.

2.6 VALVE SCHEDULES

- A. Valve Schedules: For each piping system, on standard-size bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-Schedule Frames: Glazed display frame for removable mounting on masonry walls for each page of valve schedule. Include mounting screws.
 - 2. Frame: Finished hardwood or extruded aluminum.
 - 3. Glazing: ASTM C 1036, Type I, Class 1, Glazing Quality B, 2.5-mm, single-thickness glass.

2.7 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags; of plasticized card stock with matte finish suitable for writing.

- 1. Size: 3 by 5-1/4 inches minimum.
- 2. Fasteners: Brass grommet and wire.
- Nomenclature: Large-size primary caption such as DANGER, CAUTION, or DO NOT OPERATE.
- 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 APPLICATIONS, GENERAL

A. Products specified are for applications referenced in other Division 20, 21, 22, and 23 Sections. If more than single-type material, device, or label is specified for listed applications, selection is Installer's option.

3.2 EQUIPMENT IDENTIFICATION

- A. Install and permanently fasten equipment nameplates on each major item of mechanical equipment that does not have nameplate or has nameplate that is damaged or located where not easily visible. Locate nameplates where accessible and visible. Include nameplates for the following general categories of equipment:
 - 1. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 - 2. Fans, blowers, primary balancing dampers, and mixing boxes.
 - 3. Packaged HVAC central-station and zone-type units.
- B. Install equipment markers with permanent adhesive on or near each major item of mechanical equipment. Data required for markers may be included on signs, and markers may be omitted if both are indicated.
 - 1. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 2. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.
 - 3. Locate markers where accessible and visible. Include markers for the following general categories of equipment:
 - a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 - b. Fire department hose valves and hose stations.
 - c. Meters, gages, thermometers, and similar units.
 - d. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
 - e. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 - f. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 - g. Fans, blowers, primary balancing dampers, and mixing boxes.

- h. Packaged HVAC central-station and zone-type units.
- i. Tanks and pressure vessels.
- j. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.
- C. Install equipment signs with screws or permanent adhesive on or near each major item of mechanical equipment. Locate signs where accessible and visible.
 - 1. Identify mechanical equipment with equipment markers in the following color codes:
 - a. Green: For cooling equipment and components.
 - b. Yellow: For heating equipment and components.
 - c. Orange: For combination cooling and heating equipment and components.
 - d. Brown: For energy-reclamation equipment and components.
 - Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 3. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.
 - 4. Include signs for the following general categories of equipment:
 - a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 - b. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
 - c. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 - d. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 - e. Fans, blowers, primary balancing dampers, and mixing boxes.
 - f. Packaged HVAC central-station and zone-type units.
 - g. Tanks and pressure vessels.
 - h. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.
- D. Install access panel markers with screws on equipment access panels.
- E. Area Served: Equipment serving different areas of a building other than where the equipment is installed shall be permanently marked in a manner that, in addition to identifying the equipment as specified in this Section, also identifies the area it serves.

3.3 PIPING IDENTIFICATION

- A. Install manufactured pipe markers indicating service on each piping system. Install with flow indication arrows showing direction of flow.
 - 1. Pipes with OD, Including Insulation, Less Than 6 Inches: Self-adhesive pipe markers. Use color-coded, self-adhesive plastic tape, minimum 3/4 inch wide, lapped at least 1-1/2 inches at both ends of pipe marker, and covering full circumference of pipe.
 - 2. Pipes with OD, Including Insulation, 6 Inches and Larger: Self-adhesive pipe markers. Use color-coded, self-adhesive plastic tape, minimum 1-1/2 inches wide, lapped at least 3 inches at both ends of pipe marker, and covering full circumference of pipe.

- B. Locate pipe markers and color bands where piping is exposed in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior nonconcealed locations as follows:
 - Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and nonaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced markers.
- C. Underground Pipe Markers: Install 6 to 8 inches below finished grade, directly above buried pipe.

3.4 DUCT IDENTIFICATION

- A. Install engraved duct markers with permanent adhesive on air ducts in the following color codes:
 - 1. Refer to Schedule.
 - 2. ASME (ANSI) A13.1 Colors and Designs: For hazardous material exhaust.
 - 3. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- B. Identify ductwork with vinyl markers and flow direction arrows.
- C. Locate markers at air handling units, each side of floor and wall penetrations, near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; plumbing fixture supply stops; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following:
 - 1. Valve-Tag Size and Shape:

- a. Cold Water: Minimum 1-1/2 inches, round or square.
- b. Hot Water: Minimum 1-1/2 inches, round or square.
- c. Fire Protection: Minimum 1-1/2 inches, round or square.

3.6 VALVE-SCHEDULE INSTALLATION

A. Mount valve schedule on wall in accessible location in each major equipment room.

3.7 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

3.8 ADJUSTING

A. Relocate mechanical identification materials and devices that have become visually blocked by other work.

3.9 CLEANING

A. Clean faces of mechanical identification devices and glass frames of valve schedules.

3.10 SCHEDULES

A. Paint colors are listed here for reference only. Painting is specified under Division 9.

PIPE LABELING AND COLOR CODING

Pipe System Label	Drawing Abbrev.	<u>Labels</u>	<u>Piping</u>
Sanitary Sewer	SAN	White on Green	Dark Brown
Sanitary Vent	V	White on Green	Dark Brown
Rain Conductor	RC	White on Green	Dark Brown
Domestic Cold Water	CW	White on Green	Light Green
Domestic Hot Water	HW	Black on Yellow	Dark Green
Domestic Hot Water Return	HWR	Black on Yellow	Dark Green
Hot Water Htg. Supply	HWHS	Black on Yellow	Dark Blue
Hot Water Htg. Return	HWHR	Black on Yellow	Dark Blue
Chilled Water Supply	CHWS	White on Green	Light Blue
Chilled Water Return	CHWR	White on Green	Light Blue
Refrigerant Liquid	RL	Black on Yellow	-
Refrigerant Suction	RS	Black on Yellow	
Fire Protection	FP	White on Red	Bright Red

SHEET METAL WORK

	OHEEL WEIGH		
<u>Service</u>	<u>Abbrev.</u>	<u>Labels</u>	<u>Ductwork</u>
Air Conditioning Supply	Supply Air	White on	White
		Green	
Air Conditioning Return	Return Air	White on	White
		Green	
Exhaust Systems	Exhaust Air	Black on Yel-	Green
		low	
Outside Air Intake	Outside Air	White on	White
		Green	
Mixed Air	Mixed Air	White on	White
		Green	

^{**}END OF SECTION**

MECHANICAL INSULATION

PART 1 -	GENERAL	1
1.1		1
1.2	SUMMARY	
1.3	DEFINITIONS	2
1.4	INDOOR PIPING INSULATION SYSTEMS DESCRIPTION	
1.5	OUTDOOR, ABOVEGROUND PIPING INSULATION SYSTEMS DESCRIPTION	2
1.6	INDOOR DUCT AND PLENUM INSULATION SYSTEMS DESCRIPTION	
1.7	ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SYSTEMS DESCRIF	PTION:
1.8	EXTERNAL DUCT LAGGING SYSTEM	3
1.9	EQUIPMENT INSULATION SYSTEMS DESCRIPTION	3
1.10	SUBMITTALS	3
1.11	QUALITY ASSURANCE	3
	DELIVERY, STORAGE, AND HANDLING	
	COORDINATION	
1.14	SCHEDULING	
	PROPLICTO	
PARIZ-	PRODUCTSINSULATION MATERIALS, GENERAL REQUIREMENTS	2
	·	
	PIPE INSULATION MATERIALS DUCTWORK INSULATION MATERIALS	
2.3		
2.4	DUCTWORK LAGGING MATERIALS	
2.5	INSULATING CEMENTS	
2.6 2.7	ADHESIVES	
	LAGGING ADHESIVES	
	SEALANTS	
	FACTORY-APPLIED JACKETS	٠١
	FIELD-APPLIED JACKETS	
	TAPES	
	SECUREMENTS	
	CORNER ANGLES	
PART 3 -	EXECUTION	18
3.1	EXAMINATION	
3.2	PREPARATION	
3.3	COMMON INSTALLATION REQUIREMENTS	
3.4	PENETRATIONS	20
3.5	GENERAL PIPE INSULATION INSTALLATION	
	FLEXIBLE ELASTOMERIC PIPE INSULATION INSTALLATION	
3.7	GLASS-FIBER AND MINERAL WOOL PIPE INSULATION INSTALLATION	
	DUCT AND PLENUM INSULATION INSTALLATION	
	DUCT LAGGING INSTALLATION	
	FIELD-APPLIED JACKET INSTALLATION	
3.11	FINISHES	28
DADT 4	CENEDAL	
PARI 1-	GENERAL	
4.4	DELATED DOCUMENTS	

1.1 RELATED DOCUMENTS

- Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. A.
- B. Related Sections include the following:

- 1. Division 20 Section "Mechanical General Requirements."
- 2. Division 20 Section "Basic Materials and Methods."
- 3. Division 20 Section "Hanger and Supports" for thermal hanger shield inserts.
- 4. Division 22 Section "Plumbing Fixtures: for protective shielding guards.
- 5. Division 22 Section "Medical Plumbing Fixtures" for protective shielding guards.
- 6. Division 23 Section "Metal Ducts" for duct liners.
- 7. Division 33 Section "Underground Hydronic Distribution Piping" for preinsulated piping systems.
- 8. Division 33 Section "Underground Steam and Condensate Distribution Piping" for preinsulated piping systems.

1.2 SUMMARY

A. This Section includes mechanical insulation for pipe, duct, and equipment.

1.3 DEFINITIONS

- A. ASJ: All-service jacket.
- B. FSK: Foil, scrim, kraft paper.
- C. FSP: Foil, scrim, polyethylene.
- D. PVC: Polyvinyl Chloride.
- E. PVDC: Polyvinylidene chloride.
- F. SSL: Self-sealing lap.

1.4 INDOOR PIPING INSULATION SYSTEMS DESCRIPTION

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are scheduled on the Drawings, or identified for each piping system and pipe size range.
- B. Sanitary Waste Piping Where Heat Tracing Is Installed, All Pipe Sizes: Glass-Fiber Pipe Insulation, Type I: 1-1/2 inches thick.

1.5 OUTDOOR, ABOVEGROUND PIPING INSULATION SYSTEMS DESCRIPTION

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are scheduled on the Drawings, or identified for each piping system and pipe size range.
- B. Sanitary or Storm Piping Where Heat Tracing Is Installed, All Pipe Sizes: Glass-Fiber Pipe Insulation, Type I: 2 inches thick.

1.6 INDOOR DUCT AND PLENUM INSULATION SYSTEMS DESCRIPTION

A. Acceptable indoor duct and plenum insulation materials and thicknesses are scheduled on the Drawings.

- 1.7 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SYSTEMS DESCRIPTION
 - A. Acceptable outdoor duct and plenum insulation materials and thicknesses are scheduled on the Drawings.
- 1.8 EXTERNAL DUCT LAGGING SYSTEM
 - A. System for controlling low frequency sound transmission in metal ducts consisting of:
 - 1. One layer of 1-inch thick rigid fiberglass duct board.
 - 2. Two layers of 5/8-inch thick gypsum board.
- 1.9 EQUIPMENT INSULATION SYSTEMS DESCRIPTION
 - A. Acceptable equipment insulation materials and thicknesses are scheduled on the Drawings.
- 1.10 SUBMITTALS
 - A. Product Data: For each type of product indicated, identify thermal conductivity, thickness, and jackets (both factory and field applied, if any).
 - 1. ESR Report: For fire-rated grease duct insulation.
 - B. Shop Drawings: Show details for the following:
 - Application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Attachment and covering of heat tracing inside insulation.
 - 3. Insulation application at pipe expansion joints for each type of insulation.
 - 4. Insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Removable insulation at piping specialties, equipment connections, and access panels.
 - 6. Application of field-applied jackets.
 - 7. Application at linkages of control devices.
 - 8. Field application for each equipment type
 - 9. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.
 - C. Field quality-control inspection reports.

1.11 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

- B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
- C. Ductwork Maximum Temperature Limits: Based on ASTM C 411 test procedures.

1.12 DELIVERY, STORAGE, AND HANDLING

A. Prior to installation, protect insulation from exposure to water and from physical damage. Prior to installation, store insulation in manufacturer's original packaging.

1.13 COORDINATION

- A. Coordinate size and location of supports, hangers, and pre-insulated pipe shields/supports specified in Division 20 Section "Hangers and Supports."
- B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.14 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS, GENERAL REQUIREMENTS

- A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- E. Adhesives used shall be fire resistant in their dry states and UL listed.

2.2 PIPE INSULATION MATERIALS

- A. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Armacell LLC; AP Armaflex.
 - b. Nomaco K-Flex; Insul-Tube and Insul-Sheet.
- B. Glass-Fiber, Preformed Pipe Insulation, Type I:
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Johns Manville; Micro-Lok.
 - b. Knauf Insulation; 1000 Pipe Insulation.
 - c. Manson Insulation Inc.; Alley-K.
 - d. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 deg F Materials: Glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ or ASJ-SSL. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.
- C. Mineral-Wool, Preformed Pipe Insulation, Type II:
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Rock Wool Manufacturing Company; Delta PC and PF.
 - c. Roxul Inc.; 1200 Pipe Insulation.
 - Type II, 1200 deg F Materials: Mineral wool fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, with factory-applied ASJ or ASJ-SSL. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.

2.3 DUCTWORK INSULATION MATERIALS

- A. Blanket Insulation: Glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. CertainTeed Corp.; Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap FSK.
 - e. Owens Corning; All-Service Duct Wrap.

- B. Board Insulation: Glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. For equipment applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.

2.4 DUCTWORK LAGGING MATERIALS

- A. Board Insulation: Minimum 3 pounds per cubic foot density, glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. CertainTeed Corp.; CertaPro Commercial Board.
 - b. Johns Manville; 800 Series Spin-Glas.
 - c. Knauf Insulation; Insulation Board.
 - d. Manson Insulation Inc.; AK Board.
 - e. Owens Corning; Fiberglas 700 Series.
- B. Gypsum Board: Gypsum core wall panel surfaced with paper on front, back, and long edges.
 - 1. Comply with ASTM C 1396.
 - 2. Edges: Square.
- C. Acoustical Sealant:
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Acoustical Surfaces, Inc.; Noise S.T.O.P. Sealant.
 - Johns Manville; Dux Seal.

2.5 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Insulco, Division of MFS, Inc.; Triple I.
 - b. P. K. Insulation Mfg. Co., Inc.; Super-Stik.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.

- 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. P. K. Insulation Mfg. Co., Inc.; Thermal-V-Kote.
- Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
 - Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Insulco, Division of MFS, Inc.; SmoothKote.
 - b. P. K. Insulation Mfg. Co., Inc.; PK No. 127, and Quik-Cote.
 - c. Rock Wool Manufacturing Company; Delta One Shot.

2.6 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to it and to surfaces to be insulated, unless otherwise indicated.
- B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Armacell LCC; 520 Adhesive.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-75.
 - c. RBX Corporation; Rubatex Contact Adhesive.
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Childers Products, H.B. Fuller Company; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company: 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.: 22-25.
 - f. Vimasco Corporation.
- D. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Childers Products, H.B. Fuller Company; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
- E. PVC Jacket Adhesive: Compatible with PVC jacket.

- 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Dow Chemical Company (The); 739, Dow Silicone.
 - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Red Devil, Inc.; Celulon Ultra Clear.
 - e. Speedline Corporation; Speedline Vinyl Adhesive.

2.7 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Childers Products, H.B. Fuller Company; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 - c. ITW TACC, Division of Illinois Tool Works; CB-50.
 - d. Marathon Industries, Inc.; 590.
 - e. Mon-Eco Industries, Inc.; 55-40.
 - f. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Childers Products, H.B. Fuller Company; CP-10.
 - b. Foster Products Corporation, H. B. Fuller Company; 35-00.
 - c. ITW TACC, Division of Illinois Tool Works; CB-05/15.
 - d. Marathon Industries, Inc.; 550.
 - e. Mon-Eco Industries, Inc.; 55-50.
 - f. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 3 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 200 deg F.
 - 4. Solids Content: 63 percent by volume and 73 percent by weight.
 - 5. Color: White.

2.8 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Childers Products, H.B. Fuller Company; CP-52.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-42.
 - c. Marathon Industries, Inc.; 130.
 - d. Mon-Eco Industries, Inc.; 11-30.
 - e. Vimasco Corporation; 136.
 - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct, equipment, and pipe insulation.
 - 3. Service Temperature Range: Minus 50 to plus 180 deg F.
 - 4. Color: White.

2.9 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Childers Products, H.B. Fuller Company; CP-76-8.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
- B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Childers Products, H.B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.

- 5. Color: White.
- C. Joint Sealants for Cellular-Glass, Phenolic-Foam, and Polyisocyanurate:
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Childers Products, H.B. Fuller Company; CP-76.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.
 - f. Vimasco Corporation; 750.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Permanently flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 5. Color: White or gray.

2.10 FACTORY-APPLIED JACKETS

- A. Insulation systems indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.11 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as specified; roll stock ready for shop or field cutting and forming.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Johns Manville: Zeston and Ceel-Co.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto PVC Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.

- 3. Color: White.
- 4. Factory-fabricated tank heads and tank side panels.
- D. PVC Fitting Covers: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C, and including flexible glass fiber insulation inserts.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Johns Manville; Zeston and Ceel-Co.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto PVC Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers:
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, and mechanical joints.

E. Metal Jacket:

- 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. PABCO-Childers Metals; ITW Insulation Systems; Metal Jacketing Systems.
 - b. RPR Products, Inc.; Insul-Mate.
- 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper or 2.5-mil- thick Polysurlyn.
 - e. Factory-Fabricated Fitting Covers:
 - Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - Provide factory fabricated PVC tee covers, flange and union covers, beveled collars and valve covers.
 - 3) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- 3. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 - a. Sheet and roll stock ready for shop or field sizing factory cut and rolled to size.
 - b. Material, finish, and thickness are indicated in field-applied jacket systems.

- c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
- d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper or 2.5-mil- thick Polysurlyn.
- e. Factory-Fabricated Fitting Covers:
 - Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - Provide factory fabricated PVC tee covers, flange and union covers, beveled collars and valve covers.
 - 3) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- F. Self-Adhesive Outdoor Jacket: Laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with aluminum-foil facing.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. MFM Building Products Corp.; FlexClad-400
 - b. Polyguard; Alumaguard.
 - c. Venture Tape Corp.; VentureClad.
- G. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Dow Chemical Company (The), Saran 540 Vapor Retarder Film.
- H. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - Dow Chemical Company (The), Saran 560 Vapor Retarder Film.
- I. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.
- J. Sound Barrier Jacket: Uni-composite film laminated to 0.020 inch thick stucco embossed aluminum using viscoelastic film adhesive.

- 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. PABCO-Childers Metals; ITW Insulation Systems; 1 pound Muffl-Jac.
- 2. Properties:
 - a. Sound Transmission Class (STC): 29.
 - b. Thickness (film): 0.080 to 0.110 inch.
 - c. Weight (film): 1 pound per square foot.
 - d. Service Temperature Range: Minus 40 deg F to 180 deg F.
- 3. Proprietary sound jacketing by steam pressure reducing valve manufacturer is also acceptable.

2.12 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136 and UL listed.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 - b. Compac Corp.; 104 and 105.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136 and UL listed.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - b. Compac Corp.; 110 and 111.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - Thickness: 6.5 mils.

- 4. Adhesion: 90 ounces force/inch in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 - b. Compac Corp.; 130.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 - d. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive and UL listed.
 - Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - b. Compac Corp.; 120.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.
- E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Dow Chemical Company (The); Saran 540 Vapor Retarder Tape.

- 2. Width: 3 inches.
- 3. Film Thickness: 4 mils.
- 4. Adhesive Thickness: 1.5 mils.
- 5. Elongation at Break: 145 percent.
- 6. Tensile Strength: 55 lbf/inch in width.
- F. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - Products: Subject to compliance with requirements, provide one of the products specified.
 - a. Dow Chemical Company (The); Saran 560 Vapor Retarder Tape.
 - 2. Width: 3 inches.
 - 3. Film Thickness: 6 mils.
 - 4. Adhesive Thickness: 1.5 mils.
 - 5. Elongation at Break: 145 percent.
 - 6. Tensile Strength: 55 lbf/inch in width.

2.13 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, provide one of the products specified.
 - a. PABCO-Childers Metals; ITW Insulation Systems; Pab-Bands and Fabstraps.
 - b. RPR Products, Inc.; Bands.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing or closed seal.
- 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing or closed seal.
- 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - Products: Subject to compliance with requirements, provide one of the products specified.

- 1) AGM Industries, Inc.; CWP-1.
- 2) GEMCO; CD.
- 3) Midwest Fasteners, Inc.; CD.
- 4) Nelson Stud Welding; TPA, TPC, and TPS.
- 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, provide one of the products specified.
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
- 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the products specified.
 - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series T.
 - 2) GEMCO; Perforated Base.
 - 3) Midwest Fasteners, Inc.; Spindle.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the products specified.
 - 1) GEMCO; Nylon Hangers.
 - 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.
 - b. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - c. Spindle: Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

- 5. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide one of the products specified.
 - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series TSA.
 - 2) GEMCO; Press and Peel.
 - 3) Midwest Fasteners, Inc.; Self Stick.
 - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive-backed base with a peel-off protective cover.
- 6. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Products: Subject to compliance with requirements, provide one of the products specified.
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 7. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Manufacturers:
 - 1) GEMCO.
 - 2) Midwest Fasteners, Inc.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- D. Wire: 0.062-inch soft-annealed, stainless steel.
 - 1. Manufacturers:
 - a. ACS Industries. Inc.
 - b. C&FWire.
 - c. PABCO-Childers Metals; ITW Insulation Systems.
 - d. RPR Products, Inc.

2.14 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14.
- C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304 or 316.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
 - Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 COMMON INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

- D. Install insulation with longitudinal seams at the 4 o'clock or 8 o'clock position on horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive as recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. For services with surface temperatures below ambient, install a continuous unbroken vapor barrier. Seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install thermal hanger insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover thermal hanger inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at the 4 o'clock or 8 o'clock position on the pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. For below ambient services, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness. Where compression of insulation is possible, fabricate/install insulation per manufacturer's recommendations.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Below-Grade Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.

- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
- 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations that Are Not Fire Rated: Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations:
 - 1. Terminate ductwork insulation at angle closure of fire damper sleeves.
 - 2. Install pipe insulation continuously through penetrations of fire-rated walls and partitions.
 - Firestopping is specified in Division 07 Section "Through-Penetration Firestop Systems."
- F. Insulation Installation at Floor Penetrations:
 - Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at angle closure of fire damper sleeves.
 - 2. Pipe: Install insulation continuously through floor penetrations.
 - a. Seal penetrations through fire-rated assemblies according to Division 07 Section "Through-Penetration Firestop Systems."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this Article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible Elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

E. Install removable and reusable insulation covers in accordance with fabricator's instructions, and at the following locations:

3.6 FLEXIBLE ELASTOMERIC PIPE INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 GLASS-FIBER AND MINERAL WOOL PIPE INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

- 3. For piping systems with surface temperatures below ambient, install a continuous unbroken vapor barrier. Seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - a. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
 - b. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install PVC fitting covers when available.
 - 2. When PVC fitting covers are not available, install preformed pipe insulation to outer diameter of pipe flange:
 - a. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - b. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with fiberglass or mineral wool blanket insulation as specified for system.
 - 3. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install PVC fitting covers when available.
 - 2. When PVC fitting covers are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install PVC fitting covers when available.
 - 2. When PVC fitting covers are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.
- 3.8 DUCT AND PLENUM INSULATION INSTALLATION
 - A. Blanket Insulation Installation on Ducts and Plenums: Secure with insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.

- 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions. Adhesive may be omitted from top surface of horizontal rectangular ducts.
- Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not over compress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not over compress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches.
- Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- C. Flexible Elastomeric Thermal Insulation Installation for Ducts and Plenums: Install insulation over entire surface of ducts and plenums.
 - 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 - 2. Seal longitudinal seams and end joints.
 - 3. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with strips of same material used to insulate duct and following manufacturer's installation instructions.

3.9 DUCT LAGGING INSTALLATION

- A. Install between silencers and shaft or Mechanical Equipment Room walls, and where indicated on Drawings.
- B. Ensure sufficient clearance between ductwork to be lagged and adjacent items.
- C. Install lagging as detailed on Drawings.
- D. Adhere board insulation with adhesive. Do not use pins.
- E. Install gypsum board layers. Stagger joints between layers. Seal joints with acoustical sealant.

3.10 FIELD-APPLIED JACKET INSTALLATION

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
 - 2. For services with surface temperatures below ambient, maintain continuous unbroken vapor barrier.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
- Where sound barrier jackets are indicated, install in accordance with manufacturer's instructions.
- E. Where PVDC jackets are indicated, install as follows:
 - 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
 - Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
 - 3. Continuous jacket can be spiral wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
 - 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch- circumference limit allows for 2-inch- overlap seal. Using the length of roll allows for longer sections of jacket

- to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fish mouthing," and use PVDC tape along lap seal to secure joint.
- 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.11 FINISHES

- A. Duct, Equipment, and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system specified in Division 09 painting Sections.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

END OF SECTION

VARIABLE FREQUENCY CONTROLLERS

PART 1 -	- GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	REFERENCES	. 1
1.3	DEFINITIONS	
1.4	PERFORMANCE REQUIREMENTS	2
1.5	SUBMITTALS	2
1.6	QUALITY ASSURANCE	
1.7	DELIVERY, STORAGE, AND HANDLING	
1.8	COORDINATION	3
1.9	WARRANTY	3
PART 2.	- PRODUCTS	4
21	GENERAL	
2.2	MOTORS	
2.3	VARIABLE FREQUENCY CONTROLLERS	
2.4	SOURCE QUALITY CONTROL	7
	- EXECUTION	_
3.1	EXAMINATION	
3.2	INSTALLATION	
3.3	FIELD QUALITY CONTROL	
3.4	ADJUSTING	
3.5	PROTECTION	
3.6	DEMONSTRATION	ď

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 01 specification sections, apply to work of this section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."

1.2 REFERENCES

- A. ABMA 9 Load Ratings and Fatigue Life for Ball Bearings.
- B. ABMA 11 Load Ratings and Fatigue Life for Roller Bearings.
- C. ANSI/IEEE 112 Test Procedure for Polyphase Induction Motors and Generators.
- D. ANSI/NEMA MG 1 Motors and Generators.
- E. ANSI/NFPA 70 National Electrical Code.
- F. IEEE 519 (1992) Applicability to Adjustable Frequency Controllers.

1.3 DEFINITIONS

- A. BAS: Building automation system.
- B. EMI: Electromagnetic interference.
- C. LED: Light-emitting diode.
- D. RFI: Radio-frequency interference.
- E. THD: Total harmonic disturbance.
- F. VFC: Variable frequency controller. Variable frequency controllers may also be referred to as variable speed drives, variable frequency drives, VSDs, or VFDs in other Specification Sections or on the Drawings.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: VFCs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. The designated VFCs shall be tested and certified by an NRTL as meeting the ICC-ES AC 156 test procedure requirements.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 SUBMITTALS

- A. Submit under provisions of Division 20 Section "Mechanical General Requirements" and as supplemented in this section.
- B. Submit for review, drawings indicating power, control and instrument wiring including ladder diagrams for field work as well as factory assembled work. Manufacturer's drawings are acceptable only when modified and supplemented to reflect project conditions. The drawings shall include:
 - 1. Overall schematic (elementary) diagram in JIC form of the entire system of power and control circuitry. Indicate interfaces with control wiring by temperature controls contractor.
 - 2. Wiring diagrams showing the wiring layout of component assemblies or systems.
 - 3. Interconnection wiring diagrams showing terminations of interconnecting conductors between component assemblies, systems, control devices, and control panels complete with conductor identification, number of conductors, conductor and conduit size.
 - 4. Sequence of operation for components, assemblies or systems.
 - 5. Dimensional data.
- C. Shop drawings for motor-driven equipment shall be accompanied by complete information concerning the respective motors including the following.
 - 1. Principal dimensions.
 - 2. Weights.

- 3. Horsepower.
- 4. Voltage, phase, frequency.
- 5. Speed.
- Class of insulation.
- 7. Enclosure type.
- 8. Frame.
- 9. Bearings including AFBMA Rating Life (L-10 basis).
- 10. Design letter.
- 11. Manufacturer.
- 12. Service Factor
- D. Descriptive data shall include catalogues, guaranteed performance data with efficiency and power factor indicated at 75 percent and 100 percent of rated load and verification of conformance with other requirements of the Contract Documents. The information enumerated under NEMA MG1 Paragraph MG1-10.38, shall be arranged on one sheet for each motor.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NFPA 70.
- 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Protect motors stored on site from weather and moisture by maintaining factory covers and suitable weather-proof covering. For extended outdoor storage, remove motors from equipment and store separately.
- 1.8 COORDINATION
 - A. Coordinate with temperature controls contractor for interfaces with temperature controls wiring.
- 1.9 WARRANTY
 - A. Warranty shall be 36 months from date of project acceptance. The warranty shall include all parts, labor, travel time and expenses.

PART 2 - PRODUCTS

2.1 GENERAL

- A. For Electrical Work Provided under Division 20, 21, 22, and 23 Specifications: Furnish UL Listed components, in accordance with Division 26 Specifications and applicable NEMA and NEC (ANSI C 1) requirements. Provide wiring, external to electrical enclosures, in conduit.
- B. Electrical Power Supply Characteristics: 480 volts, 3 phase, 60 hertz (Hz).
- C. Provide Electrical Work required for the operation of components and assemblies provided as part of the Work under Division 20, 21, 22, and 23 Specifications.
- D. Mount line voltage (120 VAC) control components specified as part of the Work under Division 20, 21, 22, and 23 Specifications.
- E. Refer to ELECTRICAL DRAWINGS and Division 26 Specifications for specified information regarding provisions for the arrangement of electrical circuits and components and for interface with Work specified under Division 20, 21, 22, and 23 Specifications.
- F. The controller(s) shall be suitable for use with any standard NEMA-B squirrel-cage induction motor(s) having a 1.15 Service Factor. At any time in the future, it shall be possible to substitute any standard motor (equivalent horsepower, voltage and RPM) in the field.
- G. Electrical testing of motors is specified as part of the Work under Division 26 Specifications.
- H. The mechanical contractor shall furnish and install the variable frequency controller. Electrical trades shall make power connections to both load and line side of the VFC.

2.2 MOTORS

A. Refer to Division 20 Section "Motors."

2.3 VARIABLE FREQUENCY CONTROLLERS

- A. Variable Frequency Controller Manufacturers:
 - 1. A.B.B.
 - 2. Danfoss.
 - 3. Eaton (Cutler-Hammer).
 - 4. General Electric.
 - 5. Hitachi.
 - 6. Johnson Controls Incorporated (Private labeled A.B.B.).
 - 7. Mitsubishi Electric Automation, Inc.
 - 8. Square D.
 - 9. Toshiba International Corporation.

- 10. Yaskawa Electric America, Inc.
- B. Provide variable frequency controllers as scheduled including bypass starter, coasting motor restart, and step over frequency.
- C. Standards: VFC shall comply with IEEE Standard 519 (1992 version) applicability to Adjustable Frequency Controllers (AC Line Disturbances).
- D. Provide 3 percent AC input line reactors sized appropriate for each current rating variable frequency controller.
- E. The variable frequency controller (VFC) shall comply with all applicable provisions of the National Electrical Code.
- F. The line side of the VFC shall have a displacement power factor of 0.95 or greater when motor is operating at 50 to 100 percent motor speed.
- G. The VFC shall have an efficiency greater than 85 percent when motor is operating at 50 to 100 percent motor speed.
- H. Each variable frequency controller shall consist of an adjustable frequency converter which shall convert 460 volt (+10 percent -5 percent), 3-phase, 60 hertz (+2 hertz) input power into an adjustable frequency output in an ambient temperature of zero to 40 deg C. Output power shall be of suitable capacity and waveform to provide stepless speed control of the specified horsepower motor throughout the required speed range under variable torque load not exceeding the motor's full-load rating.
- I. Provide fault detection and trip circuits to protect itself and the connected motor against line voltage transients, power line under voltage, output overvoltage and overcurrent. A disconnect with padlockable door interlocked external handle shall be supplied to conveniently disconnect the incoming 460 VAC. Minimum short circuit design shall be 42,000 amperes symmetrical. Criteria in Paragraph B shall be met without the use of isolation transformers. Variable frequency controller will be accepted only if criteria can be met without isolation transformers.
- J. The minimum output frequency shall be the lowest frequency at which the connected motor can be operated without overheating.
- K. The variable frequency controllers shall contain current limiting circuitry, adjustable to 100 percent of motor full-load current to provide soft start, acceleration, and running without exceeding motor rated current. The current limit circuit shall be of the type for variable torque load, which acts to diminish output frequency while limiting, without directly causing shutdown.
- L. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts. For safety, drive shall shut down and require manual reset and restart if automatic reset/restart function is not successful within three attempts.
- M. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.
- N. Isolate signal circuits from the power circuits and design to accept a speed signal from a remote process controller in the automatic mode and from the speed control potentiometer in the manual mode. A door-mounted switch shall provide mode selection. The selected signal shall control the motor speed between the adjustable minimum and maximum speed settings. Maximum speed shall be field adjustable to 100 percent of rated speed. The speed signal shall follow a linear time ramp,

- adjustable from 4-20 seconds to provide acceleration from zero to minimum speed. When minimum speed is reached, the speed signal shall follow the linear time ramp for acceleration and deceleration control.
- O. Mount the variable frequency controllers and other electrical components that provide the operation specified in a NEMA 12 enclosure. Equipment shall have external heat sinks <u>or</u> air filters on all vents. The enclosure shall have hinged, front access doors with latch. Cabinet to cabinet interconnecting wiring shall be factory dressed, tagged and harnessed, and shipped with one end attached.
- P. The controller shall have the ability to step-over certain set frequencies that may cause a system to resonate. The controller shall have at least two manually set points of frequency in which the controller shall step-over during operation.
- Q. Operating and monitoring devices for the inverter shall be door mounted and shall include the following:
 - 1. Manual Speed Control to set speed in the hand (manual) mode.
 - 2. Speed indicating meter, either in revolutions per minute, proportional to the applied frequency and voltage to indicate speed of the converter-powered motor or frequency (hertz).
 - 3. VFC "fault/reset" pilot light pushbutton combination with dry contact for external alarm. Fault alarm shall not actuate upon normal shutdown.
 - 4. Inverter "control power" indicator.
 - 5. Motor "running" indicator and two (2) dry contacts that close when motor is running.
 - 6. Output current meter calibrated in "AC amps."
 - 7. Operating selector switches and indicating light to perform the following functions:
 - a. One hand-off-auto switch for the VFC with indicating lights (red-running, green-energized). In hand position, unit (VFC or bypass starter) shall start. In auto position, unit (VFC or bypass starter) shall start when remote dry contact is closed.
 - b. Unit shall be capable of being padlocked in the off position.
 - 8. Output voltmeter (0 600 V.A.C) (analog or digital).
- R. The VFC is to be provided with isolated 4-20 mA DC output signals proportional to speed, current and voltage for connection by others.
- S. The VFC shall be provided with the ability to communicate (monitoring) through RS485 connector.
- T. Remote speed control shall be +4 to 20 mA control signal from a remote controller.
- U. Variable frequency controller shall not cause motor to produce noise levels exceeding 80 dBA measured at a distance of 3 feet from the motor. If noise level of motor exceeds this amount, the contractor shall be responsible for correcting the problem.
- V. Provide connection points for system safety controls such as smoke detectors, freeze stats, damper end switches, etc. as shown on mechanical temperature control drawings. Opening of a contact on safety controls wired to the drive shall shut down the motor(s).

- W. Provide in each VFC, a relay, that upon loss of the automatic speed control signal, shall automatically set the motor rpm to half speed. This loss of signal relay shall be manually adjustable to be able to set default speed to some other value than half speed if required later in the field.
- X. Coordinate with the Temperature Controls Contractor for the interface of control wiring to the drive as required to meet the requirements of the temperature control drawings. Drive shall be furnished with internal control wiring configured in the factory so as to allow single connections of field wiring to terminal blocks in the drive by the Temperature Controls Contractor.
- Y. All indicating lights shall be push to test or LED.
- Z. The variable frequency controllers associated with CP-3, CP-4 and CP-5 at Athens High School shall be provided with a selector switch to choose between CP-3 or CP-4 as the load on one controller and a selector switch to choose between CP-4 or CP-5 as the load on another controller. Refer to electrical one-line-diagram for more detail.

2.4 SOURCE QUALITY CONTROL

- A. Factory Tests: The controller shall be subject to, but not limited to, the following quality assurance controls, procedures and tests:
 - 1. Power transistors, SCRs and diodes shall be tested to ensure correct function and highest reliability.
 - 2. All printed circuit boards shall be tested at 50 deg C for 50 hours. The VFC manufacturer shall provide certification that the tests have been completed.
 - 3. Every controller will be functionally tested with a motor to ensure that if the drive is started up according to the instruction manual provided, the unit will run properly.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance.
- B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install and adjust materials and equipment in accordance with the manufacturer's instructions.
- B. Obtain the manufacturer's instructions for materials and equipment provided under the Contract in detail necessary to comply with the requirements of the Contract Documents.
- C. If unit is free standing, provide a concrete housekeeping pad.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Upon completion of each installation, conduct complete acceptance tests in the presence of duly notified authorities having jurisdiction and the Owner to demonstrate component, assembly or system performance in accordance with the requirements of the Contract Documents.
- C. In the event that a test demonstrates that a component assembly or system performance is deficient, the Owner may require additional tests after corrective work.
- D. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.
- E. Component assembly and systems acceptance is predicated upon completion of specified work and receipt by the Owner of data specified under "Submittals."

3.4 ADJUSTING

- A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
- B. Set the taps on reduced-voltage autotransformer controllers.
- C. Set field-adjustable circuit-breaker trip ranges.
- D. Set field-adjustable pressure switches.

3.5 PROTECTION

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.
- B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.6 DEMONSTRATION

- A. The VFC supplier/support group shall provide the following additional services:
 - On-site training of customer personnel in operation and maintenance of variable frequency controllers.
 - 2. Provide four copies of a troubleshooting manual and factory training manuals to help the building operator determine what steps must be taken to correct any problem that may exist in the system.
 - 3. Coordinate enrollment of customer personnel in factory-held service schools.

END OF SECTION

GENERAL DUTY VALVES FOR PLUMBING

PART 1 -	GENERAL	. 1
1.1	RELATED DOCUMENTS	. 1
1.2	SUMMARY	
1.3	DEFINITIONS	. 1
1.4	SUBMITTALS	. 2
1.5	QUALITY ASSURANCE	. 2
1.6	DELIVERY, STORAGE, AND HANDLING	2
PART 2 -	PRODUCTS	. 3
2.1	VALVES, GENERAL	
2.2	BRONZÉ BALL VALVES	
2.3	GENERAL SERVICE BUTTERFLY VALVES	
2.4	BRONZE CHECK VALVES	. 6
2.5	IRON SWING CHECK VALVES	
2.6	LIFT CHECK VALVES	
2.7	BRONZE GLOBE VALVES	. 8
2.8	CAST-IRON GLOBE VALVES	. 8
	CAST-IRON ANGLE VALVES	
	DRAIN VALVES	
2.11	SOURCE QUALITY CONTROL	. 9
PART 3 -	EXECUTION	. 9
3.1	EXAMINATION	
3.2	VALVE INSTALLATION	
3.3	JOINT CONSTRUCTION	
	ADJUSTING	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical Identification" for valve tags and charts.
 - 2. Division 22 piping Sections for specialty valves applicable to those Sections only.
 - 3. Division 23 Section "General-Duty Valves for HVAC" for HVAC valves.
 - 4. Division 23 Section "Temperature Controls" for control valves and actuators.

1.2 SUMMARY

A. This Section includes valves for general plumbing applications. Refer to piping Sections for specialty valve applications.

1.3 DEFINITIONS

A. The following are standard abbreviations for valves:

- 1. CWP: Cold working pressure.
- 2. EPDM: Ethylene-propylene-diene terpolymer rubber.
- 3. NBR: Acrylonitrile-butadiene rubber.
- 4. NRS: Nonrising stem.
- 5. OS&Y: Outside screw and yoke.
- 6. PTFE: Polytetrafluoroethylene plastic.
- 7. RPTFE: Reinforced polytetrafluoroethylene plastic.
- 8. SWP: Steam working pressure.
- 9. TFE: Tetrafluoroethylene plastic.
- 10. WOG: Water, oil, and gas.

1.4 SUBMITTALS

- A. Product Data: For each type of valve indicated. Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.
 - Certification that products for use in potable water systems comply with NSF 61 and NSF 372.

1.5 QUALITY ASSURANCE

- A. ASME Compliance for Ferrous Valves: ASME B16.10 and ASME B16.34 for dimension and design criteria.
- B. Regulatory Requirements: Comply with requirements in Public Law 111-380, "Reduction of Lead in Drinking Water Act," about lead content in materials that will be in contact with potable water for human consumption.
- C. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.

- 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

- 2.1 VALVES, GENERAL
 - A. Isolation valves are scheduled on the Drawings. For other general plumbing valve applications, use the following:
 - 1. Shutoff Service: Ball and butterfly valves.
 - 2. Throttling Service: Angle, ball, butterfly, or globe valves.
 - 3. Pump Discharge: Spring-loaded, lift-disc check valves; and bronze lift check valves.
 - B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
 - C. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted.
 - D. For valves not indicated in the Application Schedules, select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Solder-joint or threaded ends, except provide valves with threaded ends for condenser water, heating hot water, steam, and steam condensate services.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged, solder-joint, or threaded ends.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.
 - 7. For Grooved-End Systems: Valve ends may be grooved.
 - E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted unless otherwise noted. Wetted surfaces of valves contacted by consumable water shall contain not more than 0.25 percent weighted average lead content.

1. Exceptions:

- a. Valves in pumped sanitary systems.
- b. Valves in pumped storm systems.
- c. Drain valves.
- d. Valves in general air or vacuum systems.
- e. Valves in irrigation systems.
- f. Valves in non-potable water systems.
- g. Valves in other plumbing systems not intended for human consumption.
- F. Valve Sizes: Same as upstream pipe, unless otherwise indicated.
- G. Valve Actuators:
 - 1. Chainwheel: For attachment to valves, of size and mounting height, as indicated in the "Valve Installation" Article in Part 3.
 - 2. Gear Drive Operator: For quarter-turn valves NPS 8 and larger.
 - 3. Handwheel: For valves other than quarter-turn types.
 - 4. Lever Handle: For quarter-turn valves NPS 6 and smaller.
- H. Extended Valve Stems: On insulated valves.
- Valve Flanges: ASME B16.1 for cast-iron valves, ASME B16.5 for steel valves, and ASME B16.24 for bronze valves.
- J. Valve Grooved Ends: AWWA C606.
- K. Solder Joint: With sockets according to ASME B16.18.
 - 1. Caution: Disassemble valves when soldering, as recommended by the manufacturer, to prevent damage to internal parts.
- L. Threaded: With threads according to ASME B1.20.1.
- M. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

- A. Bronze Ball Valves, General: MSS SP-110 and have bronze body complying with ASTM B 584, except for Class 250 which shall comply with ASTM B 61, full-depth ASME B1.20.1 threaded or solder ends, and blowout-proof stems.
- B. Two-Piece, Regular Port Bronze Ball Valves with Stainless-Steel Trim: Type 316 stainless-steel ball and stem, reinforced TFE seats, blow-out-proof stem, with adjustable stem packing, soldered or threaded ends; and 150 psig SWP and 600-psig CWP ratings.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.; Series 70LF-140/240.
 - b. Hammond Valve.
 - c. Milwaukee Valve Company; Model UPBA100S/150S.

- d. NIBCO INC.; Models S-580-70-66-LF/T-580-70-66-LF.
- e. Watts Water Technologies, Inc.
- C. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim: Type 316 stainless-steel ball and stem, reinforced TFE seats, blow-out-proof stem, with adjustable stem packing, soldered or threaded ends; 150 psig SWP and 600-psig CWP ratings.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.; Series 77CLF-140/240.
 - b. Hammond Valve.
 - c. Milwaukee Valve Company; UPBA400S/450S.
 - d. NIBCO INC.; Models S-585-70-66-LF/T-585-70-66-LF.
 - e. Watts Water Technologies, Inc.

2.3 GENERAL SERVICE BUTTERFLY VALVES

- A. General: MSS SP-67, for bubble-tight shutoff, extended-neck for insulation, disc and lining suitable for potable water, unless otherwise indicated, and with the following features:
 - 1. Full lug, and grooved valves shall be suitable for bi-directional dead end service at full rated pressure without the use or need of a downstream flange.
 - 2. Valve sizes NPS 2 through NPS 6 shall have lever lock operator; valve sizes NPS 8 and larger shall have weatherproof gear operator.
- B. Lug-Style (Single-Flange) Size NPS 2-1/2 through NPS 12, 200-psig CWP Rating, Aluminum-Bronze Disc, EPDM Seat, Ferrous-Alloy Butterfly Valves: Full-lug type with ductile-iron body, Type 416 stainless-steel stem, copper bushing, aluminum-bronze disc, and molded-in EPDM seat (liner).
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Apollo Valves; by Conbraco Industries, Inc.; Series 143 and Series LD145.
 - b. Bray International, Inc.
 - c. DeZurik.
 - d. Forum Energy Technologies; ABZ Valve.
 - e. Hammond Valve.
 - f. Milwaukee Valve Company.
 - g. NIBCO INC.; LD-2000-3/5.
 - h. Pentair Valves & Controls; Keystone.
 - i. Tyco Flow Control; Grinnell Flow Control.
 - j. Watts Water Technologies.
- C. Lug-Style (Single-Flange) Size NPS 14 and Larger, 150-psig CWP Rating, Aluminum-Bronze Disc, EPDM Seat, Ferrous-Alloy Butterfly Valves: Full-lug type with ductile-iron body, one- or two-piece Type 416 stainless-steel stem, bronze bushing, and phenolic-backed EPDM seat (liner) attached to the body.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Apollo Valves; by Conbraco Industries, Inc.; Series 143 and Series LD145.
- b. Bray International, Inc.
- c. DeZurik.
- d. Forum Energy Technologies; ABZ Valve.
- e. Milwaukee Valve Company.
- f. NIBCO INC.; LD-1000-5.
- g. Pentair Valves & Controls; Keystone.
- h. Tyco Flow Control; Grinnell Flow Control.
- i. Watts Water Technologies.
- D. Grooved-End Butterfly Valves with EPDM-Encapsulated Ductile-Iron Disc: Ductile-iron body with grooved or shouldered ends and polyamide coating inside and outside; Type 416 stainless-steel stem, PTFE bronze sintered on steel bushing, and 300-psig CWP Rating for Valves NPS 2 through NPS 8, 200 psig CWP Rating for Valves NPS 10 through NPS 12.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. NIBCO INC.; Model GD-4765-3/5.
 - c. Tyco Fire & Building Products; Grinnell Mechanical Products.
 - d. Victaulic Co. of America.

2.4 BRONZE CHECK VALVES

- A. Bronze Check Valves, General: MSS SP-80.
- B. Class 125, Bronze, Swing Check Valves with Bronze Disc: ASTM B-62 bronze body and seat with regrinding-type bronze disc, Y-pattern design, soldered or threaded end connections, and having 200 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.; Model 162T-LF and 163T-LF (61YLF Series).
 - b. Milwaukee Valve Company; Model UP509/UP1509.
 - c. NIBCO INC.: Models S-413-B-LF or T-413-B-LF.
 - d. Watts Water Technologies; LFCVY/LFCVYS.

2.5 IRON SWING CHECK VALVES

- A. Iron Swing Check Valves, General: MSS SP-71.
- B. Class 125, Gray-Iron, Standard Swing Check Valves: ASTM A-126, Class B cast-iron body and bolted bonnet with flanged end connections; non-asbestos synthetic-fiber gaskets; bronze disc and seat; and having 200 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Apollo Valves: by Conbraco Industries, Inc.: Model 910F.
 - b. Crane Co.; Crane Valves.
 - c. Crane Co.; Stockham Div.
 - d. Hammond Valve; IR1124-HI.

- e. Milwaukee Valve Company; Model F-2974.
- f. NIBCO INC.; Model F-918-B.
- g. Watts Water Technologies.
- C. Class 250, Gray-Iron, Swing Check Valves: ASTM A-126, Class B cast-iron body and bolted bonnet with flanged end connections; non-asbestos synthetic-fiber gaskets; and bronze disc and seat; and having 500 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.; Model 920F.
 - b. Crane Co.; Crane Valves.
 - c. Crane Co.; Stockham Div.
 - d. Hammond Valve; IR322.
 - e. Milwaukee Valve Company; Model F-2970.
 - f. NIBCO INC.; Model F-968-B.
 - g. Watts Water Technologies.
- D. Grooved-End, Swing Check Valves: Ductile-iron body with grooved or shouldered ends; nonasbestos, synthetic-fiber gaskets; rubber seats; and having 250-psig CWP Rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Mueller Co.
 - b. NIBCO, INC.; Model G-917-W.
 - c. Tyco Fire & Building Products; Grinnell Mechanical Products.
 - d. Victaulic Co. of America.

2.6 LIFT CHECK VALVES

- A. Class 125, Lift Check Valves with Nonmetallic TFE Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.; Model CBV-LF (61LF Series).
 - b. Hammond Valve; UP943 and UP947.
 - c. Milwaukee Valve Company; UP548T and UP1548T.
 - d. NIBCO INC.; Model S-480-Y-LF and T-480-Y-LF.
 - e. Watts Water Technologies; LF600.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 250 psig.
 - c. Body Design: Vertical flow.
 - d. Body Material: Lead free brass or bronze.
 - e. Ends: Threaded or Solder.
 - f. Disc: PTFE, or TFE.

2.7 BRONZE GLOBE VALVES

- A. Bronze Globe Valves, General: MSS SP-80, with malleable-iron handwheel.
- B. Class 125, TFE Disc, Bronze Globe Valves: ASTM B-62 bronze body, bonnet, and seat, TFE disc, copper-silicone bronze stem, union-ring bonnet, soldered or threaded end connections; and having 200 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, Provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.; Model 121T-LF.
 - b. Hammond Valve: UP418 and UP440.
 - c. Milwaukee Valve Company; Model UP502 and UP1502.
 - d. Watts Water Technologies, Inc.; LFGLV.

2.8 CAST-IRON GLOBE VALVES

- A. Cast-Iron Globe Valves, General: MSS SP-85 with bolted bonnet, flanged end connections, and non-asbestos packing and gasket.
- B. Class 125, Metal Seat, Cast-Iron Globe Valves: ASTM A-126, Class B cast-iron body and bonnet with bronze trim and having 200 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, Provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.; Model 711F.
 - b. Crane Co.: Crane Valves.
 - c. Crane Co.; Stockham Valves.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company; Model F-2981.
 - f. NIBCO INC.; Model F-718-B.
 - g. Watts Water Technologies, Inc.

2.9 CAST-IRON ANGLE VALVES

- A. Cast-Iron Angle Valves, General: MSS SP-85, Type II; having ASTM A 126, Class B cast-iron body and bolted bonnet; bronze mounted, non-asbestos packing and gaskets; and flanged-end connections.
- B. Class 125, Cast-Iron, Standard Angle Valves: 200-psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. NIBCO INC.; Model F-818-B.
 - b. Crane Co.; Stockham Valves.
 - c. Crane Co.; Crane Valves.

2.10 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
 - 1. Bronze ball valve as specified in this Section. Lead free construction is not required.

2. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.11 SOURCE QUALITY CONTROL

A. Identification: Factory label or color coding to identify lead free valves.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.
- B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- C. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- D. Examine threads on valve and mating pipe for form and cleanliness.
- E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- F. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Piping installation requirements are specified in other Division 20 and 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- C. Locate valves for easy access and provide separate support where necessary.
- D. Install valves in horizontal piping with stem at or above center of pipe. Butterfly valves shall be installed with stem horizontal to allow support for the disc and the cleaning action of the disc.
- E. Install valves in position to allow full stem movement.
- F. Install chainwheel operators on valves NPS 4and larger and more than 84 inches above floor. Extend chains to 60 inches above finished floor elevation.
- G. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Dual-Plate Check Valves: In horizontal or vertical position, between flanges.
 - 3. Lift Check Valves: With stem upright and plumb.

3.3 JOINT CONSTRUCTION

A. Refer to Division 20 Section "Basic Mechanical Materials and Methods" for basic piping joint construction.

3.4 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

END OF SECTION

DOMESTIC WATER PIPING

PART 1 -	- GENERAL	. 1
1.1	RELATED DOCUMENTS	1
1.2	SUMMARY	
1.3	PERFORMANCE REQUIREMENTS	
1.4	SYSTEMS DESCRIPTION	
1.5	SUBMITTALS	
1.6	QUALITY ASSURANCE	
1.7	PROJECT CONDITIONS	
1.8	COORDINATION	2
PART 2 -	- PRODUCTS	2
2.1	MANUFACTURERS	2
2.2	PIPING MATERIALS	3
2.3	COPPER TUBE AND FITTINGS	3
PART 3 -	- EXECUTION	4
3.1	PIPING SYSTEM INSTALLATION	4
3.2	JOINT CONSTRUCTION	4
3.3	HANGER AND SUPPORT INSTALLATION	4
3.4	CONNECTIONS	5
3.5	FIELD QUALITY CONTROL	
3.6	ADJUSTING	6
3.7	CLEANING AND DISINFECTION	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods" for materials and methods common to mechanical piping systems.
 - 3. Division 20 Section "Hangers and Supports."
 - 4. Division 20 Section "Meters and Gages" for thermometers, pressure gages, and fittings.
 - 5. Division 20 Section "Valves" for general duty plumbing valves.
 - 6. Division 22 Section "Domestic Water Piping Specialties" for water distribution piping specialties.

1.2 SUMMARY

A. This Section includes domestic water (and pool water) piping inside the building.

1.3 PERFORMANCE REQUIREMENTS

A. Where not indicated on the Drawings, provide components and installation capable of producing domestic water piping systems with 125 psig, unless otherwise indicated.

1.4 SYSTEMS DESCRIPTION

- A. Potable and non-potable domestic water piping system materials are scheduled on the Drawing.
- B. Refer to Application Schedules on the Drawings for valve types to be used.
- C. Transition and special fittings with pressure ratings at least equal to piping rating may be used unless otherwise indicated.

1.5 SUBMITTALS

- A. Product Data: For pipe, tube, fittings, and couplings.
- B. Field quality-control test reports.

1.6 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Regulatory Requirements: Comply with requirements in Public Law 111-380, "Reduction of Lead in Drinking Water Act," about lead content in materials that will be in contact with potable water for human consumption.
- C. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9," and NSF 372 Drinking Water System Components Lead Content for potable domestic water piping and components.
- D. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be as recommended by the manufacturer of the grooved components.

1.7 PROJECT CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of water service.
 - 2. Do not proceed with interruption of water service without Owner's written permission.

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

A. Transition Couplings for Aboveground Pressure Piping: Coupling or other manufactured fitting the same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

2.3 COPPER TUBE AND FITTINGS

- A. Soft Copper Tube: ASTM B 88, Type K, water tube, annealed temper.
 - 1. Copper Pressure Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.
 - 2. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends. Furnish Class 300 flanges if required to match piping.
 - 3. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- B. Hard Copper Tube: ASTM B 88, Type L, water tube, drawn temper.
 - 1. Copper Pressure Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.
 - 2. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends. Furnish Class 300 flanges if required to match piping.
 - 3. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

C. Grooved-Joint Systems:

- 1. Manufacturers:
 - a. Anvil International, Inc.; Gruvlok Manufacturing; Model 7401.
 - b. Tyco Fire & Building Products; Grinnell Mechanical Products; Model 672.
 - c. Victaulic Company; Style 606 and Style 607.
- 2. Grooved-End-Tube Couplings: Copper-tube dimensions and design similar to AWWA C606. Include ferrous housing sections, gasket suitable for hot water, and bolts and nuts.
- 3. Copper, Grooved-End Fittings: ASTM B 75 copper tube or ASTM B 584 bronze castings.
- D. Copper or Bronze Pressure-Seal Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Viega North America; ProPress System.
 - b. NIBCO Inc.; Press System.
 - c. Elkhart Products Corporation; an Aalberts Industries Company; Xpress.
 - d. Apollo Valves; by Conbraco Industries; ApolloXpress.
 - 2. Housing: Copper.

- 3. O-Rings and Pipe Stops: EPDM.
- 4. Tools: Manufacturer's special tools.
- 5. Maximum 200-psig working-pressure rating at 250 deg F.
- E. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube. Mechanically formed tee fittings may be used up to half size of main.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. T-DRILL Industries Inc.

PART 3 - EXECUTION

3.1 PIPING SYSTEM INSTALLATION

- A. Basic piping installation requirements are specified in Division 20 Section "Basic Mechanical Materials and Methods."
- B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops.
- C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping.
 - 1. Install hose-end drain valves at low points in water mains, risers, and branches.
 - 2. Install stop-and-waste drain valves where indicated.
- D. Install domestic water piping level without pitch and plumb.

3.2 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 20 Section "Basic Mechanical Materials and Methods."

3.3 HANGER AND SUPPORT INSTALLATION

- A. Pipe hanger and support devices are specified in Division 20 Section "Hangers and Supports." Install the following:
 - 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs: According to the following:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer than 100 Feet: MSS Type 49, spring cushion rolls, if indicated.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.

- B. Install supports according to Division 20 Section "Hangers and Supports."
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced 1 size for double-rod hangers, to a minimum of 3/8 inch.
- E. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - NPS 2: 10 feet with 3/8-inch rod.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 - 5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
 - 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
- F. Install supports for vertical steel piping every 15 feet.
- G. Install hangers for drawn-temper copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60-inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
- H. Install supports for vertical copper tubing every 10 feet.
- I. Soft copper tube: Continuous support using v-shaped plastic pipe channel, maximum hanger spacing 8 feet with 3/8-inch rod.
- J. Alternate support for copper tubing NPS 3/4 and smaller: Continuous support using v-shaped plastic pipe channel, maximum hanger spacing 8 feet with 3/8-inch rod.
- K. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.4 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect domestic water piping to existing domestic water distribution piping. Use dielectric fitting if connection dissimilar metals. Refer to Application Schedule on the Drawings and Division 20 Section "Basic Mechanical Materials and Methods" for dielectric fittings.
- C. Install piping adjacent to equipment and machines to allow service and maintenance.

- D. Connect domestic water piping to the following:
 - 1. Water Heaters: Cold water supply and hot water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.

3.5 FIELD QUALITY CONTROL

- A. Inspect domestic water piping as follows:
 - 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - 2. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 - 3. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
 - 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- B. Test domestic water piping as follows:
 - 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 4. Cap and subject piping to static water pressure of 150 psig. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

3.6 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves.
 - 2. Open shutoff valves to fully open position.

- 3. Remove plugs used during testing of piping and plugs used for temporary sealing of piping during installation.
- 4. Remove and clean strainer screens. Close drain valves and replace drain plugs.
- 5. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.7 CLEANING AND DISINFECTION

- A. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.
- B. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing domestic water piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction or, if methods are not prescribed, procedures described in either AWWA C651 or AWWA C652 or as described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities.

END OF SECTION

DOMESTIC WATER PIPING SPECIALTIES

PART 1	- GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	PERFORMANCE REQUIREMENTS	
1.3	SUBMITTALS	. 1
1.4	QUALITY ASSURANCE	2
PART 2	- PRODUCTS	2
21	BALANCING VALVES	
2.2	TEMPERATURE-ACTUATED WATER MIXING VALVES	
2.3	STRAINERS FOR DOMESTIC WATER PIPING	
2.4	AIR VENTS	4
PART 3	- EXECUTION	. 5
3.1	INSTALLATION	
3.2	CONNECTIONS	5
3.3	LABELING AND IDENTIFYING	5
3.4	FIELD QUALITY CONTROL	
3.5	ADJUSTING	6

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
 - 3. Division 20 Section "Meters and Gages" for thermometers, pressure gages, and flow meters in domestic water piping.
 - 4. Division 22 Section "Domestic Water Piping".

1.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Field quality-control test reports.
- D. Flow Reports and Settings: For calibrated balancing valves.
- E. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- B. Regulatory Requirements: Comply with requirements in Public Law 111-380, "Reduction of Lead in Drinking Water Act," about lead content in materials that will be in contact with potable water for human consumption.
- C. NSF Compliance:
 - 1. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic domestic water piping components.
 - 2. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9."
 - 3. Comply with NSF 372, "Drinking Water System Components Lead Content" for components with wetted surfaces in contact with potable water.

PART 2 - PRODUCTS

2.1 BALANCING VALVES

- A. Calibrated Balancing Valves NPS 1/2:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Apollo Valves; by Conbraco Industries, Inc.
 - d. Bell & Gossett; Xylem Inc.
 - e. Flo Fab Inc.
 - f. Flow Design Inc.
 - g. Griswold Controls.
 - h. NIBCO INC.
 - i. IMI Indoor Climate; Tour & Andersson.
 - j. Taco, Inc.
 - k. Watts Water Technologies, Inc.; Watts Regulator Co.
 - 2. Type: Ball or Y-pattern globe valve with two readout ports and memory setting indicator.
 - 3. Body: Dezincification resistant brass, or bronze.
 - 4. Minimum Flow Rate: 0.3 gpm.
- B. Calibrated Balancing Valves NPS 3/4 to NPS 2:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Armstrong Pumps, Inc.

- c. Apollo Valves; by Conbraco Industries, Inc.
- d. Bell & Gossett; Xylem Inc.
- e. Flo Fab Inc.
- f. Flow Design Inc.
- g. Griswold Controls.
- h. NIBCO INC.
- i. IMI Indoor Climate; Tour & Andersson.
- j. Taco, Inc.
- k. Watts Water Technologies, Inc.; Watts Regulator Co.
- 2. Type: Ball or Y-pattern globe valve with two readout ports and memory setting indicator.
- 3. Body: Dezincification resistant brass, or bronze.
- 4. Size: Same as connected piping, but not larger than NPS 2.
- C. Calibrated Balancing Valves NPS 2-1/2 to NPS 4:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Bell & Gossett; Xylem Inc.
 - c. Flo Fab Inc.
 - d. Flow Design Inc.
 - e. Griswold Controls.
 - f. NIBCO INC.
 - g. IMI Indoor Climate; Tour & Andersson.
 - h. Watts Water Technologies, Inc.; Watts Regulator Co.
 - 2. Type: Adjustable with Y-pattern globe valve, two readout ports, and memory-setting indicator.
 - 3. Size: Same as connected piping, but not smaller than NPS 2-1/2.
- D. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.
- 2.2 TEMPERATURE-ACTUATED WATER MIXING VALVES
 - A. Primary, Thermostatic, Water Mixing Valves, refer to schedule on plans.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Armstrong International, Inc.
 - c. Bradley Corporation.
 - d. Lawler Manufacturing Company, Inc.
 - e. Leonard Valve Company.
 - f. Symmons Industries, Inc.
 - g. Watts Water Technologies, Inc.; Powers Division.
 - h. Watts Water Technologies, Inc.; Watts Regulator Co.
 - i. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1017.

- 3. Type: Exposed-mounting, thermostatically controlled water mixing valve.
- 4. Material: Bronze body with corrosion-resistant interior components.
- 5. Connections: Union inlets and outlet.
- 6. Accessories: Manual temperature control, check stops and strainers on hot- and cold-water supplies, and adjustable, temperature-control handle.
- 7. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
- 8. Tempered-Water Setting: Refer to plans.

2.3 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

- 1. Manufacturers:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Keckley.
 - c. Metraflex.
 - d. Mueller Steam Specialty.
 - e. NIBCO, Inc.
 - f. Spence.
 - g. SSI Equipment, Inc.
 - h. Watts Water Technologies, Inc.
 - i. Yarway.
- 2. CWP: 200 psig minimum, unless otherwise indicated.
- 3. SWP: 125 psig minimum, unless otherwise indicated.
- 4. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or FDA-approved, epoxy coating and for NPS 2-1/2 and larger.
- 5. End Connections: Threaded or soldered for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
- 6. Screen: Stainless steel with round perforations, unless otherwise indicated.

2.4 AIR VENTS

- A. Bolted-Construction Automatic Air Vents:
 - 1. Body: Bronze.
 - 2. Pressure Rating: 125-psig minimum pressure rating at 140 deg F.
 - 3. Float: Replaceable, corrosion-resistant metal.
 - 4. Mechanism and Seat: Stainless steel.
 - 5. Size: NPS 3/8 minimum inlet.

- 6. Inlet and Vent Outlet End Connections: Threaded.
- B. Welded-Construction Automatic Air Vents:
 - 1. Body: Stainless steel.
 - 2. Pressure Rating: 150-psig minimum pressure rating.
 - 3. Float: Replaceable, corrosion-resistant metal.
 - 4. Mechanism and Seat: Stainless steel.
 - 5. Size: NPS 3/8 minimum inlet.
 - 6. Inlet and Vent Outlet End Connections: Threaded.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 20 Section "Basic Mechanical Materials and Methods" for piping joining materials, joint construction, and basic installation requirements.
- B. Install balancing valves in locations where they can easily be adjusted.
- C. Install temperature-actuated water mixing valves with strainers, and check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install thermometers and water regulators if specified.
- D. Install Y-pattern strainers for water on supply side of each control valve, solenoid valve, and pump.
- E. Install air vents at high points of water piping.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 20 and 22 Sections. Drawings indicate general arrangement of piping and specialties.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Calibrated balancing valves.
 - 2. Primary, thermostatic, water mixing valves.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 20 Section "Mechanical Identification."

3.4 FIELD QUALITY CONTROL

A. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.5 ADJUSTING

- A. Set field-adjustable flow set points of balancing valves as follows:
 - 1. Set calibrated balancing valves at calculated presettings.
 - 2. Measure flow at all stations and adjust where necessary.
 - 3. Record settings and mark balancing devices.
- B. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION

DOMESTIC WATER CIRCULATION PUMPS

PART 1.	- GENERAL	. 1
1.1	RELATED DOCUMENTS	
1.2	SUBMITTALS	
1.3	QUALITY ASSURANCE	. 1
1.4	DELIVERY, STORAGE, AND HANDLING	. 2
PART 2	- PRODUCTS	2
2.1	MANUFACTURERS	
2.2	CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS (SMALL)	
2.3	CONTROLS	. 3
2.4	FLEXIBLE CONNECTORS	. 3
PART 3 -	- EXECUTION	. 3
3.1	EXAMINATION	. 3
3.2	PUMP INSTALLATION	
3.3	CONTROL INSTALLATION	
3.4	CONNECTIONS	. 3
3.5	STARTUP SERVICE	
3.6	DEMONSTRATION	. 5

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."

1.2 SUBMITTALS

- A. Product Data: For each type and size of domestic water pump specified. Include certified performance curves with operating points plotted on curves; and rated capacities of selected models, furnished specialties, and accessories.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Operation and Maintenance Data: For domestic water pumps to include in emergency, operation, and maintenance manuals.

1.3 QUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, and dimensional requirements of domestic water pumps and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.

- C. Regulatory Requirements: Comply with requirements in Public Law 111-380, "Reduction of Lead in Drinking Water Act," about lead content in materials that will be in contact with potable water for human consumption.
- D. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9," and NSF 372 Drinking Water System Components Lead Content for potable domestic water piping and components.
- E. UL Compliance: Comply with UL 778 for motor-operated water pumps.
- 1.4 DELIVERY, STORAGE, AND HANDLING
 - A. Retain shipping flange protective covers and protective coatings during storage.
 - B. Protect bearings and couplings against damage.
 - C. Comply with pump manufacturer's written rigging instructions for handling.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
- 2.2 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS (SMALL)
 - A. Manufacturers:
 - 1. Armstrong Pumps Inc.
 - 2. Bell & Gossett; Xylem Inc.; Series PL.
 - 3. Grundfos Pumps Corp.
 - 4. Taco, Inc.; Series 1400.
 - B. Description: Factory-assembled and –tested, centrifugal, overhung-impeller, close-coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; and designed for installation with pump and motor shafts mounted horizontally.
 - 1. Pump Construction: All bronze.
 - a. Casing: Radially split, bronze, with threaded companion-flange connections.
 - b. Impeller: Glass-reinforced corrosion-resistant material; keyed to shaft.
 - c. Shaft: High-strength alloy steel.
 - d. Seal: Mechanical, carbon/silicon carbide seal.
 - e. Bearings: Permanently oil-lubricated type.
 - 2. Motor-Single speed, with oil-lubricated bearings, unless otherwise indicated; and directly mounted to pump casing. Comply with requirements in Division 20 Section "Motors."

C. Capacities and Characteristics: Refer to Schedule on Drawings.

2.3 CONTROLS

- A. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 - Manufacturers:
 - a. Honeywell International, Inc.
 - b. Square D.
 - c. White-Rodgers Div.; Emerson Electric Co.
 - 2. Type: Water-immersion sensor, for installation in hot-water circulation piping.
 - 3. Range: 50 to 125 deg F.
 - 4. Operation of Pump: On or off.
 - 5. Transformer: Provide if required.
 - 6. Power Requirement: 120 V, ac.
 - 7. Settings: Start pump at 110 deg F and stop pump at 120 deg F.

2.4 FLEXIBLE CONNECTORS

A. Refer to Division 20 Section "Pipe Flexible Connectors, Expansion Fittings and Loops."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.2 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.
- C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping. Do not use pump motors as a support point.

3.3 CONTROL INSTALLATION

A. Install immersion-type thermostats in hot-water return piping.

3.4 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to pumps to allow service and maintenance.

- C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles. Refer to Division 22 Section "Domestic Water Piping."
 - Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 - a. Separately coupled, in-line centrifugal pumps.
 - 2. Install shutoff valve and strainer on suction side of pumps, and check valve and throttling valve on discharge side of pumps. Install valves same size as connected piping. Refer to Division 20 Section "Valves" for general-duty valves for domestic water piping and Division 22 Section "Domestic Water Piping Specialties" for strainers.
 - Install pressure gages at suction and discharge of pumps. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps. Refer to Division 20 Section "Meters and Gages" for pressure gages and gage connectors.
- D. Ground equipment according to Division 26 Section "Grounding and Bonding."
- E. Connect wiring according to Division 26 Section "Conductors and Cables."
- F. Connect thermostats to pumps that they control.

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Set thermostats for automatic starting and stopping operation of pumps.
 - 5. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 - 7. Start motor.
 - 8. Open discharge valve slowly.
 - 9. Adjust temperature settings on thermostats.
 - 10. Adjust timer settings.

SECTION 221123 DOMESTIC WATER CIRCULATION PUMPS

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain controls and pumps.

END OF SECTION

CONDENSING. FUEL-FIRED DOMESTIC WATER HEATERS

1.1 1.2 1.3 1.4	GENERAL RELATED DOCUMENTS DEFINITIONS SUBMITTALS QUALITY ASSURANCE COORDINATION WARRANTY	1 1 2
2.1 2.2 2.3	PRODUCTS	. 3
3.1 3.2	EXECUTION	6
PART 1	GENERAL	
1.1	RELATED DOCUMENTS	

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- Related Section includes the following: B.
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
 - 3. Division 23 Section "Breechings, Chimneys, and Stacks."

1.2 **DEFINITIONS**

LP Gas: Liquefied-petroleum fuel gas. Α.

1.3 **SUBMITTALS**

- Product Data: For each type and size of water heater indicated. Include rated capacities, Α. operating characteristics, furnished specialties, and accessories.
- Shop Drawings: Detail water heater assemblies and indicate dimensions, weights, loads, B. required clearances, method of field assembly, components, and location and size of each field connection
 - Wiring Diagrams: Power, signal, and control systems. Differentiate between 1. manufacturer-installed and field-installed wiring.

- C. Product Certificates: For each type of water heater, signed by product manufacturer.
- D. Source quality-control test reports.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For water heaters to include in operation and maintenance manuals.
- G. Warranty: Warranty specified in this Section.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain same type of water heaters through one source from a single manufacturer.
- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of water heaters and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- D. ASME Compliance:
 - Where ASME-code construction is indicated, fabricate and label commercial water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.
- E. ASHRAE Standards: Comply with performance efficiencies prescribed for the following:
 - 1. ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings," for commercial water heaters.
- F. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9" for all components that will be in contact with potable water.

1.5 COORDINATION

Coordinate size and location of concrete bases with Architectural and Structural Drawings.

1.6 WARRANTY

- A. Warranty Period(s): From date of Substantial Completion:
 - 1. Commercial, Gas Water Heaters:
 - a. Storage Tank: One year.
 - b. Controls and Other Components: One year.
 - 1) Compression Tanks: One year.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. This Section includes skid packaged, by the manufacture of the boiler and controls package equipment factory fabricated and assembled, gas-fired condensing boilers, trim, primary boiler recirculation pumps, system efficiency buffer tanks accessories and associated interconnecting piping, drain piping, combustion air intakes, exhausts, power wiring and controls wiring and controls to integrate multiple modular boilers into skid-mounted packages for generating hot water.

2.2 MODULAR CONDENSING BOILER AND DOMESTIC HOT WATER HEAT EXCHANGER SYSTEM

- A. Description: Factory-fabricated, -assembled, and -tested, modular aluminum condensing boiler with heat exchanger sealed pressure tight, built on a steel base; including insulated jacket; fluegas vent; combustion-air intake connections; water supply, return, and condensate drain connections and controls. Water heating and domestic hot water service. Unit shall include a domestic hot water package, including pressure vessel, heat exchanger trim, service isolation valves, pump(s), storage tank, control system, and all related components, accessories and appurtenances as herein specified shall all be assembled and furnished by the boiler manufacturer. The boiler manufacturer shall provide unit responsibility for the engineering, coordination, workmanship, performance, warranties, and all field services for each factory "packaged" system as specified herein. The boiler manufacturer shall be fully responsible for all components assembled and furnished by him whether or not they are of his own manufacture.
- B. Each heat exchanger included in the fabricated package shall be provided with all necessary inlet and outlet connections for boiler water and domestic water with all accessories as follows:
 - One (1) Domestic water supply outlet 2" Copper Type L or Stainless steel threaded pipe
 - One (1) Domestic water return inlet 2" Copper Type L or Stainless steel threaded pipe adapter
 - One (1) Boiler water supply outlet 2" Black steel threaded pipe or grooved adapter
 - One (1) Boiler water return inlet 2" Black steel threaded pipe grooved adapter
 - One (1) Electrical control panel connection with sensors/thermistor
 - Two (2) Drain valve connections 3/4" size, FPT for drain and simple cleaning of exchanger
 - One (1) Boiler water "ALL BRONZE" bronze pump selected per model
 - One (1) Domestic water "ALL BRONZE" pump selected per model

Required sensor and wells integral to the control sequence and monitoring required

- One (1) Manual reset high temperature control
- One (1) Pressure gauge for hydronic and domestic system
- C. Manufacturers: Subject to compliance with requirements, provide packaged system by one of the following:
 - 1. Patterson-Kelley Co./a Harsco Co.; MACH Series.
 - 2. AERCO International.
- D. Condensing boiler shall comply with requirements in Specification Section 235216-3.

- E. The Domestic Hot Water Heat Exchanger shall comply with ASME Section VIII for 150 PSIG (max 210° F).
- F. System relief valve setting (included with the hydronic system design) shall be 50 PSIG.
- G. Power voltage shall be 120 VAC, 1-phase 60 hertz. Control voltage shall be 120 VAC (transformer to be supplied by manufacturer if required).

2.3 EXPANSION TANKS

- A. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed, butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 - 1. Construction:
 - a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 - b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 - c. Air-Charging Valve: Factory installed.
 - 2. Capacity and Characteristics: Integral with packaged system.

2.4 WATER HEATER ACCESSORIES

- A. Gas Shutoff Valves: ANSI Z21.15/CGA 9.1, manually operated. Furnish for installation in piping.
- B. Gas Pressure Regulators: ANSI Z21.18, appliance type. Include pressure rating, capacity, and pressure differential required between gas supply and water heater.
- C. Gas Automatic Valves: ANSI Z21.21, appliance, electrically operated, on-off automatic valve.
- D. Combination Temperature and Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than water heater working-pressure rating. Select each relief valve with sensing element that extends into storage tank.
 - 1. Gas Water Heaters: ANSI Z21.22/CSA 4.4.
- E. Pressure Relief Valves: Include pressure setting less than working-pressure rating of water heater.
 - 1. Gas Water Heaters: ANSI Z21.22/CSA 4.4.
- F. Water Heater and Storage Tank Stand: Water heater manufacturer's factory-fabricated steel stand (skid) for floor mounting and capable of supporting water heater storage tank and water.
- G. Piping Manifold Kits: Water heater manufacturer's factory-fabricated inlet and outlet piping arrangement for multiple-unit installation. Include piping and valves for field assembly that is capable of isolating each water heater and of providing balanced flow through each water heater.
- H. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1 or ASHRAE 90.2.

I. Flue Side Condensate Neutralizer:

- 1. Description: Designed to raise the PH level of flue side condensate to near neutral prior to condensate entering the sanitary drainage system.
- 2. Materials: Neutralizer constructed of PVC pipe and fittings mounted on channel strut base with galvanized or stainless steel clamps and hardware; and charged with calcium carbonate.
- 3. Manufacturers:
 - a. BKI Industries, Inc.; Acid Neutralizer Kits.
 - J.J.M. Boiler Works; JM Neutralizing Tubes.
 - c. Any of the approved water heater manufacturers.

2.5 SOURCE QUALITY CONTROL

- A. Test and inspect water heater storage tanks, specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.
- B. Hydrostatically test water heater storage tanks before shipment to minimum of one and one-half times pressure rating.
- C. Prepare test reports.

PART 3 - EXECUTION

3.1 WATER HEATER INSTALLATION

- A. Install water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
- B. Install gas water heaters according to NFPA 54.
- C. Install gas shutoff valves on gas supplies to gas water heaters without shutoff valves.
- D. Install gas pressure regulators on gas supplies to gas water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
- E. Install automatic gas valves on gas supplies to gas water heaters, if required for operation of safety control.
- F. Install combination temperature and pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater, relief-valve outlet, with drain piping same as domestic water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- G. Install water heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for water heaters that do not have tank drains. Refer to Division 20 Section "Valves" for hose-end drain valves.
- H. Install thermometer on outlet piping of water heaters. Refer to Division 20 Section "Meters and Gages" for thermometers.

- I. Install pressure gage(s) on inlet and outlet piping of commercial, fuel-fired water heater piping. Refer to Division 20 Section "Meters and Gages" for pressure gages.
- J. Install piping-type heat traps on inlet and outlet piping of water heater storage tanks without integral or fitting-type heat traps.
- K. Fill water heaters with water.
- L. Install expansion tanks with isolation and drain valves. Charge expansion tanks with air.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to water heaters to allow service and maintenance. Arrange piping for easy removal of water heaters.
- C. Connect vent to full size of water heater flue outlet. Refer to Division 23 Section "Breechings, Chimneys, and Stacks" for venting materials.
- D. Ground equipment according to Division 26 Section "Grounding and Bonding."
- E. Connect wiring according to Division 26 Section "Conductors and Cables."
- F. Each fabricated package shall be provided with all necessary inlet and outlet connections for boiler water and domestic water with all accessories for each separate heat exchanger as follows:
 - One (1) Domestic water supply outlet (2" or 2-1/2" Copper Type L pipe)
 - One (1) Domestic water return inlet (2" Copper Type L pipe)
 - One (1) Boiler water supply outlet (2" Black steel threaded pipe or grooved adapter)
 - One (1) Boiler water return inlet (2" Black steel threaded pipe grooved adapter)
 - One (1) Condensate drain (3/4" flexible tubing from condensate trap)
 - Two (2) Drain valve connections (3/4" size, FPT for drain and simple cleaning of exchanger)
 - One (1) Flue connection (8" for Category IV certified vent materials)
 - One (1) Combustion air inlet (6" for PVC, CPVC, Metal Duct, etc.)
 - One (1) Main gas connection (1" FPT for Natural Gas)
 - One (1) Incoming power junction box (120VAC, 1 Phase, 60 Hz)

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, confirm proper operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace water heaters that do not pass tests and inspections and retest as specified above.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water heaters. Refer to Division 20 Section "Mechanical General Requirements."

END OF SECTION

CONDENSING, FUEL-FIRED POOL WATER HEATERS

PART 1-	· GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	DEFINITIONS	1
1.3	SUBMITTALS	1
1.4	QUALITY ASSURANCE	
1.5	COORDINATION	2
1.6	WARRANTY	2
PART 2 -	PRODUCTS	2
2.1	MANUFACTURERS	
2.2	MODULAR CONDENSING BOILER AND POOL WATER HEAT EXCHANGER SYSTEM	
2.3	EXPANSION TANKS	4
2.4	WATER HEATER ACCESSORIES	4
	EVECUTION	,
	EXECUTION	
3.1	WATER HEATER INSTALLATION	
	CONNECTIONS	
	FIELD QUALITY CONTROL	
3.4	DEMONSTRATION	6
	CENEDAL	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Section includes the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
 - 3. Division 23 Section "Breechings, Chimneys, and Stacks."

1.2 DEFINITIONS

A. LP Gas: Liquefied-petroleum fuel gas.

1.3 SUBMITTALS

- A. Product Data: For each type and size of water heater indicated. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Detail water heater assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection
 - 1. Wiring Diagrams: Power, signal, and control systems. Differentiate between manufacturer-installed and field-installed wiring.
- C. Product Certificates: For each type of water heater, signed by product manufacturer.

- D. Source quality-control test reports.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For water heaters to include in operation and maintenance manuals.
- G. Warranty: Warranty specified in this Section.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain same type of water heaters through one source from a single manufacturer.
- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of water heaters and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- D. ASME Compliance:
 - 1. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.
- E. ASHRAE Standards: Comply with performance efficiencies prescribed for the following:
 - 1. ASHRAE 90.1, "Energy Efficient Design of New Buildings except Low-Rise Residential Buildings," for commercial water heaters.
- F. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9" for all components that will be in contact with potable water.

1.5 COORDINATION

A. Coordinate size and location of concrete bases with Architectural and Structural Drawings.

1.6 WARRANTY

- A. Warranty Period(s): From date of Substantial Completion:
 - 1. Commercial, Gas Water Heaters: One year.
 - a. Controls and Other Components: One year.
 - 1) Compression Tanks: One year.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

This Section includes skid packaged, by the manufacture of the boiler and controls package equipment factory fabricated and assembled, gas-fired condensing boilers, trim, primary boiler recirculation pumps, system efficiency buffer tanks accessories and associated interconnecting piping, drain piping, combustion air intakes, exhausts, power wiring and controls wiring and controls into skid-mounted packages for generating hot water for pool heating.

2.2 MODULAR CONDENSING BOILER AND POOL WATER HEAT EXCHANGER SYSTEM

- A. Description: Factory-fabricated, -assembled, and -tested, modular aluminum condensing boiler with heat exchanger sealed pressure tight, built on a steel base; including insulated jacket; fluegas vent; combustion-air intake connections; water supply, return, and condensate drain connections and controls. Water heating and domestic hot water service. Unit shall include a domestic hot water package (used for pool water heating), including pressure vessel, stainless steel heat exchanger with trim, service isolation valves, pump, control system, and all related components, accessories and appurtenances as herein specified shall all be assembled and furnished by the boiler manufacturer. The boiler manufacturer shall provide unit responsibility for the engineering, coordination, workmanship, performance, warranties, and all field services for each factory "packaged" system as specified herein. The boiler manufacturer shall be fully responsible for all components assembled and furnished by him whether or not they are of his own manufacture.
- B. Each heat exchanger included in the fabricated package shall be provided with all necessary inlet and outlet connections for boiler water and domestic water with all accessories as follows:
 - One (1) Pool water supply outlet 2" Stainless steel threaded pipe
 - One (1) Pool water return inlet 2" Stainless steel threaded pipe
 - One (1) Boiler water supply outlet 2" Black steel threaded pipe or grooved adapter
 - One (1) Boiler water return inlet 2" Black steel threaded pipe or grooved adapter
 - One (1) Electrical control panel connection with sensors/thermistor
 - Two (2) Drain valve connections 3/4" size, FPT for drain and simple cleaning of exchanger
 - One (1) Boiler water "ALL BRONZE" bronze pump selected per model
 - One (1) Pool water "ALL STAINLESS STEEL" pump selected per model
 - Required sensor and wells integral to the control sequence and monitoring required
 - One (1) Manual reset high temperature control
 - One (1) Pressure gauge for hydronic and pool system
- C. Manufacturers: Subject to compliance with requirements, provide packaged system by one of the following:
 - 1. Patterson-Kelley Co./a Harsco Co.; MACH Series.
 - AERCO International.
- D. Condensing boiler shall comply with requirements in Specification Section 235216-3.
- E. The Domestic Hot Water Heat Exchanger shall comply with ASME Section VIII for 150 PSIG (max 210° F) (used for pool water heating).
- F. System relief valve setting (included with the hydronic system design) shall be 50 PSIG.
- G. Power voltage shall be 120 VAC, 1-phase 60 hertz. Control voltage shall be 120 VAC (transformer to be supplied by manufacturer if required).

2.3 EXPANSION TANKS

- A. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed, butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 - Construction:
 - Tappings: Factory-fabricated steel, welded to tank before testing and labeling.
 Include ASME B1.20.1 pipe thread.
 - b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 - c. Air-Charging Valve: Factory installed.
 - 2. Capacity and Characteristics: Integral with packaged system.

2.4 WATER HEATER ACCESSORIES

- A. Gas Shutoff Valves: ANSI Z21.15/CGA 9.1, manually operated. Furnish for installation in piping.
- B. Gas Pressure Regulators: ANSI Z21.18, appliance type. Include pressure rating, capacity, and pressure differential required between gas supply and water heater.
- C. Gas Automatic Valves: ANSI Z21.21, appliance, electrically operated, on-off automatic valve.
- D. Pressure Relief Valves: Include pressure setting less than working-pressure rating of water heater.
 - 1. Gas Water Heaters: ANSI Z21.22/CSA 4.4.
- E. Water Heater Stand: Water heater manufacturer's factory-fabricated steel stand (skid) for floor mounting and capable of supporting water heater and water.
- F. Flue Side Condensate Neutralizer:
 - 1. Description: Designed to raise the PH level of flue side condensate to near neutral prior to condensate entering the sanitary drainage system.
 - 2. Materials: Neutralizer constructed of PVC pipe and fittings mounted on channel strut base with galvanized or stainless steel clamps and hardware; and charged with calcium carbonate.
 - Manufacturers:
 - a. BKI Industries, Inc.; Acid Neutralizer Kits.
 - b. J.J.M. Boiler Works; JM Neutralizing Tubes.
 - c. Any of the approved water heater manufacturers.

PART 3 - EXECUTION

3.1 WATER HEATER INSTALLATION

A. Install water heater level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

- B. Install gas water heaters according to NFPA 54.
- C. Install gas shutoff valves on gas supplies to gas water heaters without shutoff valves.
- D. Install gas pressure regulators on gas supplies to gas water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
- E. Install automatic gas valves on gas supplies to gas water heaters, if required for operation of safety control.
- F. Install water heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for water heaters that do not have tank drains. Refer to Division 20 Section "Valves" for hose-end drain valves.
- G. Install thermometer on outlet piping of water heaters. Refer to Division 20 Section "Meters and Gages" for thermometers.
- H. Install pressure gage(s) on inlet and outlet piping of commercial, fuel-fired water heater piping. Refer to Division 20 Section "Meters and Gages" for pressure gages.
- I. Fill water heaters with water.
- J. Install expansion tanks with isolation and drain valves. Charge expansion tanks with air.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to water heaters to allow service and maintenance. Arrange piping for easy removal of water heaters.
- C. Connect vent to full size of water heater flue outlet. Refer to Division 23 Section "Breechings, Chimneys, and Stacks" for venting materials.
- D. Ground equipment according to Division 26 Section "Grounding and Bonding."
- E. Connect wiring according to Division 26 Section "Conductors and Cables."
- F. Each fabricated package shall be provided with all necessary inlet and outlet connections for boiler water and domestic water with all accessories for each separate heat exchanger as follows:
 - One (1) Pool water supply outlet (2" Stainless Steel threaded pipe)
 - One (1) Pool water return inlet (2" Stainless Steel threaded pipe)
 - One (1) Boiler water supply outlet (2" Black steel threaded pipe or grooved adapter)
 - One (1) Boiler water return inlet (2" Black steel threaded pipe grooved adapter)
 - One (1) Condensate drain (3/4" flexible tubing from condensate trap)
 - Two (2) Drain valve connections (3/4" size, FPT for drain and simple cleaning of exchanger)
 - One (1) Flue connection (8" for Category IV certified vent materials)
 - One (1) Combustion air inlet (6" for PVC, CPVC, Metal Duct, etc.)
 - One (1) Main gas connection (1" FPT for Natural Gas)
 - One (1) Incoming power junction box (120VAC, 1 Phase, 60 Hz)

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, confirm proper operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace water heaters that do not pass tests and inspections and retest as specified above.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water heaters. Refer to Division 20 Section "Mechanical General Requirements."

END OF SECTION

DOMESTIC WATER AND POOL WATER HEAT EXCHANGERS

PART 1 -	- GENERAL	
1.1	RELATED DOCUMENTS	
1.2	SUBMITTALS	
1.3	QUALITY ASSURANCE	
1.4	COORDINATION	2
1.5	WARRANTY	
DADTO	PROPULATO	_
	PRODUCTS	
2.1	MANUFACTURERS	
2.2	PACKAGED PLATE-AND-FRAME HEAT EXCHANGERS:	2
2.3	EXPANSION TANKS (DOMESTIC HOT WATER SYSTEM)	4
2.4	HEAT-EXCHANGER ACCESSORIES	5
2.5	SOURCE QUALITY CONTROL	5
PART 3 -	EXECUTION	
3.1	HEAT-EXCHANGER INSTALLATION	
3.2	CONNECTIONS	3
3.3	FIELD QUALITY CONTROL	3
3.4	DEMONSTRATION	3

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."

1.2 SUBMITTALS

- A. Product Data: For each type and size of heat exchanger indicated. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Product Certificates: For each type of heat exchanger, signed by product manufacturer.
- D. Source quality-control test reports.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For heat exchangers to include in operation and maintenance manuals.
- G. Warranty: Special warranty specified in this Section.

1.3 QUALITY ASSURANCE

- A. Source Limitations: Obtain same type of heat exchangers through one source from a single manufacturer.
- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of heat exchangers and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- D. ASME Compliance: Where ASME-code construction is indicated, fabricate and label heatexchanger to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- E. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9" for all components that will be in contact with water.

1.4 COORDINATION

A. Coordinate size and location of concrete bases with Architectural and Structural Drawings.

1.5 WARRANTY

A. Manufacturer's Warranty: The Heat Exchanger and all accessories shall carry an 18-month guarantee against mechanical failure or workmanship from the date of shipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PACKAGED PLATE-AND-FRAME HEAT EXCHANGERS:

- Manufacturers:
 - a. Harsco Industrial Patterson-Kelley; Duration II.
 - b. Aerco International, Inc.; SmartPlate Double-Wall Heater.
- 2. Description: Assembly of nonfixed-position, heat-exchanger plates, with frame, for using heating hot water to heat domestic water (and pool water) with separate storage tank, pump, piping and controls on a skid.
- 3. Working-Pressure Rating: 150 psig minimum.
- 4. Frame:
 - a. Carrying and Guide Bars: Stainless steel.

- b. Fixed, Frame Plate; Pressure Plate; Support Column; and Nuts and Bolts: Stainless steel.
- 5. Channel Plates:
 - a. Type: Vented, double wall.
 - b. Material: ASTM A 666, Type 316 stainless steel.
 - c. Gasket Material: EPDM, suitable for potable water.
- 6. Connections: Suitable for potable water.
 - a. NPS 2 and Smaller: Threaded.b. NPS 2-1/2 and Larger: Flanged.
- 7. Protective Shroud: Steel, covering channel plates.
- 8. Insulation: Complying with ASHRAE/IESNA 90.1, unless otherwise indicated, and suitable for operating temperature. Surround entire heat exchanger except connections.
- 9. Electronic Control System:
 - a. 3-way electronic control valve.
 - b. Constant speed domestic water circulator pump as specified in Division 22 Section "Domestic Water Circulation Pumps."
 - c. Control panel enclosure housing a PID temperature controller with digital indication of:
 - 1) Shell outlet water temperature.
 - 2) Boiler water inlet and boiler water outlet temperatures.
 - 3) Digital over-temperature limit switch.
 - Feed-forward and feedback temperature sensors.
 - d. Controller shall close control valve in over-temperature condition. System shall have the following additional characteristics:
 - 1) Controller Temperature Setpoint Range: 50 deg F to 180 deg F maximum.
 - 2) Configured for 120V, single phase, 60 Hz.
 - 3) Easy start-up. Dial in setpoint.
 - e. Electronic control valve shall be of equal percentage flow characteristics, and have tight shut-off with low leakage rate of 0.02 percent of its Cv value. Valve shall have the following performance characteristics:
 - 1) 1000 to 1 turndown.
 - 2) Magnetic actuator with fail closed design, particularly on loss of power.
 - 3) Time to Full Open Position: Two seconds.
 - 4) Time to Full Closed Position: Two seconds.
 - f. PID temperature controller shall incorporate feed-forward function and be password protected.

- g. Controls interface with BACnet and Lonworks shall utilize optional communications gateway to act as a MODBUS interface/translator between the BAS and the MODBUS port of the temperature controller. Communications gateway shall be comprised of a microprocessor based control utilizing the MODBUS protocol to communicate with the temperature controller. Non-volatile backup of point mappings and programs shall be internally provided as standard. Connection between gateway and individual water heaters shall be daisy chain with shielded, twisted pair, low voltage wiring.
- h. The following information shall be accessible locally at controller or remotely via communications port:
 - 1) Setpoint: Can be changed remotely.
 - 2) Outlet temperature.
 - 3) Over temperature alarm.
 - 4) Control output signal to valve.
- 10. Heater shall be supplied by manufacturer ready to accept boiler water and domestic water lines, and furnished with following accessories:
 - a. Y-strainers with blowdown valves for boiler water and domestic water.
 - b. Boiler water strainer differential pressure gage.
 - c. Combination temperature and pressure relief valve as specified in this Section.
 - d. Isolation valves.
 - e. Domestic water drain valve.
 - f. Domestic water air vent.
 - g. In-place connections for cleaning of plate and frame heat exchanger.
- 11. Circulating Pump: UL 778, all-bronze, centrifugal, overhung-impeller, separately coupled, inline pump as defined in HI 1.1-1.2 and HI 1.3. Include mechanical seals, 125-psig minimum working-pressure rating, and 225 deg F continuous-water-temperature rating.
- 12. Piping: Copper tubing; copper, solder-joint fittings; and brazed or flanged joints.
- 13. Capacity and Characteristics: Refer to Schedule on Drawings.
- 2.3 EXPANSION TANKS (DOMESTIC HOT WATER SYSTEM)
 - A. Description: Steel, pressure-rated tank, ASME-code constructed with welded joints and factory-installed, butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 - 1. Manufacturers:
 - a. AMTROL Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett; Xylem Inc.
 - d. Taco, Inc.
 - e. Wessels Co.
 - 2. Construction:

- a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
- b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
- c. Air-Charging Valve: Factory installed.
- 3. Capacity and Characteristics: Refer to Schedules on Drawings.

2.4 HEAT-EXCHANGER ACCESSORIES

- A. Combination Temperature and Pressure Relief Valves: ASME rated and stamped and complying with ASME PTC 25.3. Include relieving capacity at least as great as heat input, and include pressure setting less than working-pressure rating of heat exchanger.
- B. Pressure Relief Valves: ASME rated and stamped and complying with ASME PTC 25.3. Include pressure setting less than working-pressure rating of heat exchanger.
- C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1 or ASHRAE 90.2.

2.5 SOURCE QUALITY CONTROL

- A. Test and inspect heat-exchanger, specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.
- B. Prepare test reports.

PART 3 - EXECUTION

3.1 HEAT-EXCHANGER INSTALLATION

- A. Install heat exchangers on concrete bases.
 - 1. Concrete base construction requirements are specified in Division 20 Section "Basic Mechanical Materials and Methods."
- B. Install heat exchangers level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
- C. Anchor heat exchangers to substrate.
- D. Install combination temperature and pressure relief valves in water piping for heat exchangers without storage. Extend relief-valve outlet, with drain piping same as water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- E. Install heat-exchanger drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for heat exchangers that do not have drains. Refer to Division 20 Section "Valves" for hose-end drain valves.
- F. Install thermometer on each heat-exchanger domestic-water and pool water inlet and outlet piping, and install thermometer on each heat-exchanger heating-fluid inlet and outlet piping. Refer to Division 20 Section "Meters and Gages" for thermometers.

- G. Install pressure gages on heat-exchanger heating-fluid piping. Refer to Division 20 Section "Meters and Gages" for pressure gages.
- H. Fill heat exchangers with water.
- I. Charge expansion tanks with air.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to heat exchangers to allow service and maintenance. Arrange piping for easy removal of heat exchangers.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding."
- D. Connect wiring according to Division 26 Section "Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, confirm proper operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace heat exchangers that do not pass tests and inspections and retest as specified above.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain heat exchangers.

END OF SECTION

PLUMBING FIXTURES

PART 1	- GENERAL	. 1
1.1	RELATED DOCUMENTS	. 1
1.2	DEFINITIONS	
1.3	SUBMITTALS	
1.4	QUALITY ASSURANCE	
PART 2	- PRODUCTS (REFER TO PLUMBING FIXTURE SCHEDULE)	3
21	LAVATORIES	
22	FIXTURE SUPPLIES	
2.3	PROTECTIVE SHIELDING GUARDS	
2.4	FIXTURE SUPPORTS	
PART 3	- EXECUTION	. 4
3.1	EXAMINATION	
3.2	INSTALLATION	
3.3	CONNECTIONS	
3.4	FIELD QUALITY CONTROL	
3.5	ADJUSTING	
3.6	CLEANING	
3.7	PROTECTION	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
 - 3. Division 22 Section "Domestic Water Piping Specialties" for; individual-fixture, water tempering valves; and specialty fixtures not included in this Section.
 - 4. Division 22 Section "Drainage Piping Specialties" for fixtures not included in this Section.

1.2 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.
- C. Cast Polymer: Cast-filled-polymer-plastic material. This material includes cultured-marble and solid-surface materials.
- D. Cultured Marble: Cast-filled-polymer-plastic material with surface coating.
- E. Fitting: Device that controls the flow of water into or out of the plumbing fixture. Fittings specified in this Section include supplies and stops, faucets and spouts, shower heads and tub spouts, drains and tailpieces, and traps and waste pipes. Piping and general-duty valves are included where indicated.

- F. FRP: Fiberglass-reinforced plastic.
- G. PMMA: Polymethyl methacrylate (acrylic) plastic.
- H. PVC: Polyvinyl chloride plastic.
- I. Solid Surface: Nonporous, homogeneous, cast-polymer-plastic material with heat-, impact-, scratch-, and stain-resistance qualities.

1.3 SUBMITTALS

- A. Product Data: For each type of plumbing fixture indicated. Include selected fixture and trim, fittings, accessories, appliances, appurtenances, equipment, and supports. Indicate materials and finishes, dimensions, construction details, and flow-control rates.
- B. Coordination Drawings: Counter cutout templates for mounting of counter-mounted plumbing fixtures.
- C. Operation and Maintenance Data: For plumbing fixtures and trim to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
 - 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.
- B. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities" for plumbing fixtures for people with disabilities.
- C. Regulatory Requirements: Comply with requirements in Public Law 102-486, "Energy Policy Act," about water flow and consumption rates for plumbing fixtures.
- D. Regulatory Requirements: Comply with requirements in Public Law 111-380, "Reduction of Lead in Drinking Water Act," about lead content in materials that will be in contact with potable water for human consumption.
- E. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9," and NSF 372 Drinking Water System Components Lead Content for potable domestic water piping and components.
- F. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.
- G. Comply with applicable ANSI, ASME, ASSE, ASTM, ICC, NSF, and UL standards and other requirements specified for plumbing fixtures, trim, fittings, components, and features.

PART 2 - PRODUCTS (REFER TO PLUMBING FIXTURE SCHEDULE)

2.1 LAVATORIES

2.2 FIXTURE SUPPLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. BrassCraft; a Masco Company.
 - 2. McGuire Mfg. Co., Inc.
 - 3. Any of the approved plumbing fixture manufacturers.
- B. Description: Chrome-plated brass, loose-key or screwdriver angle stops with brass stems; rigid, chrome-plated copper risers; and chrome-plated wall flanges.

2.3 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Engineered Brass Co.
 - b. Insul-Tect Products Co.; a Subsidiary of MVG Molded Products.
 - c. McGuire Manufacturing Co., Inc.
 - d. Plumberex Specialty Products Inc.
 - e. TCI Products; SG-200BV.
 - f. TRUEBRO, Inc.
 - g. Zurn Plumbing Products Group; Z8946-3-NT.
 - 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

2.4 FIXTURE SUPPORTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Josam Company.
 - 2. MIFAB Manufacturing Inc.
 - 3. Smith, Jay R. Mfg. Co.
 - 4. Tyler Pipe; Wade Div.
 - 5. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.
 - 6. Zurn Plumbing Products Group; Specification Drainage Operation.
- B. Lavatory Supports:

- 1. Description: Lavatory carrier with concealed arms and tie rods for wall-mounting, lavatory-type fixture. Include steel uprights with feet.
- 2. Accessible-Fixture Support: Include rectangular steel uprights.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.
- B. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.
- B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
- C. Install wall-mounting fixtures with tubular waste piping attached to supports.
- D. Install fixtures level and plumb according to roughing-in drawings. Install accessible fixtures at heights required by local codes.
- E. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
- F. Install ASSE 1070 water-temperature limiting devices on supplies for lavatories and sinks that will be used for handwashing, and where specified. Refer to Division 20 Section "Domestic Water Piping Specialties."
- G. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.
- H. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.
- I. Install protective shielding guards on exposed traps and supplies of lavatories.
- J. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.
- L. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- M. Install traps on fixture outlets.
 - 1. Exception: Omit trap on fixtures with integral traps.

- 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
- N. Install escutcheons at piping wall ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 20 Section "Basic Mechanical Materials and Methods."
- O. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 7 Section "Joint Sealants."

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- C. Individual water line branches, waste lines, vents, and traps for connection to individual fixtures, fixture fittings and specialties shall be in accordance with the schedule on the Drawings.

3.4 FIELD QUALITY CONTROL

- A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.
- B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
- C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.
- D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

3.5 ADJUSTING

- Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow and stream.
- C. Replace washers and seals, or cartridges of leaking and dripping faucets and stops.

3.6 CLEANING

- A. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 - 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 - 2. Remove sediment and debris from drains.
- B. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.7 PROTECTION

- A. Provide protective covering for installed fixtures and fittings.
- B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION

HVAC AIR-DISTRIBUTION SYSTEM CLEANING

PART 1 - 1.1 1.2 1.3 1.4 1.5	GENERAL RELATED DOCUMENTS SUMMARY DEFINITIONS SUBMITTALS QUALITY ASSURANCE				
PART 2	- PRODUCTS (NOT USED)				
PART 3 - 3.1 3.2 3.3 3.4 3.5 3.6	- EXECUTION				
PART 1	- GENERAL				
1.1	RELATED DOCUMENTS				
A.	Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.				
B.	Related Sections include the following:				
	Division 20 Section "Mechanical General Requirements."				
	2. Division 23 Section "Metal Ducts."				
	3. Division 23 Section "Nonmetal Ducts."				
	4. Division 23 Section "Duct Accessories."				
1.2	SUMMARY				
A.	Section includes cleaning HVAC air-distribution equipment, ducts, plenums, and system components.				
1.3	DEFINITIONS				
A.	ASCS: Air systems cleaning specialist.				
B.	NADCA: National Air Duct Cleaners Association.				
C.	VSMR: Ventilation system mold remediator.				
1.4	SUBMITTALS				
A.	Qualification Data: For an ASCS.				

Qualification Data: For an VSMR.

B.

- C. Strategies and procedures plan.
- D. Cleanliness verification report.

1.5 QUALITY ASSURANCE

- A. ASCS Qualifications: A certified member of NADCA.
 - 1. Certification: Employ an ASCS certified by NADCA on a full-time basis.
 - 2. Supervisor Qualifications: Certified as an ASCS by NADCA.
- B. VSMR Qualifications: A certified member of NADCA.
 - 1. Certification: Employ a VSMR certified by NADCA on a full-time basis.
 - 2. Supervisor Qualifications: Certified as a VSMR by NADCA.
- C. UL Compliance: Comply with UL 181 and UL 181A for fibrous-glass ducts.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 ACCEPTABLE AGENCIES

- A. Engage a NADCA member company with qualified ASCS and VSMR to clean HVAC air distribution systems.
 - 1. Acceptable HVAC air distribution system cleaning companies:
 - a. ACCU-Clean Services, LLC.; Hazel Park, MI.
 - b. Dalton Environmental Cleaning Corp.; Whitmore Lake, MI.
 - c. DUCTZ; Ann Arbor, MI.
 - d. Dusty Ducts, Inc.; Melvindale, MI.
 - e. Fresh Air Solutions, Inc.; Carleton, MI.
 - f. Safety King, Inc.; Utica, MI.
 - g. Sani-Vac Service, Inc.; Warren MI.

3.2 EXAMINATION

- A. Examine HVAC air-distribution equipment, ducts, plenums, and system components to determine appropriate methods, tools, and equipment required for performance of the Work.
- B. Perform "Project Evaluation and Recommendation" according to NADCA ACR 2006.
- C. Prepare written report listing conditions detrimental to performance of the Work.
- D. Proceed with work only after unsatisfactory conditions have been corrected.

3.3 PREPARATION

A. Prepare a written plan that includes strategies and step-by-step procedures. At a minimum, include the following:

- 1. Supervisor contact information.
- 2. Work schedule including location, times, and impact on occupied areas.
- 3. Methods and materials planned for each HVAC component type.
- 4. Required support from other trades.
- 5. Equipment and material storage requirements.
- 6. Exhaust equipment setup locations.
- B. Use the existing service openings, as required for proper cleaning, at various points of the HVAC system for physical and mechanical entry and for inspection.
- C. Comply with NADCA ACR 2006, "Guidelines for Constructing Service Openings in HVAC Systems" Section.

3.4 CLEANING

- A. Comply with NADCA ACR 2006.
- B. Remove visible surface contaminants and deposits from within the HVAC system.
- C. Systems and Components to Be Cleaned:
 - 1. Air devices for supply and return air.
 - 2. Air-terminal units.
 - 3. Ductwork:
 - a. Supply-air ducts, including turning vanes and reheat coils, to the air-handling unit.
 - b. Return-air ducts to the air-handling unit.
 - c. Exhaust-air ducts.
 - 4. Air-Handling Units:
 - a. Interior surfaces of the unit casing.
 - b. Coil surfaces compartment.
 - c. Condensate drain pans.
 - d. Fans, fan blades, and fan housings.
 - 5. Filters and filter housings.
- D. Collect debris removed during cleaning. Ensure that debris is not dispersed outside the HVAC system during the cleaning process.
- E. Particulate Collection:
 - For particulate collection equipment, include adequate filtration to contain debris removed. Locate equipment downwind and away from all air intakes and other points of entry into the building.

- 2. HEPA filtration with 99.97 percent collection efficiency for particles sized 0.3 micrometer or larger shall be used where the particulate collection equipment is exhausting inside the building,
- F. Control odors and mist vapors during the cleaning and restoration process.
- G. Mark the position of manual volume dampers and air-directional mechanical devices inside the system prior to cleaning. Restore them to their marked position on completion of cleaning.
- H. System components shall be cleaned so that all HVAC system components are visibly clean. On completion, all components must be returned to those settings recorded just prior to cleaning operations.
- I. Clean all air-distribution devices, registers, grilles, and diffusers.
- J. Clean visible surface contamination deposits according to NADCA ACR 2006 and the following:
 - Clean air-handling units, airstream surfaces, components, condensate collectors, and drains.
 - 2. Ensure that a suitable operative drainage system is in place prior to beginning wash-down procedures.
 - 3. Clean evaporator coils, reheat coils, and other airstream components.

K. Duct Systems:

- 1. Create service openings in the HVAC system as necessary to accommodate cleaning.
- Mechanically clean duct systems specified to remove all visible contaminants so that the systems are capable of passing the HVAC System Cleanliness Tests (see NADCA ACR 2006).
- L. Debris removed from the HVAC system shall be disposed of according to applicable Federal, state, and local requirements.
- M. Mechanical Cleaning Methodology:
 - Source-Removal Cleaning Methods: The HVAC system shall be cleaned using source-removal mechanical cleaning methods designed to extract contaminants from within the HVAC system and to safely remove these contaminants from the facility. No cleaning method, or combination of methods, shall be used that could potentially damage components of the HVAC system or negatively alter the integrity of the system.
 - a. Use continuously operating vacuum-collection devices to keep each section being cleaned under negative pressure.
 - b. Cleaning methods that require mechanical agitation devices to dislodge debris that is adhered to interior surfaces of HVAC system components shall be equipped to safely remove these devices. Cleaning methods shall not damage the integrity of HVAC system components or damage porous surface materials such as duct and plenum liners.
 - 2. Cleaning Mineral-Fiber Insulation Components:

- a. Fibrous-glass thermal or acoustical insulation elements present in equipment or ductwork shall be thoroughly cleaned with HEPA vacuuming equipment while the HVAC system is under constant negative pressure and shall not be permitted to get wet according to NADCA ACR 2006.
- b. Cleaning methods used shall not cause damage to fibrous-glass components and will render the system capable of passing the HVAC System Cleanliness Tests (see NADCA ACR 2006).
- c. Fibrous materials that become wet shall be discarded and replaced.

N. Coil Cleaning:

- 1. Measure static-pressure differential across each coil.
- 2. See NADCA ACR 2006, "Coil Surface Cleaning" Section. Type 1, or Type 1 and Type 2, cleaning methods shall be used to render the coil visibly clean and capable of passing Coil Cleaning Verification (see applicable NADCA ACR 2006).
- 3. Coil drain pans shall be subject to NADCA ACR 2006, "Non-Porous Surfaces Cleaning Verification." Ensure that condensate drain pans are operational.
- 4. Electric-resistance coils shall be de-energized, locked out, and tagged before cleaning.
- 5. Cleaning methods shall not cause any appreciable damage to, cause displacement of, inhibit heat transfer, or cause erosion of the coil surface or fins, and shall comply with coil manufacturer's written recommendations when available.
- 6. Rinse thoroughly with clean water to remove any latent residues.

O. Antimicrobial Agents and Coatings:

- 1. Apply antimicrobial agents and coatings if active fungal growth is reasonably suspected or where unacceptable levels of fungal contamination have been verified. Apply antimicrobial agents and coatings according to manufacturer's written recommendations and EPA registration listing after the removal of surface deposits and debris.
- 2. When used, antimicrobial treatments and coatings shall be applied after the system is rendered clean.
- 3. Apply antimicrobial agents and coatings directly onto surfaces of interior ductwork.
- 4. Sanitizing agent products shall be registered by the EPA as specifically intended for use in HVAC systems and ductwork.

3.5 CLEANLINESS VERIFICATION

- A. Verify cleanliness according to NADCA ACR 2006, "Verification of HVAC System Cleanliness" Section.
- B. Verify HVAC system cleanliness after mechanical cleaning and before applying any treatment or introducing any treatment-related substance to the HVAC system, including biocidal agents and coatings.

- C. Perform visual inspection for cleanliness. If no contaminants are evident through visual inspection, the HVAC system shall be considered clean. If visible contaminants are evident through visual inspection, those portions of the system where contaminants are visible shall be re-cleaned and subjected to re-inspection for cleanliness.
- D. Additional Verification:
 - 1. Perform surface comparison testing or NADCA vacuum test.
 - 2. Conduct NADCA vacuum gravimetric test analysis for nonporous surfaces.
- E. Verification of Coil Cleaning:
 - 1. Measure static-pressure differential across each coil.
 - 2. Coil will be considered clean if cleaning restored the coil static-pressure differential within 10 percent of, the differential measured when the coil was first installed.
 - 3. Coil will be considered clean if the coil is free of foreign matter and chemical residue, based on a thorough visual inspection.
- F. Prepare a written cleanliness verification report. At a minimum, include the following:
 - 1. Written documentation of the success of the cleaning.
 - 2. Site inspection reports, initialed by supervisor, including notation on areas of inspection, as verified through visual inspection.
 - 3. Surface comparison test results if required.
 - 4. Gravimetric analysis (nonporous surfaces only).
 - 5. System areas found to be damaged.
- G. Photographic Documentation: Comply with requirements in Division 01 Section "Photographic Documentation."

3.6 RESTORATION

- A. Restore and repair HVAC air-distribution equipment, ducts, plenums, and components according to NADCA ACR 2006, "Restoration and Repair of Mechanical Systems" Section.
- B. Restore service openings capable of future reopening. Comply with requirements in Division 23 Section "Metal Ducts." Include location of service openings in Project closeout report.
- C. Replace fibrous-glass materials that cannot be restored by cleaning or resurfacing. Comply with requirements in Division 23 Sections "Metal Ducts" and "Nonmetal Ducts."
- D. Replace damaged insulation according to "Division 23 Section "HVAC Insulation."
- E. Ensure that closures do not hinder or alter airflow.
- F. New closure materials, including insulation, shall match opened materials and shall have removable closure panels fitted with gaskets and fasteners.

SECTION 230130 HVAC AIR-DISTRIBUTION SYSTEM CLEANING

G. Reseal fibrous-glass ducts. Comply with requirements in Division 23 Section "Nonmetal Ducts."

END OF SECTION

COMMON WORK RESULTS FOR HVAC

1.1 1.2	RELA SUMM SUBM QUAL	ERAL ITED DOCUMENTSMARY MITTALSITY ASSURANCERONMENTAL REQUIREMENTS	1 1 1 2
PART 2 - 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14	PROEMANU FANSFANF SHEAV-BEI FAN EBELT V-BEI V-BEI AIR H FLEX MOTOFANE IDEN	DUCTS JFACTURERS SHAFTS POWER TRANSMISSION AVES LT FAN DRIVES DRIVE, SHAFT, AND COUPLING GUARDS DRIVE GUARDS LTS LT DRIVE MOTOR BASES IANDLING SYSTEM BALANCING PROVISIONS IBLE COUPLINGS (DIRECT DRIVE) DR REQUIREMENTS BEARINGS TIFICATION ESSORIES	2 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5
PART 3 - 3.1		CUTIONALLATION	
PART 1 -	GENE	ERAL	
1.1	RELA	TED DOCUMENTS	
A.		ngs and general provisions of the Contract, including General and Supplementary Condit bivision 01 Specification Sections, apply to this Section.	ions
B.	Relate	ed Sections include the following:	
	1.	Division 20 Section "Mechanical General Requirements."	
	2.	Division 20 Section "Basic Mechanical Materials and Methods."	
	3.	Division 23 Section "Testing, Adjusting, and Balancing."	
1.2	SUMN	MARY	
Δ	Thie 9	Section includes common requirements for fans and air moving equipment	

Α. This Section includes common requirements for fans and air moving equipment.

1.3 SUBMITTALS

- A. Product Data: For the following:
 - 1. Fan bearings.
 - 2. V-belt fan drives.

3. Direct drive couplings.

1.4 QUALITY ASSURANCE

- A. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.
- B. Fan Performance Data: AMCA Standard 210.
- C. Sound Power Level Ratings:
 - 1. Ducted Fans Rated per AMCA 301, when tested per AMCA 300.
 - 2. Nonducted Fans Rated in Zones at 5 feet from acoustic center of fan rated per AMCA 301, tested per AMCA 300 and converted per AMCA 302.

1.5 ENVIRONMENTAL REQUIREMENTS

A. Do not operate equipment for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings lubricated, and fan has been test run under observation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 FAN SHAFTS

A. Fan Shafts: Ground from solid cold rolled steel, and proportioned to run at least 25 percent below the first critical speed.

2.3 FAN POWER TRANSMISSION

- A. V-Belt Type Fan Drives: In accordance with Engineering Standard Specification for Drives Using Multiple V-Belts, sponsored by the Mechanical Power Transmission Association and the Rubber Manufacturer's Association.
- B. A given manufacturer's V-belt drive, as applied to specific equipment provided under the Contract, shall conform to the equipment manufacturer's published recommendations, except as otherwise specified.
- C. Base horsepower rating of drive on minimum pitch diameter of small sheave.
- D. Locate belt drives outboard of bearings. Align drive and driven shafts by the four-point method.
- E. Adjust belt tension in accordance with the manufacturer's recommendations.
- F. Perform alignment and final belt tensioning in the presence of the Architect.

2.4 SHEAVES

- A. Furnish sheaves of machined cast iron or carbon steel, bushing type of fixed bore, secured to the shaft by key and keyway.
- B. For all constant speed fans at or above 2 inches of total static pressure, Contractor shall provide and install two sets of fixed sheaves. First set shall be installed for initial start-up and shall be based on scheduled data. The second set shall be installed after system balance is complete and shall be based on actual field conditions.
- C. For all constant speed fans below 2 inches total static pressure, Contractor shall provide and install two sets of adjustable sheaves. First set shall be installed for initial start-up and shall be based on scheduled data. The second set shall be installed after the balance is complete and shall be based on actual field conditions, and selected at mid-range of the sheave.
- D. Set pitch diameters of fixed pitch and adjustable or variable pitch sheaves when adjusted as specified, at not less than that recommended by NEMA Standard MG1-14.42.
- E. For companion sheaves for adjustable or variable pitch drives, furnish wide groove spacing to match driving sheaves.
- F. For all variable frequency controller (VFC) operated fans, contractor shall provide and install one set of fixed sheaves sized to allow full utilization of fan motor horsepower provided, with VFC at 100 percent of fan motor RPM.

2.5 V-BELT FAN DRIVES

A. Fan Drives: Multiple V-belt style with adjustable pitch driver sheaves for fans up to 2 inches of total static pressure and fixed pitch driver sheaves for fans at or above 2 inches of total static pressure and up. Sheaves shall have split, taper style bushings. Drives shall be selected for a 150 percent service factor and shall provide for adjustment of both belt tension and alignment.

B. Manufacturers:

- 1. Emerson Power Transmission; Browning.
- 2. Rockwell Automation; Dodge.
- 3. T.B. Wood's Incorporated.

2.6 FAN DRIVE, SHAFT, AND COUPLING GUARDS

- A. Safety Provisions: Include guards and screens for power transmission equipment, but do not negate vibration isolation provision.
- B. Furnish ANSI and OSHA compliant mechanical power transmission apparatus guards except where superseded by other governing codes, and except as modified and supplemented. Requirements specified apply to all types of fans.
- C. Fabricate mechanical power transmission device guards such that the completed structure is capable of withstanding a load of at least 200 pounds applied in any direction.
- D. Furnish a guard enclosure for each V-belt drive, coupling, shaft, and rotating component. Secure guards in place, easily removable for maintenance. Guard fasteners used for maintenance access shall be "captive type." Locate holes on each guard for tachometer readings on both the motor and fan shafts. Fabricate guard of minimum 16 gage sheet metal with hemmed edges at openings for

shafts. Weld four mounting lugs or feet of 10 gage material to the guard. Fabricate guards for couplings five inches in diameter and larger of 12 gage sheet metal. Furnish holes in mounting feet sized for suitable machine screws.

E. Centrifugal exhaust fans shall be provided with shaft seals.

2.7 BELT DRIVE GUARDS

- A. Belt Guards: ANSI and OSHA compliant with provision for readily viewing belt tension and measuring shaft speeds. Guards shall be installed with quick release pins, so that removal of three to five clip pins, will allow the guard to be removed from fan housing.
- B. Fabricate guards which completely enclose moving parts of the particular drive. Design and construct guards of such rigidity as to contain a belt which breaks during operation. Minimum material thickness, 16 gage sheet metal. Where ventilation is required, perforated metal shall be used for the sides. Fabricate top of solid sheet metal.

2.8 V-BELTS

- A. Notched or cogged style, endless type, of Dacron reinforced elastomer construction, with cross-section to suit sheave grooves. Determine the number of V-belts from the motor horsepower to which apply the service factor to obtain the design horsepower. Determine the corrected horsepower per belt by multiplying the nominal horsepower per belt by an arc of contact factor not greater than 0.85. Divide the design horsepower by the corrected horsepower per belt to obtain the number of belts required. In any case, furnish not less than two belts for each drive.
- B. Furnish belts that have been factory or factory-authorized distributor matched and measured on a belt-matching machine. Selection by "code numbers," "sag numbers" or "match numbers" is not acceptable. Bind each belt set with wire and tag with equipment identification.

C. Manufacturers:

- 1. Emerson Power Transmission; Browning; AX, BX, and CX Series and 3VX and 5VX Series.
- 2. Rockwell Automation; Dodge; Classic Cog and Narrow Cog V-Belts.
- 3. T.B. Wood's Incorporated; Classical Cog and Narrow Cog V-Belts.

2.9 V-BELT DRIVE MOTOR BASES

- A. Furnish fan motors with slide or adjustable pivoted bases wherever equipment configuration permits proper installation.
- B. Provide for adjustment of both belt tension and alignment.

2.10 AIR HANDLING SYSTEM BALANCING PROVISIONS

- A. Provide extra sheaves, sized as recommended by the Balancing Agent, for the adjustment of fan speed for each air handling system during air quantity balancing operations. Furnish sheaves as specified in this Section.
- B. Provide sheaves, sized as recommended by the Balancing Agent, for the adjustment of fan speed for each existing air handling system requiring rebalancing during air quantity balancing operations. Furnish sheaves as specified in this Section.

2.11 FLEXIBLE COUPLINGS (DIRECT DRIVE)

A. Fan shaft shall be connected to the motor shaft through a flexible coupling. The flexible member shall be a tire shape, in shear, or a solid mass serrated edge disc shape, made of chloroprene materials and retained by fixed flanges. Flexible coupling shall act as a dielectric connector and shall not transmit sound, vibration or end thrust.

B. Manufacturer:

1. Falk Corporation (The).

2.12 MOTOR REQUIREMENTS

A. Furnish motors in accordance with Division 20 Section "Motors."

2.13 FAN BEARINGS

- A. Bearings: Anti-friction ball or roller type with provision for self-alignment and thrust load. Made in U.S.A. with ABMA L₁₀ minimum life of 200,000 hours. Use cast iron housings and dust-tight seals suitable for lubricant pressures.
 - Lubrication Provisions Use surface ball check type supply fittings. Provide extension tubes
 to allow safe maintenance while equipment is operating. Provide manual or automatic
 pressure relief fittings to prevent overheating or seal blow-out due to excess lubricant or
 pressure. Arrange relief fittings opposite supply but visible for normal maintenance
 observation.
 - 2. Bearings on Equipment with less than 1/2 horsepower rating or on shafts smaller than 1-3/4 inch in diameter: Permanently sealed, pre-lubricated anti-friction bearings per specified materials and ABMA L_{10} life requirements.

2.14 IDENTIFICATION

A. Nameplate: Affix metallic, corrosion-resistant data plate for each fan in a conspicuous location. Include selection point capacity conditions.

2.15 ACCESSORIES

A. Bird Screens: Of material to match adjacent contact construction, 1/2 inch mesh or equal expanded metal. Use on inlet or outlet of each nonducted fan.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Field Rigging: Do not negate balancing. Do not bend shaft. Use lifting eyes.
- B. Install sheaves where recommended by Testing, Adjusting, and Balancing agency.
- C. Refer to individual Division 23 HVAC equipment Sections for additional requirements.

END OF SECTION

GENERAL-DUTY VALVES FOR HVAC

PART 1 -	GENERAL	1
1.1	RELATED DOCUMENTS	1
1.2	SUMMARY	1
1.3	DEFINITIONS	2
1.4	SUBMITTALS	
1.5	QUALITY ASSURANCE	
1.6	DELIVERY, STORAGE, AND HANDLING	2
PART 2 -	PRODUCTS	3
	VALVES, GENERAL	
2.2	BRONZE BALL VALVES	
2.3	GENERAL SERVICE BUTTERFLY VALVES	
2.4	BRONZE CHECK VALVES	
2.5	IRON SWING CHECK VALVES	
2.6	BRONZE LIFT CHECK VALVES	7
2.7	SPRING-LOADED, CENTER-GUIDED LIFT-DISC (SILENT) CHECK VALVES	7
2.8	BRONZE GLOBE VALVES	
2.9	CAST-IRON GLOBE VALVES	
	BRONZE ANGLE VALVES	
	CAST-IRON ANGLE VALVES	
2.12	DRAIN VALVES	10
PART 3 -	EXECUTION	10
3.1	EXAMINATION	
3.2	VALVE INSTALLATION	
3.3	JOINT CONSTRUCTION	
3.4	ADJUSTING	
J.7	7,000	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 21 fire-suppression piping and fire pump Sections for fire-protection valves.
 - 2. Division 20 Section "Mechanical Identification" for valve tags and charts.
 - 3. Division 22 Section "General-Duty Valves for Plumbing" for plumbing valves.
 - 4. Division 23 Section "Temperature Controls" for control valves and actuators.

1.2 SUMMARY

A. This Section includes valves for general HVAC applications. Refer to piping Sections for specialty valve applications.

1.3 DEFINITIONS

- A. The following are standard abbreviations for valves:
 - 1. CWP: Cold working pressure.
 - 2. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 3. NBR: Acrylonitrile-butadiene rubber.
 - 4. NRS: Nonrising stem.
 - 5. OS&Y: Outside screw and yoke.
 - 6. PTFE: Polytetrafluoroethylene plastic.
 - 7. RPTFE: Reinforced polytetrafluoroethylene plastic.
 - 8. SWP: Steam working pressure.
 - 9. TFE: Tetrafluoroethylene plastic.
 - 10. WOG: Water, oil, and gas.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated. Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.

1.5 QUALITY ASSURANCE

- A. ASME Compliance: ASME B31.1 for power piping valves and ASME B31.9 for building services piping valves.
- B. ASME Compliance for Ferrous Valves: ASME B16.10 and ASME B16.34 for dimension and design criteria.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.

- 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Isolation valves are scheduled on the Drawings. For other general HVAC valve applications, use the following:
 - 1. Throttling Service: Angle, ball, butterfly, or globe valves.
 - 2. Pump Discharge: Spring-loaded, lift-disc check valves; and bronze lift check valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted.
- D. For valves not indicated in the Application Schedules, select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Solder-joint or threaded ends, except provide valves with threaded ends for condenser water, heating hot water, steam, and steam condensate services.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged, solder-joint, or threaded ends.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.
 - 7. For Grooved-End Systems: Valve ends may be grooved. Do not use for steam or steam condensate piping.
- E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- F. Valve Sizes: Same as upstream pipe, unless otherwise indicated.

G. Valve Actuators:

- 1. Chainwheel: For attachment to valves, of size and mounting height, as indicated in the "Valve Installation" Article in Part 3.
- 2. Gear Drive Operator: For quarter-turn valves NPS 8 and larger.
- 3. Handwheel: For valves other than guarter-turn types.
- 4. Lever Handle: For guarter-turn valves NPS 6 and smaller.
- H. Extended Valve Stems: On insulated valves.
- I. Valve Flanges: ASME B16.1 for cast-iron valves, ASME B16.5 for steel valves, and ASME B16.24 for bronze valves.
- J. Valve Grooved Ends: AWWA C606.
- K. Solder Joint: With sockets according to ASME B16.18.
 - 1. Caution: Disassemble valves when soldering, as recommended by the manufacturer, to prevent damage to internal parts.
- L. Threaded: With threads according to ASME B1.20.1.
- M. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

- A. Bronze Ball Valves, General: MSS SP-110 and have bronze body complying with ASTM B 584, except for Class 250 which shall comply with ASTM B 61, full-depth ASME B1.20.1 threaded or solder ends, and blowout-proof stems.
- B. Two-Piece, Regular Port Bronze Ball Valves with Stainless-Steel Trim: Type 316 stainless-steel ball and stem, reinforced TFE seats, blow-out-proof stem, with adjustable stem packing, soldered or threaded ends; and 150 psig SWP and 600-psig CWP ratings.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.; Series 70-140.
 - b. Crane Co.; Crane Valves.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company; Model BA100S.
 - e. NIBCO INC.: Models S-580-70-66 or T-580-70-66.
 - f. Watts Water Technologies, Inc.
- C. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim: Type 316 stainless-steel ball and stem, reinforced TFE seats, blow-out-proof stem, with adjustable stem packing, soldered or threaded ends; 150 psig SWP and 600-psig CWP ratings.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Apollo Valves; by Conbraco Industries, Inc.; Series 77C-140.
- b. Crane Co.; Crane Valves.
- c. Hammond Valve.
- d. Milwaukee Valve Company.
- e. NIBCO INC.; Models S-585-70-66 or T-585-70-66.
- f. Watts Water Technologies, Inc.

2.3 GENERAL SERVICE BUTTERFLY VALVES

- A. General: MSS SP-67, for bubble-tight shutoff, extended-neck for insulation, disc and lining suitable for potable water, unless otherwise indicated, and with the following features:
 - 1. Full lug, and grooved valves shall be suitable for bi-directional dead end service at full rated pressure without the use or need of a downstream flange.
 - 2. Valve sizes NPS 2 through NPS 6 shall have lever lock operator; valve sizes NPS 8 and larger shall have weatherproof gear operator.
- B. Lug-Style (Single-Flange) Size NPS 2-1/2 through NPS 12, 200-psig CWP Rating, Aluminum-Bronze Disc, EPDM Seat, Ferrous-Alloy Butterfly Valves: Full-lug type with ductile-iron body, Type 416 stainless-steel stem, copper bushing, aluminum-bronze disc, and molded-in EPDM seat (liner).
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.; Series 143 and Series LD 145.
 - b. Bray International, Inc.
 - c. DeZurik.
 - d. Forum Energy Technologies; ABZ Valve.
 - e. Hammond Valve.
 - f. Milwaukee Valve Company.
 - g. NIBCO INC.; LD-2000-3/5.
 - h. Pentair Valves & Controls; Keystone.
 - i. Tyco Flow Control; Grinnell Flow Control.
 - j. Watts Water Technologies.
- C. Lug-Style (Single-Flange) Size NPS 14 and Larger, 150-psig CWP Rating, Aluminum-Bronze Disc, EPDM Seat, Ferrous-Alloy Butterfly Valves: Full-lug type with ductile-iron body, one- or two-piece Type 416 stainless-steel stem, bronze bushing, and phenolic-backed EPDM seat (liner) attached to the body.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.; Series 143 and Series LD 145.
 - b. Bray International, Inc.
 - c. Dezurik.
 - d. Forum Energy Technologies; ABZ Valve.
 - e. Hammond Valve.
 - f. Milwaukee Valve Company.
 - g. NIBCO INC.; LD-1000-5.
 - h. Pentair Valves & Controls; Keystone.
 - i. Tyco Flow Control; Grinnell Flow Control.

- j. Watts Water Technologies.
- D. Grooved-End Butterfly Valves with EPDM-Encapsulated Ductile-Iron Disc: Ductile-iron body with grooved or shouldered ends and polyamide coating inside and outside; Type 416 stainless-steel stem, PTFE bronze sintered on steel bushing, and 300-psig CWP Rating for Valves NPS 2 through NPS 8, 200 psig CWP Rating for Valves NPS 10 through NPS 12.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. NIBCO INC.; Model GD-4765-3/5.
 - c. Tyco Fire & Building Products; Grinnell Mechanical Products.
 - d. Victaulic Co. of America.

2.4 BRONZE CHECK VALVES

- A. Bronze Check Valves, General: MSS SP-80.
- B. Class 150, Bronze, Swing Check Valves with Bronze Disc: ASTM B-62 bronze body and seat with regrinding-type bronze disc, Y-pattern design, soldered or threaded end connections, and having 300 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.
 - b. Crane Co.; Crane Valves.
 - c. Crane Co.; Stockham Div.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company; Model 515.
 - f. NIBCO INC.; Models S-433-B or T-433-B.
 - g. Watts Water Technologies.

2.5 IRON SWING CHECK VALVES

- A. Iron Swing Check Valves, General: MSS SP-71.
- B. Class 125, Gray-Iron, Standard Swing Check Valves: ASTM A-126, Class B cast-iron body and bolted bonnet with flanged end connections; non-asbestos synthetic-fiber gaskets; bronze disc and seat: and having 200 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.
 - b. Crane Co.; Crane Valves.
 - c. Crane Co.; Stockham Div.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company; Model F-2974.
 - f. NIBCO INC.: Model F-918-B.
 - g. Watts Water Technologies.

- C. Class 250, Gray-Iron, Swing Check Valves: ASTM A-126, Class B cast-iron body and bolted bonnet with flanged end connections; non-asbestos synthetic-fiber gaskets; and bronze disc and seat; and having 500 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.
 - b. Crane Co.; Crane Valves.
 - c. Crane Co.; Stockham Div.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company; Model F-2970.
 - f. NIBCO INC.; Model F-968-B.
 - g. Watts Water Technologies.
- D. Grooved-End, Swing Check Valves: Ductile-iron body with grooved or shouldered ends; nonasbestos, synthetic-fiber gaskets; rubber seats; and having 250-psig CWP Rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Mueller Co.
 - b. NIBCO, INC.; Model G-917-W.
 - c. Tyco Fire & Building Products; Grinnell Mechanical Products.
 - d. Victaulic Co. of America.

2.6 BRONZE LIFT CHECK VALVES

- A. Class 125. Lift Check Valves with Nonmetallic TFE Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Hammond Valve.
 - b. Milwaukee Valve Company.
 - c. NIBCO INC.; Model S-480-Y or T-480-Y.
 - d. The Wm. Powell Company.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 250 psig.
 - c. Body Design: Vertical flow.
 - d. Body Material: ASTM B 584 Alloy C844, bronze.
 - e. Ends: Threaded or Solder.
 - f. Disc: PTFE, or TFE.
- 2.7 SPRING-LOADED, CENTER-GUIDED LIFT-DISC (SILENT) CHECK VALVES
 - A. Lift-Disc Check Valves, General: FCI 74-1 and MIL-V-18436F, with spring-loaded, center-guided bronze disc and seat.

- B. Class 125, Wafer, Lift-Disc Check Valves: Wafer style with cast-iron body with diameter made to fit within bolt circle, and having 200 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. NIBCO INC.; Model W-910-B.
 - b. Mueller Steam Specialty.
 - c. Milwaukee Valve Company.
 - d. Hammond Valve.
- C. Class 250, Wafer, Lift-Disc Check Valves: Wafer style with cast-iron body with diameter made to fit within bolt circle, and having 400 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. NIBCO INC.; Model W-960-B.
 - b. Mueller Steam Specialty.
 - c. Milwaukee Valve Company.
 - d. Hammond Valve.
- D. Class 125, Globe, Flanged Lift-Disc Check Valves: Globe style with cast-iron body and flanged ends, and having 200 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. NIBCO INC.; Model F-910-B.
 - b. Mueller Steam Specialty.
 - c. Milwaukee Valve Company.
 - d. Hammond Valve.
- E. Class 250, Globe, Flanged Lift-Disc Check Valves: Globe style with cast-iron body and flanged ends, and having 400 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. NIBCO INC.; Model F-960-B.
 - b. Mueller Steam Specialty.
 - c. Milwaukee Valve Company.
 - d. Hammond Valve.
- 2.8 BRONZE GLOBE VALVES
 - A. Bronze Globe Valves, General: MSS SP-80, with malleable-iron handwheel.
 - B. Class 150, TFE Disc, Bronze Globe Valves: ASTM B-62 bronze body, bonnet, and seat, TFE disc, copper-silicone bronze stem, union-ring bonnet, soldered or threaded end connections; and having 300 psig CWP rating.

- 1. Manufacturers: Subject to compliance with requirements, Provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.
 - b. Crane Co.: Crane Valves.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company; Model 590.
 - e. NIBCO INC.; Models S-235-Y or T-235-Y.
 - f. Watts Water Technologies, Inc.

2.9 CAST-IRON GLOBE VALVES

- A. Cast-Iron Globe Valves, General: MSS SP-85 with bolted bonnet, flanged end connections, and non-asbestos packing and gasket.
- B. Class 125, Metal Seat, Cast-Iron Globe Valves: ASTM A-126, Class B cast-iron body and bonnet with bronze trim and having 200 psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, Provide products by one of the following:
 - a. Apollo Valves; by Conbraco Industries, Inc.
 - b. Crane Co.; Crane Valves.
 - c. Crane Co.; Stockham Valves.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company; Model F-2981.
 - f. NIBCO INC.; Model F-718-B.
 - g. Watts Water Technologies, Inc.

2.10 BRONZE ANGLE VALVES

- A. Bronze Angle Valves, General: MSS SP-80, with silicon bronze stem, non-asbestos packing and malleable-iron handwheel.
- B. Class 150, Bronze Angle Valves: ASTM B 62 bronze body with TFE disc, union-ring bonnet, threaded ends, and having 300-psig CWP rating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valves.
 - b. Crane Co.: Stockham Valves.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company; Model 595T.
 - e. NIBCO INC.; Model T-335-Y.
 - f. The Wm. Powell Company.

2.11 CAST-IRON ANGLE VALVES

- A. Cast-Iron Angle Valves, General: MSS SP-85, Type II; having ASTM A 126, Class B cast-iron body and bolted bonnet; bronze mounted, non-asbestos packing and gaskets; and flanged-end connections.
- B. Class 125, Cast-Iron, Standard Angle Valves: 200-psig CWP rating.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. NIBCO INC.; Model F-818-B.
 - b. Crane Co.: Stockham Valves.
 - c. Crane Co.; Crane Valves.

2.12 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
 - 1. Bronze ball valve as specified in this Section.
 - 2. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.
- B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- C. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- D. Examine threads on valve and mating pipe for form and cleanliness.
- E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- F. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Piping installation requirements are specified in other Division 20 and 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- C. Locate valves for easy access and provide separate support where necessary.
- D. Install valves in horizontal piping with stem at or above center of pipe. Butterfly valves shall be installed with stem horizontal to allow support for the disc and the cleaning action of the disc.
- E. Install valves in position to allow full stem movement.

- F. Install chainwheel operators on valves NPS 4and larger and more than 84 inches above floor. Extend chains to 60 inches above finished floor elevation.
- G. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Dual-Plate Check Valves: In horizontal or vertical position, between flanges.
 - 3. Lift Check Valves: With stem upright and plumb.

3.3 JOINT CONSTRUCTION

A. Refer to Division 20 Section "Basic Mechanical Materials and Methods" for basic piping joint construction.

3.4 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

END OF SECTION

TESTING, ADJUSTING, AND BALANCING

PART 1 -	· GENERAL	
1.1	RELATED DOCUMENTS	<i>'</i>
1.2	SUMMARY	<i>1</i>
1.3	DEFINITIONS	2
1.4	SUBMITTALS	3
1.5	QUALITY ASSURANCE	3
1.6	PROJECT CONDITIONS	
1.7	COORDINATION	5
1.8	WARRANTY	5
PART 2 -	PRODUCTS (NOT APPLICABLE)	<u>5</u>
	EXECUTION	
	EXAMINATION	
3.2	PREPARATION	
3.3	GENERAL PROCEDURES FOR TESTING AND BALANCING	
3.4	GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS	
3.5	PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS	
3.6	PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS	
3.7	GENERAL PROCEDURES FOR HYDRONIC SYSTEMS	
3.8	PROCEDURES FOR HYDRONIC SYSTEMS	
3.9	PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS	
3.10	PROCEDURES FOR PRIMARY-SECONDARY-FLOW HYDRONIC SYSTEMS	12
3.11	PROCEDURES FOR MOTORS	12
	PROCEDURES FOR HEAT-TRANSFER COILS	
3.13	PROCEDURES FOR TEMPERATURE MEASUREMENTS	13
3.14	PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS	13
3.15	TOLERANCES	14
3.16	REPORTING	14
3.17	FINAL REPORT	15
3.18	INSPECTIONS	22
	ADDITIONAL TESTS	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
 - 3. Division 23 Section "Common Work Results for HVAC."

1.2 SUMMARY

A. This Section includes testing, adjusting, and balancing to produce design objectives for the following:

1. Air Systems:

- Constant-volume air systems.
- b. Dual-duct systems.
- c. Variable-air-volume systems.
- d. Multizone systems.
- e. Induction-unit systems.

2. Hydronic Piping Systems:

- a. Constant-flow systems.
- b. Variable-flow systems.
- c. Primary-secondary systems.
- 3. HVAC equipment quantitative-performance settings.
- 4. Laboratory fume hood airflow balancing.
- 5. Exhaust hood airflow balancing.
- 6. Existing systems TAB.
- 7. Verifying that automatic control devices are functioning properly.
- 8. Reporting results of activities and procedures specified in this Section.
- B. Include rebalancing of air systems, or system portions affected by recommended sheave changes.

1.3 DEFINITIONS

- A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.
- B. AHJ: Authority having jurisdiction.
- C. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to indicated quantities.
- D. Barrier or Boundary: Construction, either vertical or horizontal, such as walls, floors, and ceilings that are designed and constructed to restrict the movement of airflow, smoke, odors, and other pollutants.
- E. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.
- F. NC: Noise criteria.
- G. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.
- H. RC: Room criteria.
- I. Report Forms: Test data sheets for recording test data in logical order.

- J. Smoke-Control System: An engineered system that uses fans to produce airflow and pressure differences across barriers to limit smoke movement.
- K. Smoke-Control Zone: A space within a building that is enclosed by smoke barriers and is a part of a zoned smoke-control system.
- L. Stair Pressurization System: A type of smoke-control system that is intended to positively pressurize stair towers with outdoor air by using fans to keep smoke from contaminating the stair towers during an alarm condition.
- M. Static Head: The pressure due to the weight of the fluid above the point of measurement. In a closed system, static head is equal on both sides of the pump.
- N. Suction Head: The height of fluid surface above the centerline of the pump on the suction side.
- O. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
- P. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested.
- Q. TAB: Testing, adjusting, and balancing.
- R. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.
- S. Test: A procedure to determine quantitative performance of systems or equipment.
- T. Testing, Adjusting, and Balancing (TAB) Firm: The entity responsible for performing and reporting TAB procedures.

1.4 SUBMITTALS

- A. Qualification Data: Within 30 days from Contractor's Notice to Proceed, submit 4 copies of evidence that TAB firm and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 30 days from Contractor's Notice to Proceed, submit 4 copies of the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Within 60 days from Contractor's Notice to Proceed, submit 4 copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project.
- D. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.
- E. Sample Report Forms: Submit two sets of sample TAB report forms.
- F. Warranties specified in this Section.

1.5 QUALITY ASSURANCE

A. TAB Firm Qualifications: Engage a TAB firm certified by either AABC or NEBB.

- B. Smoke Control System Testing: Additional Qualifications: The TAB firm shall be a qualified special inspector for the smoke control systems. The TAB firm for the smoke control system shall have expertise in fire protection engineering, mechanical engineering, and certification as air balancers.
- C. Approved Balancing Agencies.
 - 1. The TAB firm selected shall be from the following list:
 - a. Absolut Balance Company, Inc.; South Lyon, MI.
 - b. Airflow Testing Inc.; Lincoln Park, MI.
 - c. Barmatic Inspecting Co., Inc.; Lincoln Park, MI.
 - d. Ener-Tech Testing; Holly, MI.
 - e. Enviro-Aire/Total Balance Co.; St. Clair Shores, MI.
 - f. International Test & Balance Inc.; Southfield, MI.
- D. TAB Conference: Meet with Owner's and Architect's representatives on approval of TAB strategies and procedures plan to develop a mutual understanding of the details. Ensure the participation of TAB team members, equipment manufacturers' authorized service representatives, HVAC controls installers, and other support personnel. Provide seven days' advance notice of scheduled meeting time and location.
 - 1. Agenda Items: Include at least the following:
 - a. Submittal distribution requirements.
 - b. The Contract Documents examination report.
 - c. TAB plan.
 - d. Work schedule and Project-site access requirements.
 - e. Coordination and cooperation of trades and subcontractors.
 - f. Coordination of documentation and communication flow.
- E. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.
- F. TAB Report Forms: Use standard forms from AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems." TAB firm's forms approved by Architect.
- G. Instrumentation Type, Quantity, and Accuracy: As described in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems," Section II, "Required Instrumentation for NEBB Certification."
- H. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by instrument manufacturer.
 - 1. Keep an updated record of instrument calibration that indicates date of calibration and the name of party performing instrument calibration.

1.6 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

- A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.
- B. Notice: Provide seven days advance notice for each test. Include scheduled test dates and times.
- C. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.8 WARRANTY

- A. National Project Performance Guarantee: If AABC standards are used, provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions:
 - The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.
- B. Special Guarantee: If NEBB standards are used, provide a guarantee on NEBB forms stating that NEBB will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee shall include the following provisions:
 - 1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.
- B. Examine system and equipment test reports.
- C. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.

- D. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- E. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning.
- F. Examine plenum ceilings used for supply air to verify that they are airtight. Verify that pipe penetrations and other holes are sealed.
- G. Examine strainers for clean screens and proper perforations.
- H. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- I. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- J. Examine system pumps to ensure absence of entrained air in the suction piping.
- K. Examine equipment for installation and for properly operating safety interlocks and controls.
- L. Examine automatic temperature system components to verify the following:
 - 1. Dampers, valves, and other controlled devices are operated by the intended controller.
 - 2. Dampers and valves are in the position indicated by the controller.
 - 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
 - 4. Automatic modulating and shutoff valves, including two-way valves and three-way mixing and diverting valves, are properly connected.
 - Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 - 6. Sensors are located to sense only the intended conditions.
 - 7. Sequence of operation for control modes is according to the Contract Documents.
 - 8. Controller set points are set at indicated values.
 - 9. Interlocked systems are operating.
 - 10. Changeover from heating to cooling mode occurs according to indicated values.
- M. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

- B. Perform the following field tests and inspections to new and renovated portions of duct systems according to SMACNA's "HVAC Air Duct Leakage Test Manual" and prepare test reports:
 - 1. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If pressure classes are not indicated, test entire system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure. Give seven days' advance notice for testing.
 - 2. Maximum Allowable Leakage: Leakage rates are scheduled on the Drawings.
- C. Complete system readiness checks and prepare system readiness reports. Verify the following:
 - 1. Permanent electrical power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and this Section.
- B. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, to show final settings.
- C. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts, or use reduced scale contract documents with notations.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.

- E. Cut insulation, and drill ducts for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes with neat patches, neoprene plugs, threaded plugs, or threaded twist-on metal caps, and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project.
- F. Check air flow within intake plenums and mixing boxes of air handling units for uneven flow and temperature stratification and prepare a report with profile elevations (temperature and velocity) on each coil or filter face for Architect.
- G. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- H. Verify that motor starters are equipped with properly sized thermal protection.
- I. Check dampers for proper position to achieve desired airflow path.
- J. Check for airflow blockages.
- K. Check condensate drains for proper connections and functioning.
- L. Check for proper sealing of air-handling unit components.
- M. Check for proper sealing of air duct system.

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure fan static pressures to determine actual static pressure as follows:
 - a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 2. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.
 - 3. Measure static pressures entering and leaving other devices such as sound traps, heat recovery equipment, and air washers, under final balanced conditions.
 - 4. Select required sheave sizes and advise installing contractor to change drive sheaves accordingly. Refer to Division 23 Section "Common Work Results for HVAC" for additional requirements.
 - 5. When existing air handling systems require rebalancing, select required sheave sizes and advise Mechanical Contractor to change drive sheaves accordingly. Refer to Division 23 Section "Common Work Results for HVAC" for additional requirements.

- 6. Do not recommend fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow at a point downstream from the balancing damper and adjust volume dampers until the proper airflow is achieved.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure terminal outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust terminal outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than extractors and the dampers at air terminals.
 - Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a maximum set-point airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced airflow terminal units so they are distributed evenly among the branch ducts.
- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set outside-air dampers at minimum, and return- and exhaust-air dampers at a position that simulates full-cooling load.
 - Select the terminal unit that is most critical to the supply-fan airflow and static pressure.
 Measure static pressure. Adjust system static pressure so the entering static pressure for the
 critical terminal unit is not less than the sum of terminal-unit manufacturer's recommended
 minimum inlet static pressure plus the static pressure needed to overcome terminal-unit
 discharge system losses.
 - 3. Measure total system airflow. Adjust to within indicated airflow.

- 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.
- 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow.
 - If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
- 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.
- 7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
- 8. Record the final fan performance data.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against approved pump flow rate.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts, or use reduced scale contract documents with notations.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check expansion tank liquid level.
 - 3. Check makeup-water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation and set at indicated flow.
 - 5. Set system controls so automatic valves are wide open to heat exchangers.
 - Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.

3.8 PROCEDURES FOR HYDRONIC SYSTEMS

A. Measure water flow at pumps. Use the following procedures, except for positive-displacement pumps:

- 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
- Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
- 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
- 4. Report flow rates that are not within plus or minus 5 percent of design.
- B. Set calibrated balancing valves, if installed, at calculated presettings.
- C. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- D. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- E. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 - 3. Record settings and mark balancing devices.
- F. Equipment installed with pressure independent characterized control valves (PICCV) or auto-flow devices shall not require hydronic system balancing unless multiple coils are served from a single PICCV or auto-flow device (Example: AHU coil banks with multiple coils). Measure flow through each PICCV and auto-flow device and compare measured value to scheduled value to verify proper valve/device was installed and valve is functional. Verify flow for 100 percent of PICCV and auto-flow devices. Report discrepancies.
- G. Chilled beams do not require individual hydronic balancing. Verify proper flow is achieved through balancing or control device serving chilled beam control zone. Report discrepancies.
- H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- I. Measure the differential-pressure control valve settings existing at the conclusions of balancing, and record in report.
- 3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS
 - A. Balance variable-flow hydronic systems by following the "Proportional Balancing Procedure" in accordance with NEBB.

- B. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.
- 3.10 PROCEDURES FOR PRIMARY-SECONDARY-FLOW HYDRONIC SYSTEMS
 - A. Balance the primary system crossover flow first, then balance the secondary system.
- 3.11 PROCEDURES FOR MOTORS
 - A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer, model, and serial numbers.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Power factor.
 - 6. Nameplate and measured voltage, each phase.
 - 7. Nameplate and measured amperage, each phase.
 - 8. Starter size.
 - 9. Starter thermal-protection-element rating.
 - 10. Fuse number and size.
 - B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass for the controller to prove proper operation. Record observations, including controller manufacturer, model and serial numbers, and nameplate data.
- 3.12 PROCEDURES FOR HEAT-TRANSFER COILS
 - A. Water Coils: Measure the following data for each coil:
 - 1. Entering- and leaving-water temperature.
 - 2. Water flow rate.
 - 3. Water pressure drop.
 - 4. Dry-bulb temperature of entering and leaving air.
 - 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 - 6. Airflow.
 - 7. Air pressure drop.
 - B. Electric-Heating Coils: Measure the following data for each coil:

- 1. Nameplate data.
- Airflow.
- 3. Entering- and leaving-air temperature at full load.
- 4. Voltage and amperage input of each phase at full load and at each incremental stage.
- Calculated kilowatt at full load.
- 6. Fuse or circuit-breaker rating for overload protection.
- C. Refrigerant Coils: Measure the following data for each coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.
 - 4. Air pressure drop.
 - 5. Refrigerant suction pressure and temperature.

3.13 PROCEDURES FOR TEMPERATURE MEASUREMENTS

- A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.
- B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.
- C. Measure outside-air, wet- and dry-bulb temperatures.
- 3.14 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS
 - A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 - 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 - 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 - 3. Check the condition of filters.
 - 4. Check the condition of coils.
 - 5. Check the operation of the drain pan and condensate drain trap.
 - 6. Check bearings and other lubricated parts for proper lubrication.
 - 7. Report on the operating condition of the equipment and the results of the measurements taken. Report deficiencies.

- B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished.
 - New filters are installed.
 - 2. Coils are clean and fins combed.
 - 3. Drain pans are clean.
 - 4. Fans are clean.
 - 5. Bearings and other parts are properly lubricated.
 - 6. Deficiencies noted in the preconstruction report are corrected.
- C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 - 1. Compare the indicated airflow of the renovated work to the measured fan airflows and determine the new fan, speed, filter, and coil face velocity.
 - 2. If calculations increase or decrease the airflow and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated airflow and water flow rates. If 5 percent or less, equipment adjustments are not required.
 - 3. Air balance each air outlet.

3.15 TOLERANCES

- A. Set HVAC system airflow and water flow rates within the following tolerances:
 - 1. Air handling equipment and outlets: Plus or minus 5 percent.
 - a. Where terminal units serve 6 or more outlets within a common room, individual outlets may vary up to plus or minus 10 percent of design flow rates if overall room supply is within plus or minus 5 percent.
 - 2. Heating-Water Flow Rate: 0 to minus 10 percent.
 - 3. Cooling-Water Flow Rate: 0 to plus 5 percent.

3.16 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.17 FINAL REPORT

- A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.
- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 - 1. Include a list of instruments used for procedures, along with proof of calibration.
- C. Final Report Contents: In addition to certified field report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.
- D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page.
 - 2. Name and address of TAB firm.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB firm who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report.

 Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.

- 13. Notes to explain why certain final data in the body of reports varies from indicated values.
- 14. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outside-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outside, supply, return, and exhaust airflows.
 - Water flow rates.
 - Terminal units.
 - 4. Balancing stations.
- F. Air-Handling Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data: Include the following:
 - Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - j. Number of belts, make, and size.
 - k. Number of filters, type, and size.
 - 2. Motor Data:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - g. Power factor efficiency.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.

- c. Fan rpm.
- d. Discharge static pressure in inches wg.
- e. Filter static-pressure differential in inches wg.
- f. Preheat coil static-pressure differential in inches wg.
- g. Cooling coil static-pressure differential in inches wg.
- h. Heating coil static-pressure differential in inches wg.
- i. Outside airflow in cfm.
- j. Return airflow in cfm.
- k. Outside-air damper position.
- I. Return-air damper position.
- m. Vortex damper position.

G. Apparatus-Coil Test Reports:

Coil Data:

- System identification.
- b. Location.
- c. Coil type.
- d. Number of rows.
- e. Fin spacing in fins per inch o.c.
- f. Make and model number.
- g. Face area in sq. ft..
- h. Tube size in NPS.
- i. Tube and fin materials.
- j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):

- a. Airflow rate in cfm.
- b. Average face velocity in fpm.
- c. Air pressure drop in inches wg.
- d. Outside-air, wet- and dry-bulb temperatures in deg F.
- e. Return-air, wet- and dry-bulb temperatures in deg F.
- f. Entering-air, wet- and dry-bulb temperatures in deg F.
- g. Leaving-air, wet- and dry-bulb temperatures in deg F.
- h. Water flow rate in gpm.
- i. Water pressure differential in feet of head or psig.
- j. Entering-water temperature in deg F.
- k. Leaving-water temperature in deg F.

H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in centralstation air-handling units, include the following:

1. Unit Data:

- System identification.
- b. Location.
- c. Coil identification.
- d. Capacity in Btuh.
- e. Number of stages.
- f. Connected volts, phase, and hertz.
- g. Rated amperage.
- h. Airflow rate in cfm.

- i. Face area in sq. ft..
- j. Minimum face velocity in fpm.
- 2. Test Data (Indicated and Actual Values):
 - a. Heat output in Btuh.
 - b. Airflow rate in cfm.
 - c. Air velocity in fpm.
 - d. Entering-air temperature in deg F.
 - e. Leaving-air temperature in deg F.
 - f. Voltage at each connection.
 - g. Amperage for each phase.
- I. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - 2. Motor Data:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - g. Number of belts, make, and size.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.

- f. Duct area in sq. ft..
- g. Indicated airflow rate in cfm.
- h. Indicated velocity in fpm.
- i. Actual airflow rate in cfm.
- j. Actual average velocity in fpm.
- k. Barometric pressure in psig.
- K. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Test apparatus used.
 - d. Area served.
 - e. Air-terminal-device make.
 - f. Air-terminal-device number from system diagram.
 - g. Air-terminal-device type and model number.
 - h. Air-terminal-device size.
 - i. Air-terminal-device effective area in sq. ft...
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Air velocity in fpm.
 - c. Preliminary airflow rate as needed in cfm.
 - d. Preliminary velocity as needed in fpm.
 - e. Final airflow rate in cfm.
 - f. Final velocity in fpm.
 - g. Space temperature in deg F.
- L. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Entering-water temperature in deg F.
 - c. Leaving-water temperature in deg F.
 - d. Water pressure drop in feet of head or psig.
 - e. Entering-air temperature in deg F.
 - f. Leaving-air temperature in deg F.
- M. Compressor and Condenser Reports: For refrigerant side of unitary systems, stand-alone refrigerant compressors, air-cooled condensing units, or water-cooled condensing units, include the following:

1. Unit Data:

- a. Unit identification.
- b. Location.
- c. Unit make and model number.
- d. Compressor make.
- e. Compressor model and serial numbers.

2. Test Data (Indicated and Actual Values):

- a. Inlet-duct static pressure in inches wg.
- b. Outlet-duct static pressure in inches wg.
- c. Entering-air, dry-bulb temperature in deg F.
- d. Leaving-air, dry-bulb temperature in deg F.
- e. Condenser entering-water temperature in deg F.
- f. Condenser leaving-water temperature in deg F.
- g. Condenser-water temperature differential in deg F.
- h. Condenser entering-water pressure in feet of head or psig.
- i. Condenser leaving-water pressure in feet of head or psig.
- j. Condenser-water pressure differential in feet of head or psig.
- k. Control settings.
- I. Voltage at each connection.
- m. Amperage for each phase.
- n. Kilowatt input.
- o. Crankcase heater kilowatt.
- p. Number of fans.
- q. Condenser fan rpm.
- r. Condenser fan airflow rate in cfm.
- s. Condenser fan motor make, frame size, rpm, and horsepower.
- t. Condenser fan motor voltage at each connection.
- u. Condenser fan motor amperage for each phase.
- N. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:

1. Unit Data:

- a. Unit identification.
- b. Location.
- c. Service.
- d. Make and size.
- e. Model and serial numbers.
- f. Water flow rate in gpm.
- g. Water pressure differential in feet of head or psig.
- h. Required net positive suction head in feet of head or psig.
- i. Pump rpm.
- j. Impeller diameter in inches.
- k. Motor make and frame size.
- I. Motor horsepower and rpm.
- m. Voltage at each connection.
- n. Amperage for each phase.
- o. Full-load amperage and service factor.
- p. Seal type.

- 2. Test Data (Indicated and Actual Values):
 - Static head in feet of head or psig.
 - b. Pump shutoff pressure in feet of head or psig.
 - c. Actual impeller size in inches.
 - d. Full-open flow rate in gpm.
 - e. Full-open pressure in feet of head or psig.
 - f. Final discharge pressure in feet of head or psig.
 - g. Final suction pressure in feet of head or psig.
 - h. Final total pressure in feet of head or psig.
 - i. Final water flow rate in gpm.
 - j. Voltage at each connection.
 - k. Amperage for each phase.
- O. Vibration Measurement Reports:
 - 1. Date and time of test.
 - 2. Vibration meter manufacturer, model number, and serial number.
 - 3. Equipment designation, location, equipment, speed, motor speed, and motor horsepower.
 - 4. Diagram of equipment showing the vibration measurement locations.
 - 5. Measurement readings for each measurement location.
 - 6. Calculate isolator efficiency using measurements taken.
 - 7. Description of predominant vibration source.
- P. Sound Measurement Reports: Record sound measurements on octave band and dBA test forms and on an NC or RC chart indicating the decibel level measured in each frequency band for both "background" and "HVAC system operating" readings. Record each tested location on a separate NC or RC chart. Record the following on the forms:
 - 1. Date and time of test. Record each tested location on its own NC curve.
 - 2. Sound meter manufacturer, model number, and serial number.
 - 3. Space location within the building including floor level and room number.
 - 4. Diagram or color photograph of the space showing the measurement location.
 - 5. Time weighting of measurements, either fast or slow.
 - 6. Description of the measured sound: steady, transient, or tonal.
 - 7. Description of predominant sound source.
- Q. Indoor-Air Quality Measurement Reports for Each HVAC System:
 - 1. HVAC system designation.
 - Date and time of test.

- 3. Outdoor temperature, relative humidity, wind speed, and wind direction at start of test.
- 4. Room number or similar description for each location.
- 5. Measurements at each location.
- 6. Observed deficiencies.
- R. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.18 INSPECTIONS

A. Initial Inspection:

- 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report.
- 2. Randomly check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Measure sound levels at two locations.
 - e. Measure space pressure of at least 10 percent of locations.
 - f. Verify that balancing devices are marked with final balance position.
 - g. Note deviations to the Contract Documents in the Final Report.

B. Final Inspection:

- 1. After initial inspection is complete and evidence by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect.
- 2. TAB firm test and balance engineer shall conduct the inspection in the presence of Architect.
- Architect shall randomly select measurements documented in the final report to be rechecked. The rechecking shall be limited to either 10 percent of the total measurements recorded, or the extent of measurements that can be accomplished in a normal 8-hour business day.
- 4. If the rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

- 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- 6. TAB firm shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes and resubmit the final report.
- 7. Request a second final inspection. If the second final inspection also fails, Owner shall contract the services of another TAB firm to complete the testing and balancing in accordance with the Contract Documents and deduct the cost of the services from the final payment.

3.19 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions.

END OF SECTION

TEMPERATURE CONTROLS

PART 1 -	GENERAL	2
1.1	RELATED DOCUMENTS	2
	SUMMARY	
1.3	DEFINITIONS	2
1.4	SYSTEM DESCRIPTION	2
1.5	SEQUENCE OF OPERATION	2
1.6	SUBMITTALS	3
1.7	REFERENCES	5
1.8	QUALITY ASSURANCE	6
1.9	DELIVERY, STORAGE, AND HANDLING	6
1.10	COORDINATION	6
1.11	WARRANTY	6
1.12	POSTED OPERATING INSTRUCTIONS	7
1.13	SPECIAL TOOLS	7
1.14	PROTECTION OF PROPRIETARY INFORMATION	7
	DDODLICTO	-
	PRODUCTS DESCRIPTION OF THE BUILDING AUTOMATION SYSTEM (BAS)	
	DDC DATA COMMUNICATIONS NETWORK	
2.2	DDC NETWORK CONTROLLER (EXPAND EXISTING AS REQUIRED)	0
2.3 2.4	DIGITAL LIGHTING CONTROLLERS (LIGHTING CONTROL PANELS)	
2. 4 2.5	DDC AIR TERMINAL UNIT CONTROLLERS	
2.5	DIRECT DIGITAL CONTROL (DDC) PANELS	
2.0	DDC PANEL SOFTWARE	
	DDC INPUT/OUTPUT SENSORS	
2.0	AIRFLOW MEASURING PROBES – OUTSIDE AIRFLOW	12
	LIQUID DIFFERENTIAL PRESSURE TRANSMITTERS:	
	CONTROL VALVES AND VALVE OPERATORS	
	NATURAL GAS SOLENOID VALVES	
	DAMPERS - AUTOMATED	
	DAMPERS, INSULATED OUTDOOR AIR / RELIEF AIR / EXHAUST AIR - AUTOMATED	
	DAMPER OPERATORS - ELECTRIC	
	CONTROL PANELS	
2.10	REFERENCE PROBE - DUCT STATIC PRESSURE	20
	REFERENCE PROBE - INDOOR STATIC PRESSURE	
	REFERENCE PROBE - OUTDOOR STATIC PRESSURE	
2.10	THERMOSTATS – ELECTRONIC & ELECTRIC	21
	EMERGENCY POWER-OFF (EPO) PUSH-BUTTON	
	LIMIT SWITCHES	
2.22	ELECTRICAL REQUIREMENTS FOR CONTROLS WORK	22
	EXECUTION	
3.1	INSTALLATION - CONTROL SYSTEMS	
	TC CONTRACTOR DESIGN & INSTALLATION COORDINATION MEETINGS	
	IDENTIFICATION AND MARKING	
	GRAPHIC DISPLAY GENERATION	
	OWNER INSTRUCTION AND TRAINING	
	CALIBRATION AND START-UP	-
-2/	ACCEPTANCE PROCEDURE	26

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 specification sections, apply to work of this section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
 - 3. Division 23 "Testing, Adjusting, and Balancing."

1.2 SUMMARY

A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.

1.3 DEFINITIONS

- A. BAS: Building Automation System
- B. CAD: Computer Aided Design.
- C. DDC: Direct-digital controls.
- D. TC: Temperature Control.

1.4 SYSTEM DESCRIPTION

- A. DDC Temperature Control System consisting of direct digital control system panels, sensors, transducers, relays, switches, data communication network, etc. and all associated control wiring and raceway systems. The new temperature controls shall interface with the existing Andover Building Automation System.
- B. BAS/DDC system programming, database and graphic display generation at the existing operator workstation.
- C. Replacement of Lighting Control panels with Schneider Lighting Control Panels.
- D. Terminal Unit DDC Controllers where shown and scheduled on the plans.
- E. IP to BACNET Communication Server for interfacing to 3rd Party BACnet controllers as shown on the plans. Provide integration into the existing BAS with point database, custom reports, time of day scheduling, and graphics.
- F. Electric control valves, dampers, operators, control wiring, etc.
- G. Electric and electronic control accessories and other control system devices.

1.5 SEQUENCE OF OPERATION

A. Control sequences for HVAC systems, subsystems, and equipment are indicated on project drawings.

1.6 SUBMITTALS

- A. Submit under Division 20 and 23 provisions of respective project and as supplemented in this section.
- B. All control submittal requirements shall be submitted at one time with exception to control valves, automated dampers, and initial phases of work associated with fast-track projects (when required). Early submittals of control valve and automated dampers shall be incorporated with the complete temperature controls submittal.
- C. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
 - 1. Each control device labeled with setting or adjustable range of control
- D. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- E. Shop Drawings:
 - 1. Shop drawings shall be done on CAD. Minimum size 11" x 17".
 - 2. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
 - 3. Wiring Diagrams: Power, signal, and control wiring. Differentiate between manufacturer-installed and field-installed wiring.
 - 4. Details of control panel faces and interior, including controls, instruments, and termination blocks and labeling.
 - 5. Written sequence of operation for each controlled system.
 - 6. Schedule of dampers including size, leakage, and flow characteristics (Refer to Design Data).
 - 7. Schedule of valves including leakage and flow characteristics (Refer to Design Data).
 - 8. Complete bill of materials to identify and quantify all control components
 - 9. Overall system schematic showing communication trunk cabling to DDC panels, peripheral devices, modems including component locations and wire termination details.
 - 10. DDC panel layouts showing connected data points and LAN connections. DDC panel terminations including power supply and remote control component termination details shall be provided.
 - 11. Point list for each DDC panel including point descriptions and addresses. This information may be incorporated with DDC panel layouts.
- F. Design Data: Provide indicated component selection and sizing criteria for the following component categories:
 - 1. Control valves:
 - a. Component tag.
 - b. Equipment served/function.

- c. Media type.
- d. Design flow rate (GPM).
- e. Selected valve GPM (Pressure Independent Control Valves)
- f. Valve size.
- g. Line size to valve connection (excluding reducers).
- h. Type (ball).
- i. Configuration (2-way).
- j. Normal position (normally open, normally closed, floating).
- k. Actuator spring range (where applicable).
- I. Actuator power requirement.
- m. Valve shut-off rating (ft. head) of (psi)
- n. Valve body pressure/temperature rating.
- o. Valve manufacturer/model number.
- p. Actuator manufacturer/model number.

2. Dampers:

- a. Component tag.
- b. Equipment served/function.
- c. Overall damper size (inch height x inch width).
- d. Quantity of damper sections with respective size(s):
- e. Material and gauge of thickness.
- f. Mounting orientation (horizontal or vertical).
- g. Blade configuration (parallel or opposed)
- h. Pressure drop (in. w.g.).
- i. Shut-off rating/differential pressure rating (in. w.g).
- j. Leakage rating (CFM/sq. at 4 in. w.g).
- k. Normal position (normally open, normally closed, floating).
- I. Actuator spring range (where applicable).
- m. Actuator power requirement.
- n. Actuator torque requirement.
- o. Actuator quantity.
- p. Damper manufacturer/model number.
- q. Actuator manufacturer/model number.

3. Flow measuring probes - Air:

- a. Component tag.
- b. Equipment served/function.
- c. Duct dimension (inch height x inch width) if applicable.
- d. Fan inlet diameter (inch) if applicable)
- e. Probe quantity.
- f. Probe length.
- g. Flow rate (CFM).
- h. Flow velocity (FPM).
- i. Probe manufacturer/model number.
- i. Transmitter manufacturer/model number.
- G. Samples: Temperature sensor cover for each color required and guards if required.
- H. Qualification Data: For firms and persons specified in "Quality Assurance" Article.
- I. Submit field reports indicating operating conditions after detailed check out of systems at Date of Substantial Completion.
- J. Project Record Documents: Include the following:

- 1. Revise Shop Drawings to reflect actual installation and operating sequences.
- 2. Record actual locations of control components, including control units and sensors.
- 3. Submit the electronic files for all as-built shop drawings on diskette in pdf format.
- K. Software and Firmware Operational Documentation: Include the following:
 - 1. DDC panel keypad operating instructions and DDC panel control override features where applicable.
 - Device address list.
 - 3. Program Software Backup: On a magnetic media or compact disc, complete with data files.
- L. Maintenance Manuals: Include the following:
 - 1. Product data with installation details, maintenance instructions and lists of spare parts for each type of control device.
 - 2. Keypad illustrations and step-by-step procedures indexed for each operator function where applicable.
 - 3. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
 - 4. Calibration records and list of set points.

1.7 REFERENCES

- A. AMCA 500 Test Methods for Louvers, Dampers and Shutters.
- B. ANSI/NEMA 250 Enclosures for Electrical Equipment (1000 Volts Maximum).
- C. ANSI/NFPA 90A Installation of Air Conditioning and Ventilation Systems.
- D. NEMA DC 3 Low-Voltage Room Thermostats.
- E. AMCA 500 Test Methods for Louvers, Dampers and Shutters.
- F. ANSI/ASME B16.22 Wrought Copper and Copper Alloy Solder Joint Pressure fittings.
- G. ANSI/ASTM B32 Solder Metal.
- H. ASTM B280 Seamless Copper Tube for Air Conditioning and Refrigeration Field Service.
- I. ASTM B75 Seamless Copper Tube for General Engineering Purposes.
- J. ASTM D1693 Environmental Stress Cracking of Ethylene Plastics.
- K. UL 1820 Fire Test of Pneumatic Tubing for Flame and Smoke Characteristics Only.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: An experienced installer who is an approved installer of the automatic control system manufacturer for both installation and maintenance of units required for this Project.
- B. Manufacturer Qualifications: A firm experienced in manufacturing automatic temperature-control systems similar to those indicated for this Project and with a record of successful in-service performance.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilation Systems."

1.9 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated or optional to be factory mounted on equipment, arrange for shipping of control devices to unit manufacturer.

1.10 COORDINATION

- A. Coordinate work under Division 20 and 23 provisions and as supplemented in this section.
- B. Coordinate location of space temperature sensors and other exposed control sensors with plans and room details before installation.
- C. Coordinate installation of system components with installation of mechanical systems and equipment to achieve compatibility.
- D. Ensure installation of components is complementary to installation of similar components in other systems.
- E. Coordinate control wiring requirements, including actual terminal block numbers, with mechanical equipment manufacturers or suppliers.
- F. Coordinate equipment with Division 28 Section "Fire Alarm" to achieve compatibility with equipment that interfaces with that system.
- G. Ensure control system installation is complete, checked, tested and functioning properly prior to system balancing and Owner/Engineer system checkout.
- H. Cooperate fully with the Test and Balance Contractor and provide labor to operate the temperature control system as required to meet the scope of work defined in Division 23 Section "Testing, Adjusting and Balancing."

1.11 WARRANTY

- A. Provide warranty per Division 20 Section "General Mechanical Requirements" and as supplemented in this section.
- B. Provide 24 hour per day emergency service during warranty period, with maximum response period of four (4) hours. Provide phone number(s) for quick assistance by a Service Engineer regarding hardware or software problems.

- C. Provide scheduled maintenance service during warranty period to inspect, calibrate, and adjust controls. Make a minimum of one eight hour service call every three months. Notify Owner prior to each scheduled inspection trip. Submit written reports upon completion of service.
- D. Provide any software or firmware revisions for controllers provided with project which are released by the DDC system manufacturer during the warranty period, at no additional cost to the Owner.

1.12 POSTED OPERATING INSTRUCTIONS

A. Provide panel related as-built documents in protective binder or clear plastic display envelope for each control panel. These instructions shall include such items as as-built control diagrams and sequence of operation, simplified narrative instructions and materials necessary to aid in the operation of the equipment at the local control panels.

1.13 SPECIAL TOOLS

A. Deliver two sets of any special tools required for operation, adjustment, resetting or maintenance, not including PC Laptop.

1.14 PROTECTION OF PROPRIETARY INFORMATION

A. All proprietary manuals and software non-disclosure agreement, where applicable, shall be submitted by the proprietary equipment manufacturer to the Owner for approval and signature during the warranty period.

PART 2 - PRODUCTS

2.1 DESCRIPTION OF THE BUILDING AUTOMATION SYSTEM (BAS)

- A. The district-wide Andover building automation system (BAS) shall be a fully integrated, distributed data processing system incorporating direct digital control (DDC) for the control and monitoring of heating, ventilating and air conditioning (HVAC) equipment and other related systems.
- B. Microprocessor based DDC panels shall be directly connected to HVAC equipment sensors and actuators. A data communication network shall allow data exchange between existing and new DDC panels and each building's existing Network Controller (Andover Controls). Each building's existing Network Controller is connected to the owner's Ethernet and communicates with the owner's existing central BAS server.
- C. DDC panels (controllers) that are currently at i2 level shall be re-used and remain "as is", using the existing Sequence of Operations. Lower revision controllers shall be upgraded to i2 level controllers as shown in contract documents. Provide for any additional sequence of operation changes shown on the Contract Documents that would revise these Sequences. New controllers may mount into the existing back-panels if mounting requirements are met.
- D. Provide replacement Schneider Model 1290HO lighting controllers for the existing lighting controllers. Controllers may mount into the existing back-panels if mounting requirements are met.
- E. Provide BAS front-end PC software upgrades necessary for the upgrade of DDC controllers to i2 level and/or any software upgrade released during the contract period.
- F. Provide revisions to existing graphics to include new work and provide new graphics where required and shown in the Contract Documents. Refer to Section 3.
- G. Provide IP to BACNET Communication Server for interfacing to 3rd Party BACnet controllers as shown on the plans. Provide integration into existing BAS with graphics. Coordinate IP drop requirements with the Troy School District IT Staff for connectivity.

- H. Approved Manufacturer System / Installer (Location):
 - 1. Andover Controls Corp. / Mechanical Controls & Maintenance, Inc. aka MCMI (Sterling Heights, MI).

2.2 DDC DATA COMMUNICATIONS NETWORK

- A. Data communication network shall be provided to allow data transmission between all DDC panels and between the DDC panels and the DDC Network Controller.
- B. The BAS/DDC system-wide communication network shall consist of a primary peer-to-peer network, and at the Contractor's option, secondary sub-networks linked to the primary network. The primary network shall support peer-to-peer communications between primary network DDC panels. The existing Building Network Controller is connected to the primary network. The secondary sub-networks shall interface with the primary network though the primary network DDC panels. At least one DDC panel connected to the primary peer-to-peer network shall be provided in each mechanical room, or as indicated on the drawings.
- C. Data communications media shall be twisted pair wires.
- D. The communications network shall allow shared point and control information between DDC panels without dependence on the existing Building Network Controller. All required repeaters, hubs, active links, gateways, etc. and associated power supplies shall be provided as required to provide shared point and control information between DDC panels.
- E. Failure of any individual DDC panel shall not cause the loss of communications between peer DDC panels.
- F. All data transmitted must be positively acknowledged as received or negatively acknowledged as not received. Negative acknowledgments shall cause a retransmission of the data. Network connected devices must send a "functioning" message each network cycle. Lack of a "functioning" message after successive retries shall constitute a device failure and shall be recognized as such by the network.
- G. Error recovery and communication initialization routines shall be resident in each network connected device.

2.3 DDC NETWORK CONTROLLER (EXPAND EXISTING AS REQUIRED)

- A. Field-verify the existing DDC Network Controller capability for each building, as required to accommodate integration to new HVAC equipment per project scope.
- B. If network controller is near memory capacity, provide a new DDC Network Controller to accommodate integration to new HVAC equipment per project scope.
- C. Provide new network controller (as required) to interface to 3rd party Heating Hot Water and Chilled Water System communication interfaces.

2.4 DIGITAL LIGHTING CONTROLLERS (LIGHTING CONTROL PANELS)

A. All existing lighting controllers shall be replaced with new Schneider Model 1290HO controllers.

2.5 DDC AIR TERMINAL UNIT CONTROLLERS

- A. Microprocessor based controllers capable of stand-alone operation for control of pressure independent air terminal units. Controllers shall be networked together and connected to the building's BAS/DDC network.
- B. Controllers shall have separate adjustable minimum and maximum airflow setpoints. Controllers shall work in conjunction with the air handling unit's DDC panel to provide the sequence of operation as indicated on the drawings. Setpoints shall be adjustable through the portable programmer terminal.
- C. Provide electronic type air terminal unit damper operators compatible with the controller and the air terminal units provided.
- D. Each controller shall have an internal differential pressure transducer capable of utilizing the total and static pressure signals from the air terminal unit's velocity sensor. Velocity sensor shall be furnished by air terminal unit manufacturer.
- E. Each controller shall have electronic outputs compatible with the electronically operated air terminal unit tempering coil control valve and perimeter radiation control valve where applicable
- F. TC contractor shall provide 24 VAC power requirements including transformers.
- G. If coordinated with mechanical contractor. Controllers and damper operators shall be furnished to the air terminal unit manufacturer for factory mounting by the air terminal unit manufacturer; otherwise, controls shall be field installed.
- H. Room temperature sensors for the DDC air terminal unit controllers:
 - 1. Sensing Element: Thermistor or resistance temperature detector (RTD) type. Accuracy shall be+/- 0.5 degrees F over the range of 55 degrees F to 95 degrees F, including calibration error, repeatability, hysteresis, and yearly drift.
 - 2. Cover: Locking type.
 - 3. Provide flat-plate type sensor.
 - Provide insulating base on exterior walls.

2.6 DIRECT DIGITAL CONTROL (DDC) PANELS

- A. Control Panels: Modular in design and consisting of stand-alone microprocessor board with ROM and fully custom programmable RAM, EPROM, and/or EEPROM memory, integral interface equipment and power surge protection. DDC panels shall be connected directly to sensors, controlled devices and the communication network.
- B. Powerfail Restart and Battery Backup: Minimum of 72 battery backup hours for complete system RAM memory and clock, with automatic battery charger or 48 hour low voltage alarm warning. Upon full system power recovery, all clocks shall be automatically synchronized, and all controlled equipment shall be automatically re-started based on correct clock time and sequence of operation.
- C. Provide fully functional communication interface ports for communication between processor, other processors, existing Building Network Controller, portable operator unit and portable programmer terminal.
- D. Panel enclosure shall be finished steel or rigid plastic with hinged door and keyed lock. Electronics shall be removable for protection during mounting of panel.

2.7 DDC PANEL SOFTWARE

- A. Operating system shall work in real time, provide prioritized task scheduling, control time programs, monitor DDC panel to DDC panel as well as DDC panel to existing Building Network Controller communications, scan inputs and outputs, and contain built-in diagnostics.
- B. Input/output point processing shall include the following:
 - 1. Continuous update of input and output values and/or conditions. All connected points are to be updated at least once per second.
 - 2. Assignment of proper engineering units and status condition identifiers to all points.
 - 3. In addition to physical or "hardware" points required, "software" points shall be provided where required for command access and meaningful displays, where required by the "execution" portion of this section or where required on the DDC input/output points lists. "Software" points shall appear identical to physical points in output displays and shall be assignable to text descriptors, logical groups, reports, etc. in the same manner as physical points. "Software" points shall be assigned alarm limits in the same manner as physical points.
- C. Command control software shall manage the receipt of commands from the existing Building Network Controller, portable programmer's terminal, and from control programs.
 - Command delay, programmable from 0 to 2 minutes, shall be provided to prevent simultaneous energizing of large loads. Command delays shall be honored throughout the DDC network, not just within the DDC panel. Delays shall be assignable on an individual per point basis.
 - Each command shall be assigned a command and residual priority to manage contentions
 created by multiple programs having access to the same command point. Only commands
 with a higher command priority than the existing residual priority shall be permitted to
 execute. Whenever a command is allowed to execute, its assigned residual priority shall
 replace the existing residual priority.
 - 3. A "fixed mode" option shall be supported to allow inputs to, and outputs from DDC control programs to be set to a fixed state or value. When in the "fixed mode," inputs and outputs shall be so noted in all reports.
 - 4. A "last user" record is to be maintained to positively identify which program or manual command is in control of a given point. The last user information shall be displayed and printed along with other point data of logical groups.
- D. Provide self-test procedure. Notify existing Building Network Controller for maintenance, performance, software, cable break, or data transmission problems. Identify variables as reliable or unreliable. Variables identified as unreliable shall use default in calculation.
- E. Provide Alarm Processing:
 - 1. High/Low Alarm: Analog input alarm comparison with the ability to assign two individual sets of high and low limits (warning and actual alarm) to an input. Each alarm shall be assigned a unique differential to prevent a point from oscillating into and out of alarm. Alarm comparisons are to be made each scan cycle.

- 2. Floating Alarm: Where analog controlled values are automatically varied by software (such as hot water temperature reset), a single set of alarm limits shall be provided for those varying values. These alarm limits shall then "float" a user definable differential above and below the varying setpoint value.
- 3. Abnormal Alarm: When a digital input is not in agreement with the commanded state of its associated output point, or when a digital input is not in its normal state, an abnormal alarm shall be generated. Abnormal "on" shall cause an alarm, as well as abnormal "off." Alarm time delay for digital inputs to prevent nuisance alarms shall be provided. Each digital input alarm time delay shall be adjustable from zero to two minutes in one-second increments.
- 4. Alarm lockout shall be provided to positively lock out alarms when equipment is turned off or when a true alarm is dependent on the condition of an associated point. Lockout points and lockout initiators shall be operator programmable. On initial startup of air handler and other mechanical equipment, a "timed lockout" period shall be assigned to analog points to allow them to reach a stable condition before activating alarm comparison logic. Timed lockout period shall be programmable on a per point basis from 0 to 90 minutes in one-minute increments.
- 5. The capability of automatically initiating commands upon the occurrence of an alarm.

F. Totalization

- 1. Run time shall be accumulated based on the status of digital input points. It shall be possible to totalize either on time or off time up to 10,000 hours with one-minute resolution. Run time counts shall be resident in memory and have DDC panel resident run time limits assignable through the portable programmer's terminal, portable operators unit or the existing Building Network Controller.
- 2. A transition counter shall be provided to accumulate the number of times a device has been cycled on or off. Counter shall be capable of accumulating 600,000 switching cycles. Limits shall be assignable to counts to provide maintenance alarm printouts.
- 3. Analog totalization capability shall be provided to allow the totalization of electricity, air, water and steam flow, etc. These flows shall be totalized with respect to time and converted to the appropriate energy unit. It shall be possible to automatically set time intervals for totalization, adjustable from one second to 365 days. The totalization program shall keep track of the maximum and minimum instantaneous analog value measured during the period, including the date and time at which each occurred.

G. Custom DDC Programs

- 1. All DDC programs shall be fully custom programmable. DDC panels or systems which require remote or factory programming are not acceptable. DDC panels or systems with programs which may not be custom modified by the user are not acceptable. "Custom" programming shall mean allowing the alteration of actual control logic, and shall not be limited to allowing only the alteration of setpoints, gains, parameters, time constants, etc.
- 2. Custom DDC programs shall be provided to meet the control strategies as called for in the sequences of operation on the drawings.
- 3. All DDC setpoints, gains, parameters, time constants, etc., associated with DDC programs shall be available to the operator for display and modification via the existing Building Network Controller and/or portable operators unit.

- 4. The execution interval of each DDC control loop shall be adjustable from two to 30 seconds.
- 5. Each DDC panel shall have resident in its memory and available to the programs a full library of DDC algorithms, intrinsic control operators, and arithmetic, logic and relational operators for implementation of control sequences. Functions to be provided shall include, but not be limited to, the following:
 - a. Mathematical: Absolute value, calculate, square root, power, sign, average, totalize.
 - b. Logic: OR, AND, compare, negate.
 - c. Fixed Formula: High and low select, span, rate, ramp, enthalpy, wet bulb, dew point, relative humidity, humidity ratio, and filter.
 - d. Data Manipulation: Store, file and set.
 - e. Control Routines: Real-time based functions, proportional control, proportional-integral control, proportional-integral-derivative control, adaptive control (self-tuning), direct-acting, reverse acting, feedforward, fixed setpoint, calculated setpoint, adjustable setpoint, lead lag, hysteresis correction, event initiation/ software interlock.

2.8 DDC INPUT/OUTPUT SENSORS

A. Pressure Transmitters/Transducers

- 1. Manufacturers:
 - a. Dwyer.
 - b. Setra Systems Inc.
 - c. Vaisala.
- 2. Sensors: Appropriate sensing chamber for medium being sensed.
- 3. Wiring requirement: twisted, shielded-pair cable for wiring unless specified otherwise by the manufacturer. Some transmitters require 4-wire connections.
- 4. Air Static Pressure Transmitter: Non-directional sensor with suitable range for expected input, and temperature compensated.
 - a. Variable capacitance type with ranges not exceeding 150 percent of maximum expected input. Transmitter shall have zero and span adjustments.
 - b. Safe overpressure rating shall be minimum 5 times the range.
 - c. Temperature compensated with thermal error of not greater than 0.04 percent of full scale in temperature range of 40 to 100 degrees F.
 - d. Accuracy: One percent of full scale
 - e. Output: 4- to 20-mA. Output impedance must meet input requirements.
 - f. Building Static Pressure Range: minus 0.05- to plus 0.05-inches w.g..
 - g. 2/3 down-the-duct Static Pressure Range: 0- to 2.5-inches w.g.
 - h. Static Pressure High-limit Transmitter: 0- to 10.0-inches w.g.

B. Current Switches:

- 1. Split-sore donut transformer type for monitoring AC current, with digital output signal. Current switches used on motor side of variable frequency drives shall have low frequency detection capability.
- 2. Current switches with digital output shall have adjustable trip settings. Field adjust all current switches to trip at approximately 90% of normal motor operating amperage.
- 3. Manufacturers:

- a. NK Technologies.
- b. Senva.
- c. Setra.
- d. Veris Industries.

C. Temperature Sensors:

- 1. Resistance temperature detectors (RTD) with platinum, nickel or balco element. Accuracy shall be +/- 0.5 deg F over the entire range. Range shall be as indicated below, or as appropriate to the application.
- 2. Single point duct mounted sensors shall have 18" rigid probe and calibrated span of 20° F 120° F.
- 3. Averaging duct mounted sensors shall have 25' long averaging element and calibrated span of 20° F 120° F.
- 4. Liquid immersion sensors shall have welded stainless steel thermowell for ferrous pipe, and brass wells for copper pipe. Length of sensor and thermowell shall be selected based on the diameter of the pipe to provide accurate, reliable and homogeneous sensing of the liquid temperature. Thermowell pressure rating shall meet or exceed the system minimum pressure rating. Sensors for chilled water application shall have a calibrated span of 20° F 120° F. Sensors for heating hot water and domestic hot water application shall have a calibrated span of 100° F 240° F.
- 5. Room sensors shall have locking cover and a minimum span of 40° F 90° F. Sensors shall be mounted on extra-large stainless steel back-plate for coverage to eliminate patch/paint issues. Room sensor shall be flat-plate type. Provide insulating base on exterior walls.
- 6. Outside air sensors shall have watertight inlet fitting and shall be shielded from direct rays of sun.

7. Manufacturers:

- a. Specified BAS product where available.
- b. TCS.
- c. Minco.
- d. ACI.
- e. MAMAC.

D. Carbon Dioxide Sensors:

- 1. Carbon dioxide sensing cell shall consist of a non-dispersive infrared carbon dioxide gas cell that uses a pulsed source and has no free air optical path. Output shall be linearized 4-20 mA with the 24 VDC input. In addition, the unit shall be capable of providing SPDT switching of an external low voltage circuit at an adjustable setpoint. The unit shall be specifically designed for the wall or duct application specified. Return air aspiration boxes shall be designed by and approved by the manufacturer. Unit shall have single point setpoint and span adjustment. The unit shall have no moving parts.
- 2. Power for the sensor shall be extended from a transformer or adaptor installed adjacent to the DDC controller enclosure panel, and shall be run parallel to the 4-20 mA signal cable.

Minimum requirements:

Range 0-2,000 ppm
Accuracy 3% full scale
Repeatability 1% of full scale
Max allowable drift / yr. +/- 20 ppm
Min Calibration Interval 5 years

- 3. Contractor shall provide all necessary equipment and test gas for calibration and shall calibrate all CO₂ sensors in accordance with the manufacturer's recommendations.
- 4. Manufacturer:
 - a. Honeywell.
 - b. Schneider Electric Controls.
 - c. Johnson Controls.
 - d. Siemens.
 - e. Vaisala.
 - f. Veris.

E. Humidity Sensors:

- 1. Elements: Thin film capacitive type or bulk polymer resistance type, accurate within ± 2% RH throughout the range of 0-99% RH at 25 deg C, with linear output. Factory calibrate for maximum accuracy at mid-range of normal operating humidity. All humidity sensors shall be resistant to chlorine and other cleaning agents.
- 2. Room Sensors: With locking cover matching space temperature sensors used.
- 3. Duct Sensors: With duct probe and mounting plate.
- 4. Manufacturers:
 - a. GE Industrial, Sensing (formerly General Eastern).
 - b. Vaisala.
- F. Outside Air Temperature/Humidity Combination Transmitters:
 - Dual transmitters housed in a single hinged enclosure with integral probes configured for exterior wall mount application with PVC sun shield. Unit shall provide separate 4-20 mA signals for temperature and humidity measurement.
 - 2. Temperature sensor shall be 1000 OHM thin film platinum resistance temperature detector with matching 4-20 mA transmitter having independent zero and span adjustments. Accuracy shall be \pm 0.5 degrees F with a range of -25 degrees F to 125 degrees F.
 - 3. Humidity sensor shall be washable thin film type with matching 4-20 mA transmitter having independent zero and span adjustments and linear output over a span of 0-100% RH. Accuracy shall be \pm 2.5% RH over the range 0-95% RH at 25 degrees C.
 - 4. Manufacturer:
 - a. GE Industrial, Sensing (formerly General Eastern)
 - b. Vaisala.

2.9 AIRFLOW MEASURING PROBES – OUTSIDE AIRFLOW

- A. Duct airflow measuring probes shall be Thermal Dispersion type.
- B. Probes shall be constructed of extruded aluminum. Probes shall be provided with mounting plate, and gasket. Probe and mounting hardware shall facilitate easy removal and reinstallation of the probes.
- C. The number of sensors on each probe, and the quantity of probes provided at each location, shall comply with ASHRAE standards for duct traversing. Multiple probes provided at a single location shall be interconnected external to the duct to produce an average signal.
- D. For each airflow measurement location, the measured velocity pressure shall have accuracy within $\pm 2\%$ of the full scale throughout the velocity range of 0-4000 fpm.
- E. Associated transmitter at each airflow measurement location shall be provided with LCD readout to indicate with airflow (in CFM) of the connected airflow measuring station.
- F. Manufacturers / Model:
 - 1. Ebtron / Gold Series.
 - 2. Air Monitor Corporation / ELECTRA-flo.

2.10 LIQUID DIFFERENTIAL PRESSURE TRANSMITTERS:

- A. Transmitters used for measuring differential pressure only:
 - Each differential pressure transmitter shall be selected and calibrated for operations between 0 and 200% of the normal differential pressure. The calibration point shall be rounded upward to the nearest 10 inches of water column (for spans less than 200" W.C.) or to the nearest 5 psi for larger spans. Calibration date shall be included on an embossed tag attached to each transmitter.
 - 2. The accuracy, including linearity, hysteresis and repeatability, of the transmitter for measuring differential pressure shall be better than 2% of the span stated above throughout a 4:1 turndown.
 - 3. The transmitter shall not be damaged by pressures of up to 500 psig on either side of the transmitter and all wetted parts shall be essentially inert in the presence of up to a 40% concentration of ethylene glycol in water.
 - 4. Provide a drain valve for each side of the pressure chamber. Furnish and install mounting brackets appropriate for the installation location.
 - 5. Span and zero shall be individually adjustable.
 - 6. With LCD Display.
 - 7. Manufacturers:
 - a. Dwyer.
 - b. Setra.
 - c. Veris Industries.

- B. Indication Gauges for Differential Pressure Transmitters:
 - 1. Each transmitter shall come with an indicating gauge which reads in gpm or inches of water (whichever is the final value desired). The gauge shall be piped in parallel to the transmitter with a digital display wired directly to the output of the transmitter.
 - 2. The accuracy, including linearity, hysteresis and repeatability, of the gauge for measuring differential pressure shall be better than 3% of the span stated above throughout its span. Calibration data shall be included on an embossed tag attached to each gauge.
 - 3. The gauge shall not be damaged by pressures of up to 500 psig on either side of the gauge and all wetted parts shall be essentially inert in the presence of up to 40% concentration of ethylene glycol in water.
 - 4. Scale shall be a minimum of 4.5" long. Furnish and install two bleed fittings for each gauge and mounting brackets appropriate for the installation location.

C. Three Valve Manifold:

- 1. Provide a three-valve manifold for each transmitter. The manifold shall not be damaged by pressures of up to 500 psig and all wetted parts shall be essentially inert in the presence of up to a 40% concentration of ethylene glycol in water.
- 2. The manifold shall be designed for direct mounting on the transmitter it serves and utilize two quarter turn valves to provide zeroing, blocking and normal service modes.

2.11 CONTROL VALVES AND VALVE OPERATORS

- A. Pressure Dependent Characterized Ball Valves: Shall be used only as 2-way modulating for Duct-mounted Reheat Coils; air terminal units, 2-way on/off for Unit Heaters, Cabinet Unit Heaters (wall or ceiling), Convectors, and Finned Tube Radiation:
 - 1. Up to 1 inch: Bronze body with screwed ends, stainless steel or chrome plated brass ball, characterizing disc, stainless steel stem, spring-return where noted, and resilient reinforced Teflon seats.
 - 2. If not scheduled, reheat coil control valves shall be selected for a pressure drop close as possible to 3 psig with allowable minimum of 1.5 psig. TC Contractor shall use valves from listed manufacturers that meet the pressure drop requirements.
 - 3. Manufacturers:
 - a. Belimo.
 - b. Bray / Delta Control Products.
 - c. Honeywell.
 - Schneider Electric Controls.
 - e. Johnson Controls.
 - f. Siemens

B. Globe Valves (2-way & 3-way):

- 1. Used for air handling equipment AHU & HVU.
- 2. Up to 2 inches: Bronze body, bronze trim, rising stem, renewable composition disc, single seated, screwed ends with backseating capability, repackable under pressure.

- 3. Over 2 inches: Iron body, bronze trim, rising stem, plug-type disc, flanged ends, renewable seat and disc, repackable under pressure.
- 4. Valve stem packing shall be tetrafluorethylene, spring loaded and self-adjusting. Packless construction is acceptable.

Manufacturers:

- a. Belimo.
- b. Bray / Delta Control Products.
- c. Honeywell.
- d. Schneider Electric Controls.
- e. Johnson Controls.
- f. Siemens.

C. Electric Operators:

- 1. Operators shall be electronic type to accept signals from direct digital controller or modulating thermostat for proportional control.
- 2. Valves shall spring return to normal position as indicated. Terminal unit tempering coil control valve operators are not required to be spring return.
- 3. Select with sufficient shut-off power for system pressure and highest operating torque, and torque requirements of valves which may stick because of infrequent use.
- 4. Select to provide smooth proportioning control under operating conditions normal to the system.

D. Hydronic Systems:

- Valve minimum pressure rating shall meet or exceed the system minimum pressure rating as noted for each system in Division 20 Section "Valves," and in Division 23 Section "Hydronic Piping."
- 2. Valve minimum temperature ratings shall be 250 deg. F.
- 3. For globe valves: Replaceable plugs and seats of stainless steel or brass, selected for maximum lift under application conditions.
- 4. Two-way and three-way valves controlling coils shall have equal percentage characteristics. Size two-way valve operators to close against pump shut off head.
- 5. Two-way and three-way valves controlling bypass loops and radiant loops shall have linear flow characteristics. Size two-way valve operators to close against pump shut off head.
- 6. Pressure Drop for pressure dependent characterized ball valves: Terminal Equipment control valves shall be selected for a pressure drop close as possible to 3 psig with allowable minimum of 2 psig where flow rates are minimal and valve Cv choices are limited. TC Contractor shall use valves from listed manufacturers that meet the pressure drop requirements.
- 7. Pressure Drop for pressure dependent globe valves: Primary HVAC and water control loop control valves shall be selected for a pressure drop close as possible to 5 psig, + 5% / 25%.

2.12 NATURAL GAS SOLENOID VALVES

- A. Manufacturers
 - 1. ASCO
- B. Description:
 - 1. Action: Either normally open or normally closed in the event of electrical power failure as required by the application.
 - 2. Size to close against the system pressure.
 - 3. Manual override capable.
 - 4. Heavy-duty assembly.
 - 5. Body: Brass for copper pipe and stainless steel for ferrous pipe.
 - Seats and Discs: NBR or PTFE.
 - 7. Solenoid Enclosure: NEMA 250, Type 4.

2.13 DAMPERS - AUTOMATED

- A. Performance: Test in accordance with AMCA 500.
- B. Frames: Galvanized steel, minimum 16 gauge, minimum 2 inches in width, welded or riveted with corner reinforcement for 12 gage structural equivalence.
- C. Blades: Galvanized steel, minimum 14 gauge, maximum blade size 8 inches wide, 60 inches long, attached to minimum 1/2 inch shafts. Dampers which are required to have a static pressure rating over 4 inch W.G. shall have minimum 3/4 inch solid shafts.
- D. Blade Seals: Synthetic elastomeric or Neoprene, mechanically attached, field replaceable.
- E. Jackshafts (where required): Minimum 1/2 inch galvanized steel.
- F. Jamb Seals: Stainless steel.
- G. Bearings: Oil impregnated sintered bronze or lubricant free, solid stainless steel. Provide thrust washers at bearings for all dampers which are to be mounted with blades in the vertical position.
- H. Linkages: Accessible for maintenance. Linkages may be located in airstream. Linkages located in damper frame shall be external to the duct, accessible for maintenance. Linkages located in the airstream shall be zinc-plated.
- I. Leakage: Less than 8 CFM per square foot based on 4 inches W.G. pressure differential.
- J. Static Pressure Rating: As scheduled on the drawings, or if not scheduled, minimum 4" W.G.
- K. Maximum Velocity: As scheduled on the drawings, or design for maximum velocity to be encountered in location where installed.
- L. Temperature Limits: -40 to 200 deg F.
- M. Manufacturers:

- 1. American Warming & Ventilating.
- 2. Arrow United Industries.
- Greenheck.
- 4. Honeywell.
- 5. Johnson Controls.
- 6. Louvers & Dampers, Inc.
- 7. Ruskin.
- 8. Tamco.
- 9. Vent Products.
- 2.14 DAMPERS, INSULATED OUTDOOR AIR / RELIEF AIR / EXHAUST AIR AUTOMATED
 - A. Performance: AMCA certified for Air Performance and Air Leakage.
 - B. Frames: Extruded aluminum, .080-inch thickness minimum, 4 inches deep minimum, thermally broken, and insulated with polystyrene or polyurethane foam insulation.
 - C. Blades: Extruded aluminum, internally insulated, and thermally broken. Maximum blade size 8 inches wide, 60 inches long.
 - D. Shafts: Minimum 7/16 inch hexagonal or square corrosion resistant zinc plated steel.
 - E. Blade Seals: Extruded EPDM, silicone, or synthetic elastomeric, mechanically attached.
 - F. Jamb Seals: Silicone, or synthetic elastomeric, mechanically attached.
 - G. Bearings: Dual bearing assembly of durable synthetic polymer resulting in no metal-to-metal contact. Provide thrust washers at bearings for all dampers which are to be mounted with blades in the vertical position.
 - H. Linkage: Linkage shall be installed in the frame side and shall be constructed of aluminum and/or corrosion resistant zinc plated steel.
 - I. Leakage: Less than 3 CFM per square foot at 1 inch W.G. pressure differential at minus 40 deg F.
 - J. Static Pressure Rating: As scheduled on the drawings, or if not scheduled, minimum 4 inches W.G.
 - K. Maximum Velocity: As scheduled on the drawings, or design for maximum velocity to be encountered in location where installed.
 - L. Temperature Limits: Minus 40 to 155 deg F.
 - M. Manufacturers:
 - 1. Greenheck ICD-45.

- Ruskin CDTI-50BF.
- 3. Tamco Series 9000 BF

2.15 DAMPER OPERATORS - ELECTRIC

- A. Electric damper motor shall be 24 or 120 volt two-position or modulating as required with spring return type and sized to operate the damper with sufficient reserve power for smooth operation from full close to full open and tight shut-off. Damper motor shall have "O ring" gaskets for weatherproof operation.
- B. Number: Sufficient to achieve unrestricted movement throughout damper range. Provide sufficient number of operators such that one operator does not operate more than the maximum square footage of damper area as recommended in standard catalog of manufacturer.
- C. Manufacturers:
 - Belimo.
 - 2. Delta Control Products
 - Andover Controls.

2.16 CONTROL PANELS

- A. Unitized cabinet type for each system under automatic control with DDC Controller and/or relays, devices, and related controls mounted in cabinet and temperature indicators, pressure gauges, pilot lights, pushbuttons and switches flush on cabinet panel face, or as detailed on drawings. Provide panel with locking door.
- B. ANSI/NEMA 250, general purpose utility enclosures with enameled finished face panel, or as indicated on the drawings.
- C. Panels shall be sized for a maximum fill of 50% capacity, and shall not be smaller than 24" X 24".

2.17 REFERENCE PROBE - DUCT STATIC PRESSURE

- A. Duct static pressure probe shall be capable of static pressure measurement with bi-directional flow in a duct, plenum or air handling unit. Probe shall have minimum 4" insertion depth, shall compensate for total pressure error, and shall provide an accurate, repeatable and stable static pressure value with a maximum flow of 4000 fpm.
- B. Probe shall be constructed of aluminum, with mounting flange suitable for round or flat duct surfaces. Probe shall have static pressure signal fitting.
- C. Manufacturers:
 - 1. MAMAC # A-520.
 - 2. Dwyer # A-305.
 - 3. Tek-Air # T-SPP 7100/7200.

2.18 REFERENCE PROBE - INDOOR STATIC PRESSURE

A. Indoor pressure reference probe shall be a shielded static pressure sensor suitable for flush mounting in the ceiling, complete with multiple sensing ports, pressure impulse suppression chamber, airflow shielding, control tubing take-off fitting, and brush finish on exposed surface. Probe shall be capable of sensing the static pressure in the proximity of the sensor to within 1% of the actual pressure value while being subjected to a maximum airflow of 1000 fpm from a radial source.

B. Manufacturers:

- 1. Air Monitor Corporation.
- Tek-Air.

2.19 REFERENCE PROBE - OUTDOOR STATIC PRESSURE

A. Outdoor pressure reference probe shall be constructed of anodized aluminum, with control tubing take-off fitting, which shall be capable of sensing the outside ambient air pressure to within 2% of the actual value when subjected to radial wind velocities up to 80 miles per hour with approach angles up to 30 degrees to the horizontal.

B. Manufacturers:

- 1. Air Monitor Corporation.
- 2. Tek-Air.

2.20 THERMOSTATS – ELECTRONIC & ELECTRIC

- A. Electric Low Limit Duct Thermostat (freezestat): Snap acting, auto-reset switch which trips if temperature sensed across any 12 inches of bulb length is equal to or below setpoint, fixed 5 deg F differential, range 30 deg F to 60 deg F, requiring minimum 20 feet length of bulb. Provide one thermostat for every 20 sq. ft. of coil surface. Switch shall be UL listed and rated for 10 amps at 120 VAC. Provide additional switch or contacts for connection to monitoring system.
- B. Strap-on Aquastat: UL listed, with a suitable removable spring clip attaching aquastat to pipe and a snap-acting SPDT switch.
- C. Low Voltage and Line Voltage Thermostats: Maximum deadband of 2 deg F, concealed temperature adjustment in public spaces, locking cover, rated for load, single-pole or two-pole as required. Provide with integral manual On/Off/Auto selector switch where indicated. Provide with locking covers when located in public areas.
- D. Manufacturers:
 - 1. Honeywell.
 - 2. Schneider Electric Controls.
 - 3. Johnson Controls.

2.21 EMERGENCY POWER-OFF (EPO) PUSH-BUTTON

- A. ADA compliant, pushbutton switch with clear cover to prevent inadvertent closure. Push-to-activate button, two SPDT contacts rated 10 Amps at 120 VAC, and key to re-activate feature.
- B. Manufacturers:
 - 1. Safety Technology International model SS-2212PO

2.22 LIMIT SWITCHES

- A. Oil tight type with operator as required providing required function. Limit switches used on dampers should be set at approximately 75% of full stroke.
- B. Manufacturers:
 - 1. Allen-Bradley.
 - 2. General Electric.
 - 3. Square D.
 - 4. Westinghouse.
 - 5. Micro-switch.

2.23 ELECTRICAL REQUIREMENTS FOR CONTROLS WORK

- A. Electrical accessories such as relays, switches, contactors and control transformers shall meet the requirements of the Division 26 Specifications of respective project.
- B. Electrical wiring and conduit shall meet the requirements of the Division 26 Specifications.
- C. All control wiring in mechanical rooms and any other exposed areas shall be run in conduit. Low voltage temperature control wiring in concealed accessible locations (i.e. above lay-in ceilings), as well as low voltage temperature control wiring within partitions, may be run using plenum rated cable, neatly tie-wrapped and fastened to the building structure (not to ceiling or ceiling support wires).
- D. Conduits carrying control wiring shall be sized for a maximum fill of 40% of capacity.
- E. Where raceway is required, two separate raceway systems shall be provided; one for A.C. wiring and the other for D.C. wiring.
- F. Data transmission cabling and equipment grounding procedures shall meet the latest FCC guidelines for electromagnetic field generation.
- G. All control wiring sizes and types shall meet or exceed the equipment manufacturer's recommendations.

PART 3 - EXECUTION

- 3.1 INSTALLATION CONTROL SYSTEMS
 - A. Install in accordance with manufacturer's instructions.

- B. Check and verify location of temperature sensors and other exposed control sensors with plans and room details before installation. Locate room temperature sensors 48 inches above floor unless noted otherwise.
- C. The location of all control-related items to be mounted on the exterior of the building must be approved by the Architect prior to installation. Indicate proposed locations on the shop drawings.
- D. Caulk both sides of damper frames to duct walls to prevent leakage between damper frame and duct.
- E. Mount control panels adjacent to associated equipment on vibration free walls or free standing angle iron supports. Sensors used for closed loop control must be connected to the same DDC panel as the associated output signal.
- F. Provide conduit and electrical wiring where required.
- G. All wiring in altered and unaltered areas shall be run concealed. "Wiremold" in finished areas shall be allowed when wiring cannot be run concealed in walls or partitions. Minimize "wiremold" routing.
- H. Splicing of DDC sensor cabling at junction boxes shall not be acceptable.
- I. All equipment which has moving parts and is remotely started by the control system shall be provided with warning labels no less than 2 inches in height, and in bright warning color, stating that the equipment is remotely started by automatic controls. Such labels shall be posted clearly in the area of any moving parts, such as belts, fans, pumps, etc.
- J. Coil and conceal excess capillary on remote element instruments.
- K. Locate all control components and accessories such that they are easily accessible for adjustment, service and replacement.
- L. Locate, size, and support sensing elements in airstreams so that they properly sense the representative condition. Controlling, transmitting and indicating elements shall be located to sense the average condition. Safety elements shall be located to sense the extreme condition.
- M. Locate and size sensing elements in liquid lines so that they are in moving liquid and not in stagnant or turbulent locations. Wells shall not obstruct the flow of the liquid being measured. Pipes one inch and smaller shall be increased at least one pipe size at the point of insertion.
- N. Locate, support and install all control components and accessories so that they will not be subject to vibration, excessive temperatures, dirt, moisture or other harmful conditions beyond their rated limitations.
- O. Where insulation is penetrated due to the installation of sensing elements or tubing, reseal the openings air and vapor tight. Provide brackets for devices to be located on insulated surfaces so as to clear the finished surface of the insulation and to avoid puncturing the vapor seal.
- P. Provide all necessary relays, switches, linkages, control devices, accessories and connections as required for a complete and operational control system as specified herein and shown.
- Q. All electric valve and damper operators shall be capable of moving from full closed to full open, or vice versa, within 120 seconds.

R. Flow meters shall be installed with at least 10 diameters of straight pipe length upstream and five diameters of straight pipe length downstream. Power supply to flow meters shall be 115 VAC from the auxiliary DDC panel, and power connection for each device shall be installed with a lockable local service disconnect. Flow meter transmitters/displays shall be mounted 4 feet above finished floor and shall be located at the DDC panel array unless the maximum available cable length is exceeded. All meter components, including sensors, shall be mounted in accessible locations.

3.2 TC CONTRACTOR DESIGN & INSTALLATION COORDINATION MEETINGS

- A. Temperature Controls Shop Drawing Pre-submittal Meeting: TC Contractor's option to schedule a meeting at the Engineer's Office to review project design documentation for clarification purposes to aide in the TC Contractor development of TC/BAS shop drawings. For simple clarification items, TC Contractor may contact Engineer via telephone to discuss. For project scope questioning items, TC Contractor shall utilize the formal Request for Information (RFI) process.
- B. Temperature Controls Shop Drawing Submittal Meeting: Project Design Engineer's option to schedule a meeting at the Engineer's Office to review the TC Contractor's formally submitted drawings to address Engineer's comments and concerns that indicate TC Contractor's shop drawings vary from project design intent. This meeting can be avoided if TC Contractor's shop drawing submittal is complete and Engineer is confident that documents are going to lead to an installation that meets project design intent.
- C. Temperature Controls Installation Technician Meeting: Project Design Engineer's option to schedule a meeting at the project site to meet and discuss project expectations with the TC Contractor's field installation technician and/or project manager. Discussion may include
 - Shop drawing review comments to ensure installation technician has the most up-to-date TC submittal.
 - 2. Graphics generation requirements including special Owner requirements and schedule for completion.
 - 3. Owner training agenda and scheduling.
 - 4. TC/BAS system acceptance procedures.

3.3 IDENTIFICATION AND MARKING

- A. All sensors, relays, switches, etc. shall be marked with the same identification number as used on the as-built shop drawings. Use Brother P-touch label maker or similar with black text on clear or white super adhesive tape. If label applied in wet environment, spray label with clear enamel for waterproofing.
- B. Wire shall be color coded according to functional use. Identify color coding format on record drawings.
- C. Identify each wire as to ID number at each control panel, field device, and splice.
- D. All control panels and auxiliary enclosures shall be supplied with engraved phenolic nameplate permanently attached identifying it as control panel number, system served, area served, fed from receptacle panel number, circuit number, etc.
- E. <u>Temperature control conduit and junction box covers shall be painted Andover INFINET "orange" to signify that it is used for temperature controls. All junction box covers shall be painted orange and the conduit shall be painted with an orange mark (approximately 6 inches long) every 36" to 48", and on both sides of all penetrations.</u>

3.4 GRAPHIC DISPLAY GENERATION

- A. Provide the following graphic displays as a minimum for operator interface to the networked systems, arranged in logical penetration paths. Modify, copy, or expand the existing graphics associated with building as required to allow operator interface to newly installed equipment. Remove graphics associated with equipment that may have been eliminated with project scope of work:
 - 1. Floor plans for each floor within each building, with display of present values of space conditions sensed by connected space sensors, display of the name of the air handler associated with each space sensor, display of the room number in which the sensor is located and color coding to indicate whether the sensed space condition is within the acceptable range, is too high, or is too low. TC Contractor shall confirm Owner desired room names prior to graphics generation which may differ from the room names indicated on construction documents.
 - 2. Schematic diagram for each HVAC system. Each system schematic display shall include at least the following:
 - a. Schematic arrangement of ductwork, fans, dampers, coils, valves, piping, pumps, equipment etc.
 - b. System name.
 - c. Area served.
 - d. Present value or status of all inputs, along with present setpoint.
 - e. Present percent open for each damper, valve, etc. based on commanded position.
 - f. Reset schedule parameters for all points, where applicable.
 - g. Present occupancy mode.
 - h. Present economizer mode, where applicable.
 - i. Present outside air temperature.
 - j. Associated space conditions and setpoints, where applicable.
 - k. Status of application programs (e.g., warm-up, night cycle, duty cycle, etc.).
 - I. Color coding to indicate normal and abnormal values, alarms, etc.
 - 3. Manual override capability for each on/off or open/closed controlled digital output (for fans, pumps, 2-position dampers and valves, etc.) and each modulating analog output (for dampers, valves, VFD speed modulation type points, etc.) shall be provided. Graphic display of output point auto or manual override status shall be provided.
 - 4. Sequence of operation in written (text) format for each HVAC system.
 - 5. Overall BAS system schematic.
 - 6. System management graphic for each network device and/or DDC panel.

3.5 OWNER INSTRUCTION AND TRAINING

- A. Provide a minimum of twenty-four (24) hours of on-site instruction and training to the Owner on the operation of the control systems for the initial installation. Instruction and training hours shall not include travel time to and from the site.
- B. Instruction and training shall be performed by a competent Contractor representative familiar with the control systems operation, maintenance and calibration.
- C. Training shall take place after check, test, start-up of temperature controls system at a time mutually agreed upon by the Owner and Contractor.

3.6 CALIBRATION AND START-UP

- A. After installation and connection of control components, test, adjust and re-adjust as required all control components in terms of function, design, systems balance and performance. Make systems ready for environmental equipment acceptance tests.
- B. After environmental equipment has been accepted and after the systems have operated in normal service for two weeks, check the adjustment on control components and recalibrate where required. Components not in calibration shall be recalibrated to function as required, or shall be replaced. Control devices, linkages, and other control components shall be calibrated and adjusted for stable and accurate operation in accordance with the design intent and to obtain optimum performance from the equipment controlled. Cause every device to automatically operate as intended to ensure its proper functionality.

3.7 ACCEPTANCE PROCEDURE

- A. Upon successful completion of start-up and recalibration as indicated in this section, the Architect shall be requested in writing to inspect the satisfactory operation of the control systems.
- B. Demonstrate operation of all control systems, including each individual component, to the Owner and Architect.
- C. After correcting all items appearing on the punch list, make a second written request to the Owner and Architect for inspection and approval.
- D. After all items on the punch list are corrected and formal approval of the control systems is provided by the Architect, the Contractor shall indicate to the Owner in writing the commencement of the warranty period.

END OF SECTION

FUEL GAS PIPING

PART 1 -	- GENERAL
	RELATED DOCUMENTS
1.2	SUMMARY
1.3	DEFINITIONS
1.4	PERFORMANCE REQUIREMENTS
1.5	SYSTEMS DESCRIPTIONS
1.6	SUBMITTALS
1.7	QUALITY ASSURANCE
1.8	DELIVERY, STORAGE, AND HANDLING
1.9	PROJECT CONDITIONS
1.10	COORDINATION
	PROPULCTO
2.1	PRODUCTS
2.1	BLACK STEEL PIPE AND FITTINGS
2.2	PIPING SPECIALTIES
2.4	JOINING MATERIALS
2.5	SPECIALTY VALVES
_	
PART 3 -	EXECUTION
3.1	EXCAVATION
3.2	EXAMINATION
3.3	PREPARATION
3.4	SERVICE-METER ASSEMBLY INSTALLATION
3.5	SERVICE ENTRANCE PIPING
3.6	PIPING SYSTEM INSTALLATION
3.7	JOINT CONSTRUCTION
3.8	HANGER AND SUPPORT INSTALLATION
3.9	CONNECTIONS
	LABELING AND IDENTIFYING
	PAINTING
3.12	FIELD QUALITY CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
- 1.2 SUMMARY
 - A. This Section includes facility fuel gas piping.
- 1.3 DEFINITIONS
 - A. Gas Main: Utility's natural gas piping.
 - B. Gas Distribution: Piping from gas main to individual service-meter assemblies.

- C. Service-Meter Assembly: Piping, valves, service meter, and specialties.
- D. Point of Delivery: Piping outlet from service-meter assembly.
- E. Fuel Gas Piping: Piping that conveys fuel gas from point of delivery to fuel gas utilization devices inside the building.
- F. PE: Polyethylene.

1.4 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: Performance requirements are scheduled on the Drawings.
 - 2. Exception: Fuel Gas Piping Installed within Ceilings Used as Plenums: 150 psig.

1.5 SYSTEMS DESCRIPTIONS

1.6 SUBMITTALS

- A. Product Data: For the following:
 - Specialty valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 - 2. Pressure regulators. Include pressure rating, capacity, and settings of selected models.
- B. Welding certificates.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For natural gas specialties and accessories to include in operation and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
- B. Electrical Components and Devices: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- C. NFPA Standard: Comply with NFPA 54, "National Fuel Gas Code."

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Handling Flammable Liquids: Remove and legally dispose of liquids from drips in existing gas piping. Handle cautiously to avoid spillage and ignition. Notify fuel gas supplier. Handle flammable liquids used by Installer with proper precautions and do not leave on premises from end of one day to beginning of next day.
- B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.9 PROJECT CONDITIONS

- A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.
- B. Gas System Pressure: Not more than 5.0 psig.
- C. Design values of fuel gas supplied for these systems are as follows:
 - 1. Nominal Heating Value: 1000 Btu/cu. ft.
 - 2. Nominal Specific Gravity: 0.6.

1.10 COORDINATION

- A. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Architect not less than two days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Architect's written permission.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- C. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 BLACK STEEL PIPE AND FITTINGS

- A. Black Steel Pipe: ASTM A 53/A 53M; Type E or S; Grade B; Schedule 40. Wall thickness of wrought-steel pipe shall comply with ASME B36.10M.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern, with threaded ends according to ASME B1.20.1.
 - Steel Threaded Fittings: ASME B16.11, forged steel with threaded ends according to ASME B1.20.1.
 - 3. Steel Welding Fittings: ASME B16.9, wrought steel or ASME B16.11, forged steel.
 - 4. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends according to ASME B1.20.1.

- 5. Cast-Iron Flanges and Flanged Fittings: ASME B16.1, Class 125.
- 6. Joint Compound and Tape: Suitable for natural gas.
- 7. Steel Flanges and Flanged Fittings: ASME B16.5.
- 8. Gasket Material: Thickness, material, and type suitable for natural gas.

2.3 PIPING SPECIALTIES

- A. Flexible Connectors: ANSI Z21.24, copper alloy.
- B. Quick-Disconnect Devices: ANSI Z21.41, convenience outlets and matching plug connector.
- C. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig.
- D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.4 JOINING MATERIALS

A. Refer to Division 20 Section "Basic Mechanical Materials and Methods."

2.5 SPECIALTY VALVES

- A. Valves, NPS 3 and Smaller: Threaded ends according to ASME B1.20.1 for pipe threads.
- B. Valves, NPS 4 and Larger: Flanged ends according to ASME B16.5 for steel flanges.
- C. Gas Valves, NPS 3 and Smaller: Bronze or brass body with AGA or CSA stamp, UL listed or FM approved for service, ball type with chrome-plated brass ball and lever handle, or butterfly valve with stainless-steel disc and fluorocarbon elastomer seal and lever handle; 125-psig minimum pressure rating.
 - 1. Manufacturers:
 - a. Conbraco Industries, Inc.
 - b. Crane Valves.
 - c. Jomar International Ltd.
 - d. Legend Valve and Fitting, Inc.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Watts Water Technologies, Inc.; Watts Regulator Co.
 - 2. Tamperproof Feature: Include design for locking.
- D. Cast-Iron, Lubricated Plug Valves: MSS SP-78.

1. Manufacturers:

- a. Flowserve Nordstrom.
- b. Homestead Valve; a division of Olson Technologies, Inc.
- c. Milliken Valve Company.
- d. R&M Energy Systems, A Unit of Robbins & Myers, Inc.; Resun.
- 2. Body: Cast iron, complying with ASTM A 126, Class B.
- 3. Plug: Bronze or nickel-plated cast iron.
- 4. Seat: Coated with thermoplastic.
- 5. Stem Seal: Compatible with natural gas.
- 6. Operator: Square head or lug type with tamperproof feature where indicated.
- 7. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 10 plug valves, for each size square plug head.
- 8. Pressure Class: 125 psig.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Refer to Division 31 Section "Earthwork" for excavating, trenching, and backfilling.

3.2 EXAMINATION

- A. Examine roughing-in for fuel gas piping system to verify actual locations of piping connections before equipment installation.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping according to NFPA 54 the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
- C. Comply with NFPA 54 the International Fuel Gas Code requirements for prevention of accidental ignition.

3.4 SERVICE-METER ASSEMBLY INSTALLATION

- A. Include gas valve or plug valve, strainer, and service meter for each assembly.
- B. Install gas valve or plug valve and strainer upstream from each service pressure regulator.
- C. Install service pressure regulators with vent outlet turned down and with corrosion-resistant-metal insect screen.
- D. Install pressure gage upstream and downstream from each service pressure regulator. Pressure gages are specified in Division 20 Section "Meters and Gages."

- E. Install service meters downstream from service pressure regulators.
 - Service meters with connections larger than NPS 1 supported from piping or set on concrete bases.

3.5 SERVICE ENTRANCE PIPING

- A. Extend fuel gas piping and connect to fuel gas distribution for service entrance to building.
 - 1. Exterior fuel gas distribution system piping, service pressure regulator, and service meter will be provided by gas utility.
 - 2. Refer to Article entitled "Codes, Permits and Fees" in Division 20 Section "Mechanical General Requirements" for additional requirements.
- B. Install dielectric fitting downstream from and adjacent to each service meter unless meter is supported from service-meter bar with integral dielectric fitting. Install shutoff valve downstream from and adjacent to dielectric fitting. Dielectric fittings are specified in Division 20 Section "Basic Mechanical Materials and Methods."

3.6 PIPING SYSTEM INSTALLATION

- A. Comply with NFPA 54 for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Basic piping installation requirements are specified in Division 20 Section "Basic Mechanical Materials and Methods."
- D. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels, unless indicated to be exposed to view.

E. Concealed Locations:

- 1. Above Inaccessible Ceiling Locations: Gas piping with welded joints may be installed in inaccessible spaces, subject to approval of authorities having jurisdiction, whether or not such spaces are used as plenums. Do not locate valves or unions above inaccessible ceilings.
- 2. Above Accessible Ceiling Locations: Gas piping with welded joints may be installed in accessible ceiling spaces, subject to approval of authorities having jurisdiction, whether or not such spaces are used as plenums. Do not locate valves or unions above ceilings used as plenums.
- 3. In Floor Channels: Gas piping may be installed in floor channels, subject to approval of authorities having jurisdiction. Channels must have cover and be open to space above cover for ventilation.
- 4. Underground Beneath Building: Gas piping may be installed in protective conduit in accordance with Chapter "Gas Piping Installations" in the International Fuel Gas Code.
- 5. In Partitions: Do not install concealed piping in solid partitions, unless installed in a chase or casing.
 - a. Exception: Piping passing through partitions or walls.

- 6. In Walls: Gas piping with welded joints and protective wrapping specified in Part 2 "Protective Coating" Article may be installed in masonry walls, subject to approval of authorities having jurisdiction.
- 7. Prohibited Locations: Do not install gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
- F. Drips and Sediment Traps: Install drips at points where condensate may collect. Include outlets of service meters. Locate where readily accessible for cleaning and emptying. Do not install where condensate would be subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use minimum-length nipple of 3 pipe diameters, but not less than 3 inches long, and same size as connected pipe. Install with space between bottom of drip and floor for removal of plug or cap.
- G. Install fuel gas piping at uniform grade of 0.1 percent slope upward toward risers.
- H. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- I. Connect branch piping from top or side of horizontal piping.
- J. Install strainer on inlet of each automatic and electrically operated valve.
- K. Install pressure gage upstream and downstream from each line pressure regulator. Pressure gages are specified in Division 20 Section "Meters and Gages."
- L. Locate valves for easy access.
- M. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment, and elsewhere as indicated. Unions are not required on flanged devices.
- N. Install flanges when connecting to valves, specialties, and equipment having NPS 2-1/2 and larger connections.
- O. Install gas valve or plug valve and strainer upstream from each line pressure regulator or appliance pressure regulator.
- P. Install vent piping for gas pressure regulators and gas trains, extend outside building, and vent to atmosphere. Terminate vents with turned-down, reducing-elbow fittings with corrosion-resistant insect screens in large end.
- Q. Install containment conduits for gas piping below slabs, within building, in gastight conduits extending minimum of 4 inches outside building, and vented to atmosphere. Terminate vents with turned-down, reducing-elbow fittings with corrosion-resistant insect screens in large end. Prepare and paint outside of conduits with coal-tar, epoxy-polyamide paint according to SSPC-Paint 16.

3.7 JOINT CONSTRUCTION

- A. Basic piping joint construction is specified in Division 20 Section "Basic Mechanical Materials and Methods."
- B. Use materials suitable for fuel gas.
- C. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

3.8 HANGER AND SUPPORT INSTALLATION

- A. Pipe hanger and support and equipment support materials and installation requirements are specified in Division 20 Section "Hangers and Supports."
- B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 - 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.
- C. Support vertical steel pipe at each floor and at spacing not greater than 15 feet.

3.9 CONNECTIONS

- A. Drawings indicate general arrangement of fuel gas piping, fittings, and specialties.
- B. Install piping adjacent to appliances to allow service and maintenance.
- C. Connect piping to appliances using gas with shutoff valves and unions. Install valve upstream from and within 72 inches of each appliance. Install union downstream from valve.
- D. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance using gas.

3.10 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each service meter, pressure regulator, and specialty valve.
 - 1. Text: In addition to name of identified unit, distinguish between multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.
 - 2. Nameplates, pipe identification, and signs are specified in Division 20 Section "Mechanical Identification."
 - 3. Trace Wire: Yellow insulated, minimum 18 AWG wire, having copper or other approved conductor, with insulation suitable for direct burial, installed adjacent to underground nonmetallic piping, with aboveground access to tracer wire at each end of pipe.

3.11 PAINTING

- A. Use materials and procedures in Division 09 painting Sections.
- B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI EXT 5.1D.

- a. Prime Coat: Alkyd anticorrosive metal primer.
- b. Intermediate Coat: Exterior alkyd enamel matching topcoat.
- c. Topcoat: Exterior alkyd enamel (semigloss).
- d. Color: Gray.
- C. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.12 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Test, inspect, and purge natural gas according to NFPA 54 the International Fuel Gas Code and authorities having jurisdiction.
- C. Additional Testing: Subject welded fuel gas piping installed within ceiling spaces used as plenums to test pressure of 150 psig for a minimum of 2 hours.
- D. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION

HYDRONIC PIPING

PAR ⁻	T 1 -	GENERAL	. 1
		RELATED DOCUMENTS	
-	.2 .3	DEFINITIONSPERFORMANCE REQUIREMENTS	
	.3 .4	SYSTEMS DESCRIPTIONS	
-	.5	SUBMITTALS	
1	.6	QUALITY ASSURANCE	. 4
1	.7	EXTRA MATERIALS	
PAR	Т2-	PRODUCTS	4
	 2.1	COPPER TUBE AND FITTINGS	. 4
2	2.2	STEEL PIPE AND FITTINGS	
2	2.3	JOINING MATERIALS	
		TRANSITION FITTINGS	
	2.5	VALVES	
_	2.6 2.7	SPECIALTY VALVESCONTROL VALVES	
_		AIR CONTROL DEVICES	
	0	STEEL, HYDRONIC BUFFER TANKS	10
_		HYDRONIC PIPING SPECIALTIES	
		HYDRONIC PIPING STRAINERS	
		STAINLESS STEEL STRAINERS	
2	2.13	CHEMICAL TREATMENT	14
PAR	Т3-	EXECUTION	14
		PIPING SYSTEMS INSTALLATION	
3	3.2	HANGERS AND SUPPORTS	
3	3.3	PIPE JOINT CONSTRUCTION	
_	3.4	HYDRONIC SPECIALTIES INSTALLATION	
_		TERMINAL EQUIPMENT CONNECTIONS	
3	3.6	FIELD QUALITY CONTROL	18

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 07 Section "Through-Penetration Firestop Systems" for materials and methods for sealing pipe penetrations through fire and smoke barriers.
 - 2. Division 07 Section "Joint Sealants" for materials and methods for sealing pipe penetrations through exterior walls.
 - 3. Division 20 Section "Mechanical General Requirements."
 - 4. Division 20 Section "Basic Mechanical Materials and Methods" for general piping materials and installation requirements.
 - 5. Division 20 Section "Hangers and Supports" for pipe supports, product descriptions, and installation requirements. Hanger and support spacing is specified in this Section.

- 6. Division 20 Section "Pipe Flexible Connectors, Expansion Fittings and Loops."
- 7. Division 20 Section "Meters and Gages" for thermometers, flow meters, flow measuring devices, and pressure gages.
- 8. Division 20 Section "Mechanical Identification" for labeling and identifying hydronic piping.
- 9. Division 23 Section "General-Duty Valves for HVAC" for general-duty gate, globe, ball, butterfly, and check valves.
- 10. Division 23 Section "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.
- 11. Division 23 Section "Temperature Controls" for temperature-control valves and sensors.
- 12. Division 23 Section "Piping Systems Flushing and Chemical Cleaning."
- 13. Division 23 Section "HVAC Water Treatment."
- 14. Division 33 Section "Underground Hydronic Distribution Piping" for preinsulated piping systems.

1.2 DEFINITIONS

- A. CPVC: Chlorinated polyvinyl chloride.
- B. HDPE: High density polyethylene.
- C. PP: Polypropylene.
- D. PVC: Polyvinyl chloride.
- E. PTFE: Polytetrafluoroethylene.
- F. RTRF: Reinforced thermosetting resin (fiberglass) fittings.
- G. RTRP: Reinforced thermosetting resin (fiberglass) pipe.

1.3 PERFORMANCE REQUIREMENTS

- A. Where not indicated on the Drawings, hydronic piping components and installation shall be capable of withstanding the following minimum working pressures and temperatures:
 - 1. Hot-Water Heating Piping: 125 psig at 200 deg F.
 - 2. High Temperature Heating Hot Water Piping: 300 psig at 350 deg F.
 - 3. Chilled-Water Piping: 125 psig at 200 deg F.
 - 4. Dual-Temperature Heating and Cooling Water Piping: 125 psig at 200 deg F
 - 5. Heat Pump Loop Piping: 125 psig at 150 deg F.
 - 6. Condenser-Water Piping: 125 psig at 150 deg F.

- 7. Glycol Cooling-Water Piping: 125 psig at 150 deg F.
- 8. Engine Cooling Water Piping: 125 psig at 150 deg F.
- 9. Condensate-Drain Piping: 150 deg F.
- 10. Blowdown-Drain Piping: 200 deg F.
- 11. Air-Vent Piping: 200 deg F.
- 12. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

1.4 SYSTEMS DESCRIPTIONS

- A. Hydronic piping system materials are scheduled on the Drawings.
- B. Refer to Application Schedule on the Drawings for valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Hot-Water-Piping, Balancing Duty: Calibrated balancing valves.
 - 2. Drain Duty: Hose-end drain valves.

1.5 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 2. Air control devices.
 - Chemical treatment.
 - 4. Hydronic specialties.
 - 5. Plastic pipe and fittings with solvent cement.
- B. Shop Drawings: Detail, at minimum 1/4 scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
- C. Qualification Data: For Installer.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in operation and maintenance manuals.
- F. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.

1.6 QUALITY ASSURANCE

- A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping" for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- B. Installer Qualifications:
 - 1. Installers of Pressure-Sealed Joints: Installers shall be certified by pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.
- C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be as recommended by the manufacturer of the grooved components.

1.7 EXTRA MATERIALS

- A. Water-Treatment Chemicals: Furnish enough chemicals for initial system startup and for preventive maintenance for one year from date of Substantial Completion.
- B. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
- C. DWV Copper Tubing: ASTM B 306, Type DWV.
- D. Wrought-Copper Socket Fittings: ASME B16.22.
- E. Wrought-Copper Unions: ASME B16.22.
- F. Grooved Mechanical-Joint Fittings and Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.; Gruvlok Manufacturing; Advanced Copper Method.
 - b. Tyco Fire & Building Products; Grinnell Mechanical Products; Model 672.
 - c. Victaulic Company; Style 606 and Style 607.
 - 2. Grooved-End Copper Fittings: ASTM B 75, copper tube or ASTM B 584, bronze casting.
 - 3. Grooved-End-Tube Couplings: Rigid pattern, unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, prelubricated EPDM gasket rated for minimum 230 deg F for use with housing, and steel bolts and nuts.
- G. Copper or Bronze Pressure-Seal Fittings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Apollo Valves; by Conbraco Industries; ApolloXpress.
 - b. Elkhart Products Corporation; an Aalberts Industries Company; Xpress.
 - c. NIBCO Inc.; Press System.
 - d. Viega North America; ProPress System.
- 2. Housing: Copper.
- 3. O-Rings and Pipe Stops: EPDM.
- 4. Tools: Manufacturer's special tools.
- 5. Maximum 200-psig working-pressure rating at 250 deg F.
- H. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube. Mechanically formed tee fittings may be used up to half size of main.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. T-DRILL Industries Inc.

2.2 STEEL PIPE AND FITTINGS

- A. Schedule 40 Steel Pipe: ASTM A 53/A 53M or ASTM A 106, Type E or S, Grade A or B. Include ends matching joining method.
 - 1. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, seamless steel pipe. Include ends matching joining method.
 - 2. Malleable-Iron Unions: ASME B16.39, Class 150, hexagonal-stock body, with ball-and-socket, metal-to-metal, bronze seating surface and female threaded ends.
 - 3. Gray-Iron, Threaded Fittings: ASME B16.4, Class 125, standard pattern.
 - 4. Cast-Iron Flanges: ASME B16.1, Class 125.
 - 5. Cast-Iron, Flanged Fittings: ASME B16.1, Class 125.
 - 6. Fittings: ASTM A234 ANSI B16.9, steel butt weld to match pipe wall thickness, Class 300.
 - 7. Flanges: Class 300 forged steel welding neck to match pipe wall thickness and valve flanges, ANSI B16.5. Orifice plate flanges shall be raised face welding neck type with ring joint gaskets and flange taps. Coordinate orifice plate flanges with orifice plate flow elements.

2.3 JOINING MATERIALS

A. Refer to Division 20 Section "Basic Mechanical Materials and Methods."

2.4 TRANSITION FITTINGS

- A. HDPE Plastic-to-Grooved Steel Transition Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.; Gruvlok Manufacturing; Fig. 7307.
 - b. Victaulic Company; Style 997.
 - 2. Ductile iron coupling with integral rows of gripping teeth on the HDPE side of the coupling and conventional key section on grooved side designed to engage standard roll or cut grooved steel pipe.
- B. HDPE Plastic-to-Metal Transition Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.; Gruvlok Manufacturing; Fig. 7312.
 - b. Victaulic Company; Style 994 Vic-Flange.
 - Ductile iron flange adapter having integral gasket and designed to permit direct connection of ANSI Class 125 and 150 steel or bronze flanged components into HDPE systems.

2.5 VALVES

A. General Service Valves: Comply with requirements specified in Division 23 Section "General-Duty Valves for HVAC."

2.6 SPECIALTY VALVES

- A. Balance Valves:
 - Balance Valves NPS 6 and Larger: Lug type butterfly valves with aluminum bronze disc, AISI 300 Series stainless steel stem, resilient replaceable seat for service at not less than 250 deg F and memory stops. Refer to Division 23 Section "General-Duty Valves for HVAC" for additional requirements.
 - a. Provide lubricated enclosed screw or worm gear operator with handwheel for sizes 6 inches and larger.
 - b. Pressure rating shall meet or exceed system minimum pressure rating.
 - 2. Flow Measuring: Use Flow Measuring Devices as specified in Division 20 Section "Meters and Gages."
 - 3. Balance Valves for Sizes Less than NPS 6 Combination balance valve and flow measuring device as specified in this Section.
- B. Combination, Balancing Valves and Flow Measuring Devices NPS 2 and Smaller:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Griswold Controls.
- b. Hydronic Components, Inc. (HCi).
- c. Nexus Valve.
- d. PRO Hydronic Specialties, LLC.
- e. Tour & Andersson; TA Hydronics Series available through Victaulic Company of America.
- 2. Body: Brass or bronze, ball, or plug type with calibrated orifice or venturi.
- 3. Ball: Brass, or stainless steel.
- 4. Plug: Resin.
- 5. Seat: PTFE.
- 6. End Connections: Threaded or socket.
- 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 8. Handle Style: Lever, with memory stop to retain set position.
- 9. WOG Rating: Minimum 400 psig.
- 10. Maximum Operating Temperature: 250 deg F.
- C. Combination, Balancing Valves and Flow Measuring Devices NPS 2-1/2 through NSP 4:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Griswold Controls.
 - b. Hydronic Components, Inc. (HCi).
 - c. Nexus Valve.
 - d. PRO Hydronic Specialties, LLC.
 - e. Tour & Andersson; TA Hydronics Series available through Victaulic Company of America.
 - Body: Cast-iron or steel body, ball, plug, or butterfly pattern with calibrated orifice or venturi.
 - 3. Stem Seals: EPDM O-rings.
 - 4. Disc: Glass and carbon-filled PTFE.
 - 5. Seat: PTFE.
 - 6. End Connections: Flanged or grooved.
 - 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. WOG Rating: Minimum 200 psig.

- 10. Maximum Operating Temperature: 225 deg F.
- D. Contractor Option for Combination, Balancing Valves and Flow Measuring Devices NPS 2 and Smaller: Preassembled coil hook up kits may be used.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Griswold Controls.
 - b. Hydronic Components, Inc. (HCi).
 - c. Nexus Valve.
 - d. PRO Hydronic Specialties, LLC.
 - e. Tour & Andersson; TA Hydronics Series available through Victaulic Company of America.
- E. Diaphragm-Operated, Pressure-Reducing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Apollo Valves; by Conbraco Industries, Inc.
 - d. Bell & Gossett; Xylem Inc.
 - e. Spence Engineering Company, Inc.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Low inlet-pressure check valve.
 - 8. Valve Seat and Stem: Noncorrosive.
 - 9. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- F. Diaphragm-Operated Safety Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Anderson Greenwood & Co.; Kunkle Valve Division.
 - c. Armstrong Pumps, Inc.
 - d. Apollo Valves; by Conbraco Industries, Inc.
 - e. Bell & Gossett; Xylem Inc.
 - f. Spence Engineering Company, Inc.

- g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
- 2. Body: Bronze or brass.
- Disc: Glass and carbon-filled PTFE.
- 4. Seat: Brass.
- 5. Stem Seals: EPDM O-rings.
- 6. Diaphragm: EPT.
- 7. Wetted, Internal Work Parts: Brass and rubber.
- 8. Valve Seat and Stem: Noncorrosive.
- 9. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

G. Automatic Flow-Control Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Griswold Controls.
 - b. PRO Hydronic Specialties, LLC.
- 2. Body: Brass or ferrous metal.
- 3. Piston and Spring Assembly: Stainless steel, tamper proof, self cleaning, and removable.
- 4. Combination Assemblies: Include bonze or brass-alloy ball valve.
- 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
- 6. Size: Same as pipe in which installed.
- 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
- 8. Minimum Pressure Rating: 300 psig.
- 9. Maximum Operating Temperature: 250 deg F.

2.7 CONTROL VALVES

- A. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Division 23 Section "Temperature Controls."
- B. Calibrated orifice balancing valves shall not be required on devices where pressure independent characterized control valves (PICCV's) are installed.

2.8 AIR CONTROL DEVICES

- A. Manual Air Vents: Use ball-valve-type hose-end drain valves, refer to Division 20 Section "Valves."
- B. Automatic Air Vents:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett; Xylem Inc.
 - d. Spirotherm, Inc.
 - e. Taco, Inc.
 - 2. Body: Bronze or cast iron.
 - Internal Parts: Nonferrous.
 - 4. Operator: Noncorrosive metal float.
 - 5. Inlet Connection: NPS 1/2.
 - 6. Discharge Connection: NPS 1/4.
 - 7. Maximum Operating Pressure: 150 psig.
 - 8. Maximum Operating Temperature: 240 deg F.
- C. Diaphragm-Type Expansion Tanks:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett; Xylem Inc.
 - d. Taco, Inc.
 - 2. Tank: Welded steel, rated for 125-psig working pressure and 240 deg F maximum operating temperature. Factory test with taps fabricated and supports installed and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 3. Diaphragm: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
 - 4. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.
- D. Combination Air and Dirt Separators:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Spirotherm, Inc.; VDN Series.

- 2. Body: Fabricated steel; constructed for 150-psig maximum working pressure and 250 deg F maximum operating temperature. Separator shall have body extended below pipe connections for dirt separation and include removable lower head.
- 3. Air and Dirt Separation Mechanism: Internal copper core tube with continuous wound copper medium permanently attached followed by continuous wound copper wire permanently affixed.
- 4. Venting Chamber: With integral full port, float actuated brass venting mechanism. Include valved side tap to flush floating dirt or liquids and for quick bleeding of air during system fill.
- 5. Inlet and Outlet Connections: Threaded for NPS 2 and smaller; flanged connections for NPS 2-1/2 and larger.
- 6. Blowdown Connection: Threaded.
- 7. Size: Match system flow capacity.

2.9 STEEL, HYDRONIC BUFFER TANKS

A. Manufacturers:

- 1. Adamson Global Technology Corporation.
- 2. Armstrong Pumps, Inc.
- 3. Cemline Corporation.
- 4. Highland Tank & Mfg. Co.
- 5. Taco, Inc.
- B. Description: Steel, vertical pressure-rated tank with cylindrical sidewalls.
- C. Construction: ASME code, steel, constructed with nontoxic welded joints, for 125-psig working pressure, and internal baffle to prevent short circuiting.
- D. Connections and Tappings: Factory-fabricated steel, welded to tank before testing and labeling.
 - 1. NPS 2 and Smaller: ASME B1.20.1, with female thread.
 - 2. NPS 2-1/2 and Larger: ASME B16.5, flanged.
- E. Include connections and tappings for the following:
 - 1. Inlet.
 - 2. Outlet.
 - Factory mounted air vent.
- F. Tank Supports: Factory-fabricated steel legs or steel skirt, welded to tank before testing and labeling.
- G. Exterior Coating: Primer paint and factory installed 1/2-inch thick elastomeric thermal insulation.

2.10 HYDRONIC PIPING SPECIALTIES

- A. Diverting Fittings: 125-psig working pressure; 250 deg F maximum operating temperature; castiron body with threaded ends, or wrought copper with soldered ends. Indicate flow direction on fitting.
- B. Flexible connectors and expansion fittings are specified in Division 20 Section "Pipe Flexible Connectors, Expansion Fittings and Loops."

2.11 HYDRONIC PIPING STRAINERS

A. Manufacturers:

- 1. Keckley.
- Metraflex.
- 3. Mueller Steam Specialty.
- 4. Nibco, Inc.
- 5. Spence.
- 6. Sure Flow Equipment Inc.
- 7. Watts Water Technologies, Inc.
- 8. Yarway.
- 9. Anvil International, Inc.; Gruvlok Manufacturing (for grooved piping).
- 10. Tyco Fire & Building Products, Grinnell Mechanical Products (for grooved piping)
- 11. Victaulic Company; (for grooved piping).

B. Y-Pattern Strainers, Bronze:

- 1. CWP: 200 psig minimum, unless otherwise indicated.
- 2. SWP: 125 psig minimum, unless otherwise indicated.
- 3. Body: Bronze for NPS 2 and smaller.
- 4. End Connections: Threaded or soldered.
- 5. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 6. Drain:
 - a. Pipe plug for sizes NPS 2 and smaller.
 - b. Factory-installed, hose-end drain valve for sizes NPS 2-1/2 and larger.

C. Y-Pattern Strainers, Cast and Ductile Iron:

- 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger; grooved ends may be used on grooved piping.
- 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

- 4. CWP: 200 psig minimum, unless otherwise indicated.
- 5. SWP: 125 psig minimum, unless otherwise indicated.
- 6. Drain:
 - a. Pipe plug for sizes NPS 2 and smaller.
 - b. Factory-installed, hose-end drain valve for sizes NPS 2-1/2 and larger.

D. Basket Strainers, Cast Iron:

- 1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: 60-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP: 200 psig minimum, unless otherwise indicated.
- 5. SWP: 125 psig minimum, unless otherwise indicated.
- 6. Drain: Factory-installed, hose-end drain valve.

2.12 STAINLESS STEEL STRAINERS

A. Manufacturers:

- 1. Keckley.
- 2. Metraflex.
- 3. Mueller Steam Specialty.
- 4. Nibco, Inc.
- 5. Spence.
- 6. Sure Flow Equipment Inc.
- 7. Watts Water Technologies, Inc.
- 8. Yarway.

B. Y-Pattern Strainers:

- 1. Body: ASTM A 351, Type 316 stainless steel, with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for strainers NPS 2 and smaller; flanged ends for strainers NPS 2-1/2 and larger.

- 3. Strainer Screen: Stainless-steel, 20 mesh strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. Tapped blowoff plug.
- 5. SWP Rating: 250-psig steam working pressure.

C. Basket Strainers:

- Body: ASTM A 351, Type 316 stainless steel, with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for strainers NPS 2 and smaller; flanged ends for strainers NPS 2-1/2 and larger.
- 3. Strainer Screen: Stainless-steel, 20 mesh strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. SWP Rating: 250-psig steam working pressure.

2.13 CHEMICAL TREATMENT

- A. Bypass Chemical Feeder: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.
 - 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.
- B. Ethylene and Propylene Glycol: Industrial grade with corrosion inhibitors and environmentalstabilizer additives for mixing with water in systems indicated to contain antifreeze or glycol solutions.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.

- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping, other than drain piping, at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Division 23 Section "General-Duty Valves for HVAC."
- Q. Install shutoff duty valves at each branch connection to supply mains, at supply connection to each piece of equipment, unless only one piece of equipment is connected in the branch line. Install throttling duty valves at each branch connection to return mains, at return connections to each piece of equipment, and elsewhere as indicated.
- R. Install calibrated balancing valves in the return water line of each heating or cooling element and elsewhere as required to facilitate system balancing.
- S. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- T. Install safety valves on hot-water generators and elsewhere as required by the ASME Boiler and Pressure Vessel Code. Install safety-valve discharge piping, without valves, to floor. Comply with the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, for installation requirements.
- U. Install pressure-reducing valves on hot-water generators and elsewhere as required to regulate system pressure.
- V. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- W. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- X. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, inline pump, and where indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.
- Y. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Division 20 Section "Pipe Flexible Connectors, Expansion Fittings and Loops."
- Z. Identify piping as specified in Division 20 Section "Mechanical Identification."

3.2 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor devices are specified in Division 20 Section "Hangers and Supports." Comply with the following requirements for maximum spacing of supports.
- B. Install the following pipe attachments:
 - Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 - 2. NPS 1: Maximum span, 7 feet; minimum rod size, 1/4 inch.
 - 3. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 4. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 3/8 inch.
 - 6. NPS 3: Maximum span, 12 feet; minimum rod size, 3/8 inch.
 - 7. NPS 4: Maximum span, 14 feet; minimum rod size, 1/2 inch.
 - 8. NPS 6: Maximum span, 17 feet; minimum rod size, 1/2 inch.
 - 9. NPS 8: Maximum span, 19 feet; minimum rod size, 5/8 inch.
 - 10. NPS 10: Maximum span, 20 feet; minimum rod size, 3/4 inch.
 - 11. NPS 12: Maximum span, 23 feet; minimum rod size, 7/8 inch.
 - 12. NPS 14: Maximum span, 25 feet; minimum rod size, 1 inch.
 - 13. NPS 16: Maximum span, 27 feet; minimum rod size, 1 inch.
 - 14. NPS 18: Maximum span, 28 feet; minimum rod size, 1-1/4 inches.
 - 15. NPS 20: Maximum span, 30 feet; minimum rod size, 1-1/4 inches.

- D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 - 2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 - 3. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 4. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 6. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 - 7. NPS 4 to NPS 5: Maximum span, 10 feet minimum rod size, 1/2-inch.
 - 8. NPS 6: Maximum span, 10 feet minimum rod size, 5/8-inch.
 - 9. NPS 8: Maximum span, 10 feet minimum rod size, 3/4-inch.
- E. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.3 PIPE JOINT CONSTRUCTION

A. Refer to Division 20 Section "Basic Mechanical Materials and Methods" for basic piping joint construction.

3.4 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting.
- C. Glycol Systems:
 - 1. Install automatic air vents on expansion tanks and install high capacity automatic air vents on air separators. Route vent piping to spill over glycol fill station.
 - 2. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- D. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.
- E. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 and larger.
- F. Install bypass chemical feeders in each hydronic system where indicated, in upright position with top of funnel not more than 48 inches above the floor. Install feeder in minimum NPS 3/4 bypass line, from main with full-size, full-port, ball valve in the main between bypass connections. Install NPS 3/4 pipe from chemical feeder drain, to nearest equipment drain and include a full-size, full-port, ball valve.

- G. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 - 1. Install tank fittings that are shipped loose.
 - 2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.
- H. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to suit system Project requirements.

3.5 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 20 Section "Meters and Gages."

3.6 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum

- yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
- 5. After hydrostatic test pressure has been applied for at least 2 hours, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
- 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Remove disposal fine-mesh strainers in pump suction diffusers.
 - 4. Set makeup pressure-reducing valves for required system pressure.
 - 5. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 6. Set temperature controls so all coils are calling for full flow.
 - 7. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
 - 8. Verify lubrication of motors and bearings.

END OF SECTION

HYDRONIC PUMPS

PART 1 -	GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	DEFINITIONS	1
1.3	SUBMITTALS	
1.4	QUALITY ASSURANCE	2
1.5	DELIVERY, STORAGE, AND HANDLING	
1.6	COORDINATION	
PART 2 -	PRODUCTS	2
2.1	GENERAL PUMP REQUIREMENTS	
2.2	MANUFACTURERS	3
2.3	CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS (SMALL)	3
2.4	CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS	3
2.5	FLEXIBLY COUPLED, BASE-MOUNTED, END-SUCTION CENTRIFUGAL PUMPS	4
2.6	FLEXIBLY COUPLED, BASE-MOUNTED, DOUBLE-SUCTION CENTRIFUGAL PUMPS	5
2.7	AUTOMATIC CONDENSATE PUMP UNITS	6
2.8	AUTOMATIC CONDENSATE PUMP UNITS (PLENUM APPLICATIONS)	6
2.9	PUMP SPECIALTY FITTINGS	7
PART 3 -	EXECUTION	7
3.1	EXAMINATION	7
3.2	PUMP INSTALLATION	7
3.3	ALIGNMENT	8
3.4	CONNECTIONS	8
3.5	STARTUP SERVICE	9
3.6	DEMONSTRATION	9

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
- 1.2 DEFINITIONS
 - A. Buna-N: Nitrile rubber.
 - B. EPT: Ethylene propylene terpolymer.
- 1.3 SUBMITTALS
 - A. Product Data: Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
 - B. Shop Drawings: Show pump layout and connections. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.

- 1. Wiring Diagrams: Power, signal, and control wiring.
- C. Operation and Maintenance Data: For all pumps and accessories to include in Operation and Maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain hydronic pumps through one source from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- C. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Manufacturer's Preparation for Shipping: Clean flanges and exposed machined metal surfaces and treat with anticorrosion compound after assembly and testing. Protect flanges, pipe openings, and nozzles with wooden flange covers or with screwed-in plugs.
- B. Store pumps in dry location.
- C. Retain protective covers for flanges and protective coatings during storage.
- D. Protect bearings and couplings against damage from sand, grit, and other foreign matter.
- E. Comply with pump manufacturer's written rigging instructions.

1.6 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 GENERAL PUMP REQUIREMENTS

- A. Pump Units: Factory assembled and tested.
- B. Motors: Comply with requirements in Division 20 Section "Motors".
- C. Selection:
 - 1. Base non-overloading characteristics for pumps upon nameplate horsepower, at any point on performance curve.
 - 2. Shaft first critical speed shall not be less than 25 percent greater than operating speed.
 - Maximum impeller diameter shall not be greater than 90 percent of "cut water" diameter for a
 given casing and no smaller than the smallest published diameter for casing. Do not base
 acceptable maximum diameter calculation on percentage of impeller diameter range for a
 given casing.
 - 4. Pump speed shall be limited to 1800 RPM except as scheduled.
 - 5. Select at the point of maximum efficiency for a given impeller-casing combination. Deviations shall be within 3 percent of maximum efficiency on the increasing capacity side of the

maximum efficiency point and 7 percent on the decreasing capacity side of the maximum efficiency point.

- 6. Select pump at a point no greater than 85 percent of end of curve flow.
- 7. Maximum pump suction velocity:

a. In-line: 12 fps.b. End suction: 13 fps.c. Double suction: 15 fps.

2.2 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
- 2.3 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS (SMALL)
 - A. Manufacturers:
 - 1. Armstrong Pumps Inc.
 - 2. Bell & Gossett; Xylem Inc.; Series PL.
 - 3. Grundfos Pumps Corporation.
 - 4. Taco, Inc.; Series 1400.
 - B. Description: Factory-assembled and –tested, centrifugal, overhung-impeller, close-coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; and designed for installation with pump and motor shafts mounted horizontally.
 - 1. Pump Construction: Bronze fitted.
 - a. Casing: Radially split, cast iron, with threaded companion-flange connections.
 - b. Impeller: Glass-reinforced corrosion-resistant material; keyed to shaft.
 - c. Shaft: High-strength alloy steel.
 - d. Seal: Mechanical, carbon/silicon carbide seal.
 - e. Bearings: Permanently oil-lubricated type.
 - 2. Motor-Single speed, with oil-lubricated bearings, unless otherwise indicated; and directly mounted to pump casing. Comply with requirements in Division 20 Section "Motors."
 - C. Capacities and Characteristics: Refer to Schedule on Drawings.
- 2.4 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS
 - A. Manufacturers:
 - 1. Armstrong Pumps Inc.; Series 4360 and 4380.
 - 2. Bell & Gossett; Xylem Inc.; Series 80.

- 3. Grundfos Pumps Corporation.
- 4. Taco, Inc.; Series 1900, KV.
- B. Description: Factory-assembled and tested, centrifugal, overhung-impeller, close-coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally or vertically. Rate pump for 175-psig minimum working pressure and a continuous water temperature of 225 deg F.
- C. Pump Construction:
 - 1. Casing: Radially split, cast iron, with threaded gage tappings at inlet and outlet, and companion-flange connections.
 - 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. Trim impeller to match specified performance.
 - 3. Pump Shaft: Steel with copper-alloy shaft sleeve, or stainless steel.
 - 4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N seal for all glycol systems and all water systems 225 deg F and below; EPT seals for water systems above 225 deg F. Include water slinger on shaft between motor and seal.
- D. Motor: Single speed, with permanently or grease lubricated ball bearings, unless otherwise indicated; and rigidly mounted to pump casing. Comply with requirements in Division 20 Section "Motors"
- E. Capacities and Characteristics: Refer to Schedule on Drawings.
- 2.5 FLEXIBLY COUPLED, BASE-MOUNTED, END-SUCTION CENTRIFUGAL PUMPS
 - A. Manufacturers:
 - 1. Armstrong Pumps Inc.; Series 4030.
 - 2. Aurora Pump; Division of Pentair Pump Group; Series 3340.
 - 3. Bell & Gossett; Xylem Inc.; Series 1510.
 - 4. Grundfos Pumps Corporation/PACO.
 - 5. Taco, Inc.; Series FI.
 - B. Description: Factory-assembled and tested, centrifugal, overhung-impeller, separately coupled, endsuction pump as defined in HI 1.1-1.2 and HI 1.3; designed for base mounting, with pump and motor shafts horizontal. Rate pump for 175-psig minimum working pressure and a continuous water temperature of 225 deg F.
 - C. Pump Construction:
 - Casing: Radially split, cast iron, with threaded gage tappings at inlet and outlet, drain plug at bottom and air vent at top of volute, and flanged connections. Provide integral mount on volute to support the casing, and attached piping to allow removal and replacement of impeller without disconnecting piping or requiring the realignment of pump and motor shaft true back pullout. Provide receptacle bronze wear rings for all pumps with pump shaft L/D ratios greater than 6.0.

- 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. Trim impeller to match specified performance.
- 3. Pump Shaft: Steel, with copper-alloy shaft sleeve or stainless steel.
- 4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N seal for all glycol systems and all water systems 225 deg F and below; EPT seals for water systems above 225 deg F. Include water slinger on shaft between motor and seal.
- 5. Pump Bearings: Permanently or grease-lubricated ball bearings contained in cast-iron housing with grease fittings.
- D. Flexible Shaft Coupling: Molded rubber insert and interlocking spider capable of absorbing vibration. Couplings shall be center drop-out type to allow disassembly and removal without removing pump shaft or motor. Provide EPDM coupling sleeve for all motors 40 HP and below and all variable-speed applications.
- E. Coupling Guard: Dual rated; ANSI B15.1, Section 8; OSHA 1910.219 approved; steel; removable; attached to mounting frame.
- F. Mounting Frame: Welded-steel frame and cross members, factory fabricated from ASTM A 36/A 36M channels and angles. Fabricate to mount pump casing, coupling guard, and motor.
- G. Motor: Single speed, with permanently lubricated or grease-lubricated ball bearings, unless otherwise indicated; secured to mounting frame, with adjustable alignment. Comply with requirements in Division 20 Section "Motors".
- H. Capacities and Characteristics: Refer to Schedule on Drawings.
- 2.6 FLEXIBLY COUPLED, BASE-MOUNTED, DOUBLE-SUCTION CENTRIFUGAL PUMPS
 - A. Casing Style
 - 1. Vertical Split Case Double Suction Pumps
 - a. Horizontal split case pumps are not acceptable where vertical split case pumps are specified, unless prior written approval is obtained from the Engineer.
 - b. Manufacturers:
 - 1) Bell & Gossett; Xylem Inc.; VSC and VSCS.
 - 2) Taco, Inc.; TC Series.
 - 2. Horizontal Split Case Double Suction Pumps
 - a. Manufacturers:
 - 1) Armstrong Pumps Inc.; Series 4600.
 - 2) Aurora Pump; Division of Pentair Pump Group; Series 431B.
 - 3) Bell & Gossett; Xylem Inc.; HSC³.
 - 4) Grundfos Pumps Corporation/PACO.
 - 5) Taco. Inc.: Series TA.
 - B. Description: Factory-assembled and tested, centrifugal, impeller-between-bearings, separately coupled, double-suction pump as defined in HI 1.1-1.2 and HI 1.3; designed for base mounting, with pump and motor shafts horizontal. Rate pump for 175-psig minimum working pressure and a continuous water temperature of 225 deg F.

C. Pump Construction:

- 1. Casing: Cast iron with threaded gage tappings at inlet and outlet, drain plug at bottom and air vent at top of volute, and ASME B16.1, Class 125 flanges. Casing supports shall allow removal and replacement of impeller without disconnecting piping. Provide replaceable bronze wear rings for all horizontal split case pumps with pump shaft L/D ratios greater than 9.0.
- 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, and keyed to shaft. Trim impeller to match specified performance.
- 3. Pump Shaft: Stainless steel.
- 4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N seal for all glycol systems and all water systems 225 deg F and below; EPT seals for water systems above 225 deg F. Include water slinger on shaft between motor and seal.
- 5. Pump Bearings: Grease-lubricated ball bearings contained in cast-iron housing with grease fittings.
- D. Flexible Shaft Coupling: Molded rubber insert and interlocking spider capable of absorbing vibration. Couplings shall be center drop-out type to allow disassembly and removal without removing pump shaft or motor. Provide EPDM coupling sleeve for all motors 40 HP and below and all variable-speed applications.
- E. Coupling Guard: Dual rated; ANSI B15.1, Section 8; OSHA 1910.219 approved; steel; removable; attached to mounting frame.
- F. Mounting Frame: Welded-steel frame and cross members, factory fabricated from ASTM A 36/A 36M channels and angles. Fabricate to mount pump casing, coupling guard, and motor.
- G. Motor: Single speed, with grease-lubricated ball bearings, unless otherwise indicated; secured to mounting frame, with adjustable alignment. Comply with requirements in Division 20 Section "Motors".
- H. Capacities and Characteristics: Refer to Schedule on Drawings.

2.7 AUTOMATIC CONDENSATE PUMP UNITS

- A. Manufacturers:
 - 1. Little Giant Pump Co.; Subsidiary of Tecumseh Products Co.
 - 2. Hydromatic Pump Company.
- B. Description: Packaged units with corrosion-resistant pump, plastic tank with cover, and automatic controls. Include factory- or field-installed check valve and a 72-inch- minimum, electrical power cord with plug.
- 2.8 AUTOMATIC CONDENSATE PUMP UNITS (PLENUM APPLICATIONS)
 - A. Manufacturers:
 - 1. Hartell Pumps Div.; Milton Roy Co.; Model A2-X-1965.

B. Description: Packaged units with corrosion-resistant pump, dual-voltage thermally protected motor, cast aluminum tank with cover, and automatic controls. Include auxiliary safety switch and factory- or field-installed check valve.

2.9 PUMP SPECIALTY FITTINGS

- A. Suction Diffuser: Angle pattern, minimum 175-psig pressure rating, cast-iron body and end cap for NPT or flanged connections or ductile iron body and end cap for grooved connections, pump-inlet fitting; with bronze startup and bronze or stainless-steel permanent strainers; bronze or stainless-steel straightening vanes; drain plug; and integral locating boss for field-fabricated support.
 - Manufacturers:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett; Xylem Inc.
 - c. Grundfos Pumps Corporation/PACO.
 - d. Mueller Steam Specialty Company.
 - e. Taco; Fabricated Products Division.
 - f. Anvil International, Inc. (grooved only).
 - g. Victaulic Co. of America (grooved only).

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of work.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.
- C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PUMP INSTALLATION

- A. Comply with HI 1.4, HI 2.4.
- B. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.
- C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
- D. Support in-line centrifugal pumps greater than 1/2 HP independent of piping. Use continuous-thread hanger rods and hangers of sufficient size to support pump weight. Do not support pump from motor housing plate.
- E. Refer to Division 20 Section "Mechanical Vibration Controls" for vibration isolation devices.
- F. Refer to Division 20 Section "Hangers and Supports" for hanger and support materials.
- G. Set base-mounted pumps on concrete bases. Disconnect flexible coupling before setting. Do not reconnect flexible couplings until alignment procedure is complete.

- 1. Support pump baseplate on rectangular stainless steel blocks and shims, or on wedges with small taper, at points near foundation bolts to provide a gap of 3/4 to 1-1/2 inches between pump base and foundation for grouting.
- 2. Adjust metal supports or wedges until pump and driver shafts are level. Check coupling faces and suction and discharge flanges of pump to verify that they are level and plumb.
- 3. Install pumps on inertia bases where required. Refer to Division 20 Section "Mechanical Vibration Controls" for vibration isolation devices.
- H. Automatic (Cooling Coil) Condensate Pump Units: Install units for collecting condensate and extend to open drain.

3.3 ALIGNMENT

- A. Align pump and motor shafts and piping connections after setting on foundation, grout has been set and foundation bolts have been tightened, and piping connections have been made.
- B. Comply with pump and coupling manufacturers' written instructions.
- C. Adjust pump and motor shafts for angular and offset alignment by methods specified in HI 1.1-1.5, "Centrifugal Pumps for Nomenclature, Definitions, Application and Operation HI 2.1-2.5, "Vertical Pumps for Nomenclature, Definitions, Application and Operation." Laser align to a tolerance of 0.0005 inches maximum.
- D. After alignment is correct, tighten foundation bolts evenly but not too firmly.
- E. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.4 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.
- D. Install check valve and throttling valve on discharge side of pumps. Triple-duty valves are not allowed.
- E. Install Y-type strainer or suction diffuser and shutoff valve on suction side of pumps as indicated on drawings.
- F. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.
- G. Install pressure gages on pump suction and discharge or at integral pressure-gage tappings, or install single gage with multiple-input selector valve.
- H. Install check valve and gate or ball valve on each condensate pump unit discharge.
- I. Install electrical connections for power, controls, and devices.
- J. Ground equipment according to Division 26 Section "Grounding and Bonding."

K. Connect wiring according to Division 26 Section "Conductors and Cables."

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service for each pump supplied. Written report of the start-up shall be provided to the Owner and Engineer upon completion of services.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Perform the following startup checks for each pump before starting:
 - Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 - 6. Start motor.
 - 7. Open discharge valve slowly.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps.

END OF SECTION

REFRIGERANT PIPING

PART 1 -	· GENERAL	. 1
1.1	RELATED DOCUMENTS	. 1
1.2	PERFORMANCE REQUIREMENTS	. 2
1.3	SYSTEMS DESCRIPTIONS	. 2
1.4	SUBMITTALS	. 2
1.5	QUALITY ASSURANCE	. 3
1.6	PRODUCT STORAGE AND HANDLING	. 3
1.7	COORDINATION	. 3
DADTO	PROPULOTO	,
	PRODUCTS	
2.1	COPPER TUBE AND FITTINGS	. ;
	VALVES AND SPECIALTIES	
PART 3 -	EXECUTION	. 6
3.1	PIPING SYSTEM INSTALLATION	. 6
3.2	PIPE JOINT CONSTRUCTION	. 7
	VALVE AND SPECIALTY INSTALLATION	
	HANGERS AND SUPPORTS	
3.5	FIELD QUALITY CONTROL	
	SYSTEM CHARGING	
	ADJUSTING	
3.7	ADJUG HING	. :

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - Division 07 Section "Roof Accessories" for roof curbs, piping supports, and roof penetration boots.
 - 2. Division 07 Section "Through-Penetration Firestop Systems" for materials and methods for sealing pipe penetrations through fire and smoke barriers.
 - 3. Division 07 Section "Joint Sealants" for materials and methods for sealing pipe penetrations through exterior walls.
 - 4. Division 20 Section "Mechanical General Requirements.
 - 5. Division 20 Section "Basic Mechanical Materials and Methods."
 - 6. Division 20 Section "Hangers and Supports" for pipe supports and installation requirements.
 - 7. Division 20 Section "Mechanical Identification" for labeling and identifying refrigerant piping.
 - 8. Division 20 Section "Meters and Gages" for thermometers and pressure gages.
 - 9. Division 23 Section "Temperature Controls" for thermostats, controllers, automatic-control valves, and sensors.

1.2 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig.
 - 2. Suction Lines for Heat-Pump Applications: 535 psig.
 - 3. Hot-Gas and Liquid Lines: 535 psig.

1.3 SYSTEMS DESCRIPTIONS

- A. Suction Lines NPS 4 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed joints.
- B. Hot-Gas and Liquid Lines NPS 4 and Smaller: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed joints.
- C. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed joints.

1.4 SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:
 - 1. Thermostatic expansion valves.
 - 2. Solenoid valves.
 - 3. Hot-gas bypass valves.
 - 4. Filter dryers.
 - 5. Strainers.
 - 6. Pressure-regulating valves.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Shop Drawing Scale: Minimum 1/4 inch equals 1 foot.
 - 2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."
- C. UL Standard: Provide products complying with UL 207, "Refrigerant-Containing Components and Accessories, Nonelectrical"; or UL 429, "Electrically Operated Valves."

1.6 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.7 COORDINATION

- A. Coordinate layout and installation of refrigerant piping and suspension system components with other construction, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.
- B. Coordinate pipe sleeve installations for foundation wall penetrations.
- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."
- D. Coordinate pipe sleeve installations for penetrations in exterior walls and floor assemblies.

 Coordinate with requirements for firestopping specified in Division 07 Section "Through-Penetration Firestop Systems" for materials and methods for sealing pipe penetrations through fire and smoke barriers.
- E. Coordinate pipe fitting pressure classes with products specified in related Sections.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Copper Tube: ASTM B 280, Type ACR.
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.

2.2 VALVES AND SPECIALTIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Climate & Industrial Controls Group; Parker-Hannifin Corp.; Refrigeration & Air Conditioning Division.
 - 2. Danfoss Electronics, Inc.
 - 3. Emerson Electric Company; Alco Controls Div.
 - 4. Henry Valve Company.
 - 5. Sporlan Valve Company.

B. Diaphragm Packless Valves:

- 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
- 2. Diaphragm: Phosphor bronze and stainless steel with stainless-steel spring.
- 3. Operator: Rising stem and hand wheel.
- 4. Seat: Nylon.
- 5. End Connections: Socket, union, or flanged.
- 6. Working Pressure Rating: 500 psig.
- 7. Maximum Operating Temperature: 275 deg F.

C. Packed-Angle Valves:

- 1. Body and Bonnet: Forged brass or cast bronze.
- 2. Packing: Molded stem, back seating, and replaceable under pressure.
- 3. Operator: Rising stem.
- 4. Seat: Nonrotating, self-aligning polytetrafluoroethylene.
- 5. Seal Cap: Forged-brass or valox hex cap.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Working Pressure Rating: 500 psig.
- 8. Maximum Operating Temperature: 275 deg F.

D. Check Valves:

- 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
- 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
- 3. Piston: Removable polytetrafluoroethylene seat.
- 4. Closing Spring: Stainless steel.
- 5. Manual Opening Stem: Seal cap, plated-steel stem, and graphite seal.
- 6. End Connections: Socket, union, threaded, or flanged.
- 7. Maximum Opening Pressure: 0.50 psig.
- 8. Working Pressure Rating: 500 psig.

9. Maximum Operating Temperature: 275 deg F.

E. Service Valves:

- 1. Body: Forged brass with brass cap including key end to remove core.
- 2. Core: Removable ball-type check valve with stainless-steel spring.
- 3. Seat: Polytetrafluoroethylene.
- 4. End Connections: Copper spring.
- 5. Working Pressure Rating: 500 psig.
- F. Solenoid Valves: Comply with AHRI 760 and UL 429; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Plated steel.
 - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil.
 - 6. Working Pressure Rating: 400 psig.
 - 7. Maximum Operating Temperature: 240 deg F.
 - 8. Manual operator.
- G. Straight-Type Strainers:
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. Screen: 100-mesh stainless steel.
 - 3. End Connections: Socket or flare.
 - 4. Working Pressure Rating: 500 psig.
 - 5. Maximum Operating Temperature: 275 deg F.
- H. Angle-Type Strainers:
 - 1. Body: Forged brass or cast bronze.
 - 2. Drain Plug: Brass hex plug.
 - 3. Screen: 100-mesh monel.
 - 4. End Connections: Socket or flare.

- 5. Working Pressure Rating: 500 psig.
- 6. Maximum Operating Temperature: 275 deg F.

PART 3 - EXECUTION

3.1 PIPING SYSTEM INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Refer to Division 23 Section "Temperature Controls" and Sequence of Operation on the Drawings for solenoid valve controllers, control wiring, and sequence of operation.
- K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- M. Install refrigerant piping in protective conduit where installed belowground.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.

- P. When brazing, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Install pipe sleeves at penetrations in exterior walls and floor assemblies.
- R. Seal penetrations through fire and smoke barriers according to Division 07 Section "Through-Penetration Firestop Systems."
- S. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- T. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.
- U. Seal pipe penetrations through exterior walls according to Division 07 Section "Joint Sealants" for materials and methods.
- V. Identify refrigerant piping and valves according to Division 20 Section "Mechanical Identification."

3.2 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube." Brazing filler metals are specified in Division 20 Section "Basic Mechanical Materials and Methods."
- D. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 VALVE AND SPECIALTY INSTALLATION

- A. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.
- B. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 - 1. Solenoid valves.
 - 2. Thermostatic expansion valves.
 - 3. Hot-gas bypass valves.
 - 4. Compressor.

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Division 20 Section "Hangers and Supports."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.

- 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
- 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
- 4. Spring hangers to support vertical runs.
- 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4, and soft copper tubing: Continuous support v-shaped plastic pipe channel, maximum hanger spacing 8 feet.
 - 2. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
 - 3. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 4. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 5. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 6. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 7. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 - 8. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.
- D. Support multifloor vertical runs at least at each floor.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.6 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 - 4. Charge system with a new filter-dryer core in charging line.

3.7 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION

HVAC WATER TREATMENT

PART 1 1.1 1.2 1.3 1.4 1.5 1.6	RELATED E DEFINITION PERFORMA SUBMITTAL QUALITY A OWNER'S I	DOCUMENTS NS ANCE REQUIREMENTS LS SSURANCE NSTRUCTIONS NCE SERVICE	1 1 2 3 5 5		
2.1 2.2 2.3 2.4 2.5 2.6	MANUFACT MANUAL CI AUTOMATI GLYCOL FE CHEMICAL	S	6 7 7 0 1		
9ART 3 3.1 3.2 3.3 3.4 3.5 3.6	WATER AN INSTALLAT GLYCOL IN CONNECTI FIELD QUA	N 13 ALYSIS 13 ION 13 ISTALLATION 14 ONS 14 LITY CONTROL 15 RATION 16	3 3 4 4 5		
PART 1	- GENERAL				
1.1	RELATED [DOCUMENTS			
A.	Drawings and general provisions of the Contract, including General and Supplementary and Division 01 Specification Sections, apply to this Section.		ons		
B.	Related Sections include the following:				
	1. Divisi	on 20 Section "Mechanical General Requirements."			
	2. Divisi	on 20 Section "Basic Mechanical Materials and Methods."			
	3. Divisi	on 23 Section "Piping Systems Flushing and Chemical Cleaning."			
1 2	DEEINITION	NC			

DEFINITIONS 1.2

- CPVC: Chlorinated Polyvinyl Chloride. A.
- B. EEPROM: Electrically erasable, programmable read-only memory.
- EPDM: Ethylene-propylene-diene monomer. C.
- D. FMP: Fluoroelastomer.
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- F. MDA: Michigan Department of Agriculture.

- G. RO: Reverse osmosis.
- H. TDS: Total dissolved solids.
- I. PTFE: Polytetrafluoroethylene.
- J. UV: Ultraviolet.

1.3 PERFORMANCE REQUIREMENTS

- A. Furnish the services of a firm specializing in hydronic piping system water treatment work.
 - 1. This firm shall furnish and administer glycol for systems using glycol/water mix.
- B. Water quality for HVAC systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of HVAC equipment without creating a hazard to operating personnel or the environment.
- C. Base HVAC water treatment on quality of water available at Project site, HVAC system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.
- D. Closed, chilled water systems shall have the following water qualities:
 - 1. pH: Maintain a value within 9.0 to 10.5.
 - 2. "P" Alkalinity: Maintain a value within 100 to 500 ppm.
 - 3. Boron: Maintain a value within 100 to 200 ppm.
 - 4. Chemical Oxygen Demand: Maintain a maximum value of 100 ppm.
 - 5. Soluble Copper: Maintain a maximum value of 0.20 Insert number ppm.
 - 6. TDS: Maintain a maximum value of 5000 mmhos.
 - 7. Free Caustic Alkalinity: Maintain a maximum value of 20 ppm.
 - 8. Microbiological Limits:
 - a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/ml.
 - b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/ml.
 - c. Ammonia: Maintain a maximum value of 20 ppm.
 - d. Nitrate Reducers: Maintain a maximum value of 100 organisms/ml.
 - e. Sulfate Reducers: Maintain a maximum value of 0 organisms/ml.
 - f. Iron Bacteria: Maintain a maximum value of 0 organisms/ml.
- E. Closed hot-water heating systems with aluminum boilers shall have the following water qualities:
 - 1. pH: Maintain a value within 6.5 to 8.5, or as recommended by boiler manufacturer.
 - 2. Chemical Oxygen Demand: Maintain a maximum value of 100 ppm.
 - 3. Soluble Copper: Maintain a maximum value of 0.20 Insert number ppm.

- 4. TDS: Maintain a maximum value of 5000 mmhos.
- 5. Microbiological Limits:
 - Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/ml.
 - b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/ml.
 - c. Ammonia: Maintain a maximum value of 20 ppm.
 - d. Nitrate Reducers: Maintain a maximum value of 100 organisms/ml.
 - e. Sulfate Reducers: Maintain a maximum value of 0 organisms/ml.
 - f. Iron Bacteria: Maintain a maximum value of 0 organisms/ml.
- F. Passivation for Galvanized Steel: For the first 60 days of operation.
 - 1. pH: Maintain a value within 7 to 8.
 - 2. Calcium Carbonate Hardness: Maintain a value within 100 to 300 ppm.
 - 3. Calcium Carbonate Alkalinity: Maintain a value within 100 to 300 ppm.

1.4 SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for the following products:
 - 1. Bypass feeders.
 - 2. Water meters.
 - 3. Inhibitor injection timers.
 - 4. pH controllers.
 - 5. TDS controllers.
 - 6. Biocide feeder timers.
 - 7. Chemical solution tanks.
 - 8. Injection pumps.
 - 9. Ozone generators.
 - 10. UV-irradiation units.
 - 11. Chemical test equipment.
 - 12. Chemical material safety data sheets.
- B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to HVAC systems. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: Power and control wiring.

- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For sensors, injection pumps, and controllers to include in operation and maintenance manuals.
 - 1. Submit under provisions of Division 20 Section "Mechanical General Requirements" and as supplemented in this Section.
 - 2. Submit following operation and maintenance data as minimum for purified water system.
 - a. Furnish complete instruction manuals for installation, operation, maintenance, and lubrication requirements for each component of mechanical and electrical equipment or system.
 - b. Each instruction manual shall include, but not be limited to, the following:
 - 1) Diagrams and illustrations.
 - 2) Detailed description of the function of each principal component of the system.
 - 3) Performance and nameplate data.
 - 4) Installation instructions.
 - 5) Procedures for starting.
 - 6) Proper adjustment.
 - 7) Test procedures and recording of operation data.
 - 8) Procedures for operating.
 - 9) Shutdown and restart instructions.
 - 10) Emergency operating instructions and trouble-shooting guide.
 - 11) Safety precautions.
 - 12) Maintenance and overhaul instructions which shall include detailed assembly drawings with part numbers, recommended spare parts list, instructions for ordering spare parts (including suppliers names), and complete preventive maintenance instructions required to ensure satisfactory performance and longevity of the equipment.
 - 13) Lubrication instructions, which shall list points to be greased or oiled, shall recommend type, grade, and temperature range of lubricants, and shall recommend frequency of lubrication.
 - 14) List of electrical relay settings and control and alarm contact settings.
 - 15) Electrical interconnection wiring diagram for equipment furnished, including all control.
 - c. Manual shall be complete in all respects for all equipment, controls, accessories, and associated appurtenances.
 - d. Each O&M Manual shall be transmitted to the Owner's representative and Architect prior to installation of the equipment and all equipment shall be serviced by the manufacturer in accordance with the manufacturer's recommendations prior to operation. A service record shall be maintained on each item of equipment and shall be delivered to the Owner's representative and Architect prior to final acceptance of the project.

E. Other Informational Submittals:

1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in the "Performance Requirements" Article above.

- 2. An analytical review of make-up water characteristics for each treated system operating conditions, including such items as Langlier/Ryzner Indexes. Based on this review, provide a definitive description of treatment system developed to achieve specified objectives and include generic terms to describe product formulation content and function. Detailed proprietary formulation data is not required. However, manufacturer's standard published literature is not usually acceptable.
- 3. A step-by-step procedure to be followed by the Contractor during flushing, purging, disinfecting, draining, disposal, pretreatment and treatment operations. The intent of the step-by-step procedure is two-fold.
 - a. To assure that all essential permanent provisions to accomplish the above work are included during the course of construction.
 - b. To allow the Owner to accomplish the source procedures as subsequent maintenance operations.
- 4. Passivation Confirmation Report: Verify passivation of galvanized-steel surfaces, and confirm this observation in a letter to Architect.
- F. Provide OSHA equivalent materials form for hazardous substances.

1.5 QUALITY ASSURANCE

- A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.
- B. The water treatment supplier shall have an MDA Pesticide Applicator License in effect at the time of the bid and during the treatment period. The water treatment specialist shall be MDA Certified as a Pesticide Applicator in category 5B. Copies of Certifications shall be included in the suppliers transmittals.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- D. Regulatory Requirements: Conform to applicable codes for addition of non-potable chemicals to building mechanical systems, and for delivery to public sewage systems.

1.6 OWNER'S INSTRUCTIONS

- A. Provide a coordinated water treatment training program oriented to the needs common to operating personnel and maintenance personnel and to the needs of maintenance personnel only, sufficiently prior to acceptance of the work, upon mutually satisfactory arrangement with the Architect.
- B. Provide a total of not less than eight "field" hours encompassing mechanical, electrical, chemical, pollution and safety aspects, sufficient for personnel to operate and maintain systems and consistently achieve specified objectives, with subsequently scheduled guidance by the water treatment laboratory.
- C. Water treatment laboratory chemical engineer, complemented by instrument engineer, supplemented by Contractor's staff, shall comprise the training staff.
- D. Training materials shall include "survey," limits control program, shop drawings, operating and maintenance manuals, safe handling of chemicals, chemical testing, use of log sheets and demonstrations of installed and functioning systems.

E. On completion of the installation of the entire purified water system, conduct a thorough check and test of all components in the system. During this period, instruct the Owner's personnel in the theory, operation, and maintenance of the system. When this work is finished, start up the system and operate it for as long as necessary to complete two consecutive days of operation at the specified performance levels. During this period, continue to instruct the Owner's personnel.

1.7 MAINTENANCE SERVICE

- A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion, scale formation, and biological growth for cooling, chilled-water piping, heating, hot-water piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion, and shall include the following:
 - 1. Provide piping/plumbing recommendation to optimize chemical program results.
 - 2. Initial water analysis and HVAC water-treatment recommendations.
 - 3. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
 - 4. Quarterly field service and consultation for closed systems and monthly field service and consultation for open systems.
 - 5. Customer report charts and log sheets.
 - 6. Laboratory technical analysis.
 - 7. Analyses and reports of all chemical items concerning safety and compliance with government regulations.
- B. Glycol manufacturer shall provide testing services every six months of samples submitted by the Owner. Fluid shall be tested at no charge for: glycol percent, pH, reserve alkalinity, dissolved metals, magnesium, calcium, chlorides, acidity, and inhibitor components. Testing service shall be for the life of the fluid.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers/Suppliers: Unless otherwise specified, and subject to compliance with requirements, provide products by one of the following:
 - 1. Enerco Corporation (Doug White 517-627-8444 or 800-292-5908) Base Bid
 - 2. Ashland Specialty Chemical Company; Drew Industrial Div.
 - 3. Eldon Water (Patrick Racine, Christa Blades, or Pierre Beausoleil, 888-712-4000).
 - 4. GE Power & Water; Water & Process Technologies.
 - 5. Mitco Custom Water Treatment (Gordon Chapin, 800-516-2175).
 - 6. Nalco Company (734-751-2387).

7. H-O-H Chemicals, Inc.(H.V. Burton Co., 734-261-4220)

2.2 MANUAL CHEMICAL-FEED EQUIPMENT

- A. Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch fill opening in the top, and NPS 3/4 bottom inlet and top side outlet. Quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.
 - 1. Capacity: 2 gal.
 - 2. Minimum Working Pressure: 125 psig.

2.3 AUTOMATIC CHEMICAL-FEED EQUIPMENT

A. Water Meter:

- 1. AWWA C700, oscillating-piston, magnetic-drive, totalization meter.
- 2. Body: Bronze.
- 3. Minimum Working-Pressure Rating: 150 psig.
- 4. Maximum Pressure Loss at Design Flow: 3 psig.
- 5. Registration: Gallons or cubic feet.
- 6. End Connections: Threaded.
- 7. Controls: Flow-control switch with normally open contacts; rated for maximum 10 A, 250-V ac; and that will close at adjustable increments of total flow.

B. Inhibitor Injection Timers:

- Microprocessor-based controller with LCD display in NEMA 250, Type 12 enclosure with gasketed and lockable door. Interface for start/stop and status indication at central workstation as described in Division 23 Section "Temperature Controls."
- 2. Programmable timers with infinite adjustment over full range, and mounted in cabinet with hand-off-auto switches and status lights.
- Test switch.
- 4. Hand-off-auto switch for chemical pump.
- 5. Illuminated legend to indicate feed when pump is activated.
- 6. Programmable lockout timer with indicator light. Lockout timer to deactivate the pump and activate alarm circuits.
- 7. LCD makeup totalizer to measure amount of makeup and bleed-off water from two water meter inputs.
- C. pH Controller:

- Microprocessor-based controller, 1 percent accuracy in a range from zero to 14 units. Incorporate solid-state integrated circuits and digital LCD display in NEMA 250, Type 12 enclosure with gasketed and lockable door. Interface for start/stop and status indication at central workstation as described in Division 23 Section "Temperature Controls."
- 2. Digital display and touch pad for input.
- 3. Sensor probe adaptable to sample stream manifold.
- 4. High, low, and normal pH indication.
- 5. High or low pH alarm light, trip points field adjustable; with silence switch.
- 6. Hand-off-auto switch for acid pump.
- 7. Internal adjustable hysteresis or deadband.

D. TDS Controller:

- Microprocessor-based controller, 1 percent accuracy in a range from zero to 5000
 micromhos. Incorporate solid-state integrated circuits and digital LCD display in NEMA 250,
 Type 12 enclosure with gasketed and lockable door. Interface for start/stop and status
 indication at central workstation as described in Division 23 Section "Temperature Controls."
- 2. Digital display and touch pad for input.
- 3. Sensor probe adaptable to sample stream manifold.
- 4. High, low, and normal conductance indication.
- 5. High or low conductance alarm light, trip points field adjustable; with silence switch.
- 6. Hand-off-auto switch for solenoid bleed-off valve.
- 7. Bleed-off valve activated indication.
- 8. Internal adjustable hysteresis or deadband.
- 9. Bleed Valves:
 - a. Cooling Systems: Forged-brass body, globe pattern, general-purpose solenoid with continuous-duty coil, or motorized valve.
 - b. Steam Boilers: Motorized ball valve, steel body, and TFE seats and seals.

E. Biocide Feeder Timer:

- Microprocessor-based controller with digital LCD display in NEMA 250, Type 12 enclosure with gasketed and lockable door. Interface for start/stop and status indication at central workstation as described in Division 23 Section "Temperature Controls."
- 2. 24-hour timer with 14-day skip feature to permit activation any hour of day.

- Precision, solid-state, bleed-off lockout timer and clock-controlled biocide pump timer.
 Prebleed and bleed lockout timers.
- 4. Solid-state alternator to enable use of two different formulations.
- 5. 24-hour display of time of day.
- 6. 14-day display of day of week.
- 7. Battery backup so clock is not disturbed by power outages.
- 8. Hand-off-auto switches for biocide pumps.
- 9. Biocide A and Biocide B pump running indication.

F. Chemical Solution Tanks:

- 1. Tanks: Chemical-resistant reservoirs fabricated from high-density opaque polyethylene.
 - a. Molded cover with recess for mounting pump.
 - b. Capacity: 50 gal.
- 2. Containment: Low profile, forkliftable, spill pallet or containment basin with volume large enough to hold contents of largest tank.
 - a. Construction: High-density polyethylene.
 - b. Grates: Removable with non-slip surface.
 - c. Include work ramp for facilitating loading of tanks onto spill pallet or containment basin.

G. Chemical Solution Injection Pumps:

- 1. Self-priming, positive-displacement; rated for intended chemical with minimum 25 percent safety factor for design pressure and temperature.
- 2. Adjustable flow rate.
- 3. Metal and thermoplastic construction.
- 4. Built-in relief valve.
- 5. Fully enclosed, continuous-duty, single-phase motor. Comply with requirements in Division 20 Section "Motors."
- H. Chemical Solution Tubing: Polyethylene tubing with compression fittings and joints except ASTM A 269, Type 304, stainless steel for steam boiler injection assemblies.
- Injection Assembly:
 - 1. Corporation-stop injectors on piping mains in locations identified by water treatment specialist.
 - 2. Assembly Pressure/Temperature Rating: Minimum 600 psig at 200 deg F.

2.4 GLYCOL FEED SYSTEM

- A. Manufacturers:
 - Armstrong Pumps Inc.; GLA Series.
 - 2. Eldon Water
 - 3. H.V. Burton Co.; J.L. Wingert Co.
 - 4. ITT Bell & Gossett; GMU.
 - 5. John Wood Company (The); Automatic Glycol Make-Up System JWGP-54-055.
 - 6. Mitco Custom Water Treatment; Advantage Controls inc.; AGF Series.
- B. Description: Pre-piped and pre-wired system, consisting of a chemical metering pump, tank, adjustable differential pressure switch, pressure gage, pressure relief valve, and control panel.
- C. Chemical Tank Assembly:
 - 1. Tank: Industrial grade polyethylene with removable cover.
 - 2. Tank Capacity: 55 gallons.
 - 3. Support Frame: Welded steel.
 - 4. Discharge Piping: ASTM A53 black or galvanized steel. PVC or CPVC discharge piping is unacceptable.
 - 5. Include suction strainer, drain fitting, and interconnecting suction piping to the chemical pump.
- D. Chemical Metering Pump: Positive displacement type with capacity adjustable through 100 percent of range by means of an easily accessible control. The pump shall be adjustable while running, and the pumped fluid shall not contact any metals of the drive assembly. Pump motor suitable for 115 volts/single-phase/60 hertz, with a minimum capacity of 1.5 GPH at 100 psig.
- E. Hand/Off/Auto Motor Starters: Mounted on skid for chemical metering pump.
- F. Control Panel: Furnished with the chemical tank assembly. Control panel shall be the master control center for all electrical equipment associated with the chemical tank assembly and shall include:
 - 1. Hand/Off/Auto Switch: For the chemical metering pump. The pump shall run continuously while the switch is in the HAND position.
 - 2. LED Indicator: For loss of pressure.
 - 3. Enclosure: NEMA 250 Type 4X, with all controls, switches, and indicating lights mounted on the front.

4. Low Tank Level Interlock Alarm Circuit: To prevent the chemical pump from running dry. Circuit shall include pump lockout, tank level detector, visual alarm, audible alarm, and alarm silence button. Interlock circuit shall automatically reset when tank is refilled.

2.5 CHEMICAL TREATMENT TEST EQUIPMENT

- A. Test Kit: Manufacturer-recommended equipment and chemicals in a wall-mounting cabinet for testing pH, TDS, inhibitor, chloride, alkalinity, and hardness; sulfite and testable polymer tests for high-pressure boilers, and oxidizing biocide test for open cooling systems.
- B. Sample Cooler:
 - 1. Tube: Sample.
 - a. Size: NPS 1/4 tubing.
 - b. Material: ASTM A 666, Type 316 stainless steel.
 - c. Pressure Rating: Minimum 2000 psig.
 - d. Temperature Rating: Minimum 850 deg F.
 - 2. Shell: Cooling water.
 - a. Material: ASTM A 666, Type 304 stainless steel.
 - b. Pressure Rating: Minimum 250 psig.
 - c. Temperature Rating: Minimum 450 deg F.
 - 3. Capacities and Characteristics:
 - a. Tube: Sample.
 - 1) Flow Rate: 0.25 gpm.
 - 2) Entering Temperature: 400 deg F.
 - 3) Leaving Temperature: 88 deg F.
 - 4) Pressure Loss: 6.5 psig.
 - b. Shell: Cooling water.
 - 1) Flow Rate: 3 gpm.
 - 2) Entering Temperature: 70 deg F.
 - 3) Pressure Loss: 1.0 psig.
- C. Corrosion Test-Coupon Assembly (Corrosion Racks): Constructed of corrosive-resistant material, complete with piping, valves, and mild steel and copper coupons. Locate copper coupon downstream from mild steel coupon in the test-coupon assembly.
 - 1. Two-station rack for closed-loop systems.
 - 2. Four-station rack for open systems.
 - 3. Include 1-inch diameter, chemical resistant acrylic flowmeter suitable for 1 to 20 gpm at exit of coupon rack.

2.6 CHEMICALS

- A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment, and that can attain water quality specified in Part 1 "Performance Requirements" Article.
- B. Inhibited Propylene Glycol: Single nationally marketed brand of propylene glycol, inhibited for industrial applications, and readily available in bulk quantities from a firm offering free testing and advisory service to bulk users as to inhibitor replenishment needs. Premix inhibited glycol solution and deionized water to specified concentration. Automotive anti-freeze is unacceptable.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Dow Chemical; Dowfrost HD.
 - b. Eldon Water
 - c. Houghton Chemical Corporation.
 - d. Interstate Chemical Company; Intercool P300.
 - e. Nalco Company.
 - f. PVS-Nolwood Chemicals, Inc.; Chill PGHD.
- C. For Aluminum Boilers: Use one of the following:
 - Inhibited Propylene Glycol: Single nationally marketed brand of propylene glycol, specially inhibited for use in systems with aluminum boilers, and readily available in bulk quantities from a firm offering free testing and advisory service to bulk users as to inhibitor replenishment needs. Premix inhibited glycol solution and deionized water to specified concentration. Automotive anti-freeze is unacceptable.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Houghton Chemical Corporation; SAFE-T-THERM AL.
 - 2. Uninhibited Virgin Propylene Glycol: Single nationally marketed brand of propylene glycol readily available in bulk quantities from a firm offering free testing and advisory service to bulk users. Premix glycol solution and deionized water to specified concentration and add multi-metal corrosion inhibitor as recommended by boiler manufacturer. Automotive antifreeze is unacceptable.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Dow Chemical.
 - 2) Eldon Water
 - 3) Interstate Chemical Company.
 - 4) Nalco Company.
 - 5) PVS-Nolwood Chemicals, Inc.
 - Multi-Metal Corrosion Inhibitor and Dispersant: Neutral pH formulation designed to provide corrosion inhibition of ferrous, stainless, copper, and aluminum alloys in closed recirculating water systems, and also containing polymeric dispersants and sequestrants to aid in maintaining clean internal surfaces.

- a. Dispersant Package: Quadpolymer/phosphonate blend.
- b. Molybdenum Tracer: For ease of testing and control.
- c. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Fernox USA.
 - 2) H-O-H Water Technology, Inc.
 - 3) Rhomar Water Management, Inc.; Pro-Tek AL.
 - 4) Sentinel Performance Solutions Ltd.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

- A. Install chemical application equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.
- B. Install water testing equipment on wall near water chemical application equipment.
- C. Install meters and equipment requiring service at a maximum 60 inches above finished floor.
- D. Install interconnecting control wiring for chemical treatment controls and sensors.
- E. Mount sensors and injectors in piping circuits.
- F. Bypass Feeders: Install in closed hydronic systems, including hot-water heating, chilled water and dual-temperature water, and equipped with the following:
 - 1. Install bypass feeder in a bypass circuit on main header having pressure differential greater than or equal to 20 psig, unless otherwise indicated on Drawings.
 - 2. Install water meter in makeup water supply.
 - 3. Install test-coupon assembly in bypass circuit around circulating pumps, unless otherwise indicated on Drawings.
 - 4. Install a gate or full-port ball isolation valves on inlet, outlet, and drain below feeder inlet.
 - 5. Install a swing check on inlet after the isolation valve.
- G. Install automatic chemical-feed equipment for fluid-cooler spray water and include the following:
 - 1. Install makeup water softener.
 - 2. Install water meter in makeup water supply and bleed line.
 - 3. Install inhibitor injection pumps and solution tanks with injection timer sensing contacts in water meter.

- a. Pumps shall operate for timed interval on contact closure at water meter in makeup water supply connection. Injection pump shall discharge into boiler feedwater tank or feedwater supply connection at boiler.
- 4. Install test equipment and provide test-kit to Owner. Install test-coupon assembly in bypass circuit around circulating pumps, unless otherwise indicated on Drawings.
- 5. Install TDS controller with sensor and bleed valves.
 - a. Bleed valves shall cycle to maintain maximum TDS concentration.
- 6. Install pH sensor and controller with injection pumps and solution tanks.
 - a. Injector pumps shall operate to maintain required pH.
- 7. Install biocide feeder alternating timer with two sets of injection pumps and solution tanks.
 - a. Injection pumps shall operate to feed biocide on an alternating basis.
- 8. Install ozone generator with diffusers in condenser-water piping.
 - a. Ozone generator shall operate continuously with condenser-water flow.
- 9. Install UV-irradiation lamps in condenser-water piping.
 - a. UV lights shall operate continuously with condenser-water flow.
- H. Install glycol feed system in accordance with manufacturer's instructions.

3.3 GLYCOL INSTALLATION

- A. Clean and flush glycol system before adding premixed glycol solution.
- B. Fill systems indicated to have antifreeze or glycol solutions with the following premixed concentrations. Batch feeding of glycol is prohibited.
 - 1. Chilled-Water Piping: Minimum 30 percent propylene glycol.
- C. Perform tests determining strength of glycol and water solution and submit written test results.

3.4 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Dielectric fittings are specified in Division 20 Section "Basic Mechanical Materials and Methods."
- D. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Division 20 Section "Valves."

- E. Refer to Division 22 Section "Domestic Water Piping Specialties" for backflow preventers required in makeup water connections to potable-water systems.
- F. Confirm applicable electrical requirements in Division 26 Sections for connecting electrical equipment.
- G. Ground equipment according to Division 26 Section "Grounding and Bonding."
- H. Connect wiring according to Division 26 Section "Conductors and Cables."

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- B. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

- Inspect field-assembled components and equipment installation, including piping and electrical connections.
- 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
- 3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of HVAC systems' startup procedures.
- 4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
- 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
- 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
- 7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
- 8. Repair leaks and defects with new materials and retest piping until no leaks exist.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Sample boiler water at one-week intervals after boiler startup for a period of five weeks, and prepare test report advising Owner of changes necessary to adhere to Part 1 "Performance Requirements"

 Article for each required characteristic. Sample boiler water at four -week intervals following the

testing noted above to show that automatic chemical-feed systems are maintaining water quality within performance requirements specified in this Section.

- F. At four -week intervals following Substantial Completion, perform separate water analyses on hydronic systems to show that automatic chemical-feed systems are maintaining water quality within performance requirements specified in this Section. Submit written reports of water analysis advising Owner of changes necessary to adhere to Part 1 "Performance Requirements" Article.
- G. Comply with ASTM D 3370 and with the following standards:
 - 1. Silica: ASTM D 859.
 - 2. Steam System: ASTM D 1066.
 - 3. Acidity and Alkalinity: ASTM D 1067.
 - 4. Iron: ASTM D 1068.
 - 5. Water Hardness: ASTM D 1126.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment. Refer to Division 20 Section "Mechanical General Requirements."

END OF SECTION

PIPING SYSTEMS FLUSHING AND CHEMICAL CLEANING

PART 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	RELA SUMM DEFIN PERF SUBM QUAL	ERAL TED DOCUMENTS MARY NITIONS FORMANCE REQUIREMENTS MITTALS LITY ASSURANCE RDINATION	1 1 2 2 2			
PART 2 2.1 2.2	MANU	DUCTS JFACTURERS ERIALS	3			
PART 3 3.1 3.2 3.3 3.4 3.5 3.6	3.2 PREPARATION					
PART 1	- GENE	ERAL				
1.1	RELA	RELATED DOCUMENTS				
A.	Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.					
B.	Relate	Related Sections include the following:				
	1.	Division 20 Section "Mechanical General Requirements."				
	2.	Division 20 Section "Basic Mechanical Materials and Methods."				
	3.	Division 22 Section "Domestic Water Piping," for disinfection of potable water piping.				
	4.	Division 23 Section "Hydronic Piping."				
	5.	Division 23 Section "HVAC Water Treatment."				
1.2 SUMMARY		MARY				
A.	This Section includes chemical cleaning for the following piping systems:					
	1.	Heating hot water.				
	2.	Chilled water.				

Cleaning: Recirculating water containing chemical cleaning and passivation compounds.

DEFINITIONS

1.3

A.

B. Flushing: Using approved water on a once through basis.

1.4 PERFORMANCE REQUIREMENTS

- A. Furnish the services of a firm specializing in piping system chemical cleaning and water treatment work.
 - 1. For chemical cleaning: This firm shall select the required type and quantity, based on system volume, of cleaning compound, and method of application.
- B. Passivation for Galvanized Steel: Open loop only, for the first two weeks of operation.

1.5 SUBMITTALS

A. Product Data:

- 1. Proposed cleaning chemicals and quantities.
- 2. Proposed passivation chemicals and quantities.
- 3. Analyses and reports of all chemical items concerning safety and compliance with government regulations.
- B. Shop Drawings: Reduced scale plans indicating locations of velocity measurements.
- C. Field quality-control test reports.
- D. Other Informational Submittals:
 - 1. Proposed, step-by-step, chemical cleaning procedure.
 - 2. Circulation pump suction and discharge pressure at start and completion of chemical cleaning operations.
 - 3. Passivation Confirmation Report: Verify passivation of galvanized-steel surfaces, and confirm this observation in a letter to Architect.

1.6 QUALITY ASSURANCE

- A. Service Provider Qualifications: An experienced piping systems cleaning service provider capable of applying cleaning compounds as specified in this Section.
- B. Conduct safety meetings with Owner's Representative and personnel involved in the cleaning process.
- C. Assume responsibility for damage, necessary subsequent cleaning, flushing, and inspection of Work under the Contract which results from improper flushing and cleaning operations including failure to flush all dead-ends.

1.7 COORDINATION

A. Schedule flushing and chemical cleaning activities immediately after piping system pressure testing and immediately prior to piping system chemical treatment work to minimize internal oxidization or flash corrosion of piping systems.

- B. Coordinate chemical cleaning work with other work to avoid accidental chemical discharge, spillage, or spray out, and electrolytically originated system damage resulting from concurrent chemical cleaning and arc welding.
- C. Coordinate with work performed under other Sections to provide in-place temporary strainers, spool pieces, flushing hose connections, cross-over piping, and isolation and drain valves.
- D. Chillers shall not be cleaned with any chloride component.
- E. Boilers shall be flushed and cleaned to remove rust and oil deposits.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. System Cleaning Chemicals: Subject to compliance with requirements, provide products by one of the following:
 - 1. Enerco Corporation Base Bid
 - 2. PVS-Nolwood Chemicals, Inc.; PVS CHILL CLP Cleaner.
 - 3. Nalco Company; Nalco 2578.
 - 4. Mitco Custom Water Treatment.
 - 5. H-O-H Chemicals. Inc.
 - GE Power & Water; Water & Process Technologies.

2.2 MATERIALS

- A. Cleaning chemicals shall be as recommended by manufacturer and compatible with piping system components and connected equipment.
- B. Cleaning and passivation chemical shall consist of an inorganic phosphate, yellow metal corrosion inhibitor (Tolytriazole), dispersant, and oil emulsifier.
- C. Provide additional temporary and permanent piping, equipment, and materials required for chemical cleaning work.
- D. Use potable water for flushing and cleaning operations, unless directed otherwise by the Architect.

PART 3 - EXECUTION

3.1 ACCEPTABLE SERVICE PROVIDER

- A. Subject to compliance with requirements, provide chemical cleaning service by one of the following:
 - 1. Enerco Corporation (Doug White 517-627-8444 or 800-292-5908) Base Bid
 - 2. GE Power & Water; Water & Process Technologies.

- 3. Mitco Custom Water Treatment (Gordon Chapin, 800-516-2175).
- 4. Nalco Company (Brian Irwin or Tony Mackovski, 248-344-7564).
- 5. H-O-H Chemicals, Inc[/H.V. Burton Co.
- 6. Eldon Water (Patrick Racine, Christa Blades, or Pierre Beausoleil, 888-712-4000).

3.2 PREPARATION

- A. Prior to flushing and cleaning activities, drain the system of all water used for hydrostatic testing.
- B. Temporarily connect dead-end supply and return piping as necessary to result in recirculating system in which no lines are left static for purposes of flushing and cleaning. Refer to System Piping Diagrams on the Drawings for suggested locations of temporary connections for flushing and cleaning purposes.
- C. Select three locations for monitoring flow rates.

3.3 INITIAL FLUSHING

- A. Remove loose dirt, mill scale, metal chips, weld beads, rust and other deleterious substances without damage to system components.
- B. Bypass factory cleaned equipment, unless acceptable means of protection are provided and subsequent inspection of water boxes and other "hide-out" areas takes place.
- C. Isolate or protect clean system components including pumps and pressure vessels and remove components which may be damaged.
- D. Open valves, drains, vents and strainers at all system levels.
- E. Remove plugs, caps, spool pieces and components to facilitate early discharge from system.
- F. Sectionalize system if possible to obtain debris carrying velocity of 6 FPS.
- G. Connect dead-end supply and return headers as necessary or provide terminal drains in end caps.
- H. Install temporary strainers where necessary to protect down-stream equipment.
- I. Supply and remove flushing water and drainage by fire hoses, garden hoses, temporary and permanent piping and Contractor's booster pumps.
- J. Flush for not less than one hour.
- K. Inspect system including basins to determine if debris accumulation requires dewatering and cleaning prior to next phase work.

3.4 FLUSHING AND CHEMICAL CLEANING PROCEDURES

A. Remove without chemical or mechanical damage to system components adherent dirt (organic soil), oil and grease (hydrocarbons), welding and soldering flux, mill varnish, pipe compounds,

rust (iron oxide), and other deleterious substances not removed by initial flushing. Removal of tightly adherent mill scale is not required.

- B. Fill system with fresh water and add manufacturer's recommended volume of system cleaner to remove grease and petroleum products from piping. Circulate solution for 24 hours at a minimum velocity of 6 fps.
 - 1. Utilize defoamers to preclude damage to existing work and adjacent electrical equipment.
 - 2. Utilize heat to maximize effectiveness of compounds or use live steam injection where practical and safe. Do not raise cleaning water temperature in excess of controlled limits.
- C. Monitor flow rates and clean strainers as required to maintain minimum specified velocity during the entire circulation and chemical cleaning period.
- Cleaning of new piping systems shall be completed prior to connection of systems to existing services.
- E. Install temporary strainer screens between pipe flange faces where necessary to protect primary system from branch connections during chemical cleaning procedures.
- F. Following chemical cleaning:
 - 1. Remove, clean, and reinstall strainer baskets.
 - 2. Blow down and clean low points, dirt legs, and traps.
- G. Drain systems:
 - 1. Check with local authorities concerning discharge requirements and submit copies of letters or reports.
 - 2. If acceptable, drain system to sanitary drainage system.
 - 3. Do not under any circumstances drain to storm drainage system or open drainage ditch.
 - 4. If discharge requirements do not allow discharge to sanitary sewer, secure the services of a licensed disposal Contractor.
 - 5. Disposal Contractors:
 - a. Dynecol.
 - b. SQS Environmental.
- H. Perform final flush to remove any remaining debris and chemical from the system:
 - 1. Flush dead ends and isolated pre-cleaned equipment.
 - 2. Operate valves to dislodge debris in valve body.
 - Flush for not less than 1 hour.

3.5 PLACING INTO OPERATION

- A. Clean strainers.
- B. Dewater and clean new sumps, basins, storage vessels and pressure vessels.
- C. Disassemble, inspect, clean, repair, replace and reassemble any critical component or questionable item. Bellows style, and hose and braid flexible connectors left in place shall be removed and cleaned.
- D. Preliminarily adjust control valves.
- E. Install clean primary filter elements, if necessary, as determined by both pressure differential across filter and visual inspection of filter elements.
- F. Close-up and fill system as soon as possible to minimize corrosion of untreated surfaces.
- G. Vent air from system and adjust fill valve.
- H. Immediately after completion of flushing and chemical cleaning, fill systems with potable water and make ready for chemical treatment as specified in Division 23 Section "HVAC Water Treatment."

3.6 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Withdraw, inspect, and test samples of water from each system after flushing and chemical cleaning is completed, to ensure system is free of contaminants.

END OF SECTION

METAL DUCTS

PAF		GENERAL	
		RELATED DOCUMENTS	
	1.2	SUMMARY	
	1.3	DEFINITIONS	
	1.4 1.5	SYSTEM DESCRIPTIONPERFORMANCE REQUIREMENTS	2 . د
	1.6	SUBMITTALS	
	1.7	QUALITY ASSURANCE	
	1.8	COORDINATION	
DΛI	этэ	PRODUCTS	1
ΓAI	2.1	MANUFACTURERS	۰. ۵
	2.2	SHEET METAL MATERIALS	
	2.3	ZERO-CLEARANCE PREFABRICATED RANGE HOOD EXHAUST DUCT	. 5
	2.4	DUCT LINER	. 6
	2.5	SEALANTS AND GASKETS	
	2.6	HANGERS AND SUPPORTS	
	2.7	ROOF MOUNTED DUCT SUPPORTS	
	2.8 2.9	RECTANGULAR DUCT FABRICATION	
		ROUND AND FLAT-OVAL DUCT AND FITTING FABRICATION	
		DOUBLE-WALL DUCT AND FITTING FABRICATION	
PAF	RT 3 -	EXECUTION	15
		DUCTWORK APPLICATION SCHEDULE	
	3.2 3.3	DUCTWORK APPLICATION SCHEDULE DUCT INSTALLATION	
	3.4	INSTALLATION OF EXPOSED DUCTWORK	
	3.5	DUCT SEALING	
	3.6	HANGING AND SUPPORTING	16
	3.7	CONNECTIONS	
	3.8	PAINTING	
	3.9	FIELD QUALITY CONTROL	17
	3.10	START UP	17

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 23 Section "Nonmetal Ducts" for fabric ducts, fibrous-glass ducts, thermoset FRP ducts, thermoplastic ducts, PVC ducts, and concrete ducts.
 - 3. Division 23 Section "HVAC Casings" for factory- and field-fabricated casings for mechanical equipment.
 - 4. Division 23 Section "Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.2 SUMMARY

- A. This Section includes metal ducts for supply, return, outside, relief air, and exhaust air-distribution systems in pressure classes from minus 6- to plus 6-inch wg.
- B. Products Installed but Not Furnished Under This Section:
 - Terminal boxes which are to be furnished by the Laboratory Airflow Controls Contractor shall be installed by the Mechanical Contractor. Refer to Division 23 Section "Laboratory Airflow Controls."

1.3 DEFINITIONS

- A. Duct Sizes: Inside clear dimensions. For lined ducts, maintain sizes inside lining.
- B. Low Pressure: Up to 2 inch WG and velocities less than 1,500 fpm. Construct for 2 inch WG positive or negative static pressure.
- C. Medium Pressure: Greater than 2 inch WG to 6 inch WG and velocities greater than 1,500 fpm and less than 2,500 fpm. Construct for 6 inch WG positive or negative static pressure.
- D. High Pressure: Greater than 6 inch WG to 12 inch WG and velocities greater than 2,500 fpm. Construct for 12 inch WG positive or negative static pressure.
- E. FRP: Fiberglass-reinforced plastic.
- F. PVC: Polyvinyl Chloride.

1.4 SYSTEM DESCRIPTION

A. Duct system design, as indicated, has been used to select size and type of air-moving and - distribution equipment and other air system components. Changes to layout or configuration of duct system must be specifically approved in writing by Architect. Accompany requests for layout modifications with calculations showing that proposed layout will provide original design results without increasing system total pressure.

1.5 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Application Schedule" Article.

1.6 SUBMITTALS

- A. Shop Drawings: Drawn to 1/4 inch equals 1 foot scale. Show fabrication and installation details for metal ducts. Shop drawings shall be reviewed and approved by the Architect prior to any fabrication.
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Duct layout indicating sizes and pressure classes.
 - 3. Elevations of top and bottom of ducts.
 - 4. Dimensions of main duct runs from building grid lines.

- 5. Fittings.
- 6. Reinforcement and spacing.
- 7. Seam and joint construction.
- 8. Penetrations through fire-rated and other partitions.
- 9. Equipment installation based on equipment being used on Project.
- 10. Duct accessories, including access doors and panels.
- 11. Hangers and supports, including methods for duct and building attachment, vibration isolation.
- B. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
- C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Other systems installed in same space as ducts.
 - 3. Ceiling- and wall-mounting access doors and panels required to provide access to dampers and other operating devices.
 - 4. Ceiling-mounting items, including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- D. Welding certificates.
- E. Field quality-control test reports.
- 1.7 QUALITY ASSURANCE
 - A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
 - B. NFPA Compliance:
 - 1. NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."

- 2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- C. Comply with NFPA 96, "Ventilation Control and Fire Protection of Commercial Cooking Operations," Ch. 3, "Duct System," for range hood ducts, unless otherwise indicated.

1.8 COORDINATION

- A. Sheet metal trades shall cooperate fully with the Laboratory Airflow Controls Trades and shall attend all field installation training sessions.
- B. Sheet metal trades shall cooperate fully with the Test and Balance Contractor and provide all miscellaneous caps and any other materials required for structural integrity and leakage testing of the complete duct system in whole or in part. Refer to Division 23 Section "Testing, Adjusting and Balancing."
 - 1. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- C. Sheet metal trades shall participate in the above ceiling coordination program. Refer to Division 01 requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SHEET METAL MATERIALS

- A. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A 653/A 653M and having G90 coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.
- C. PVC-Coated Galvanized Steel: Acceptable by authorities having jurisdiction for use in fabricating ducts with UL 181, Class 1 listing. Lock-forming-quality, galvanized sheet steel complying with ASTM A 653/A 653M and having G60 coating designation. Factory-applied PVC coatings shall be 4 mils thick on exterior sheet metal surfaces of ducts and fittings exposed to corrosive conditions and minimum 1 mil thick on interior surfaces.
- D. PVC-Coated Galvanized Steel: Acceptable by authorities having jurisdiction for use in fabricating ducts with UL 181, Class 1 listing. Lock-forming-quality, galvanized sheet steel complying with ASTM A 653/A 653M and having G60 coating designation. Factory-applied PVC coatings shall be 4 mils thick on sheet metal surfaces of ducts and fittings exposed to corrosive conditions and 4 mils thick on opposite surfaces.
- E. PVC-Coated Galvanized Steel: Acceptable by authorities having jurisdiction for use in fabricating ducts with UL 181, Class 1 listing. Lock-forming-quality, galvanized sheet steel complying with ASTM A 653/A 653M and having G60 coating designation. Factory-applied PVC coatings shall be 4 mils thick on interior sheet metal surfaces of ducts and fittings exposed to corrosive conditions and minimum 1 mil thick on exterior surfaces.

- F. Carbon-Steel Sheets: ASTM A 366/A 366M, cold-rolled sheets; commercial quality; with oiled, matte finish for exposed ducts.
- G. Stainless Steel: ASTM A 480/A 480M, Type 316, and having a No. 2D finish for concealed ducts and No. 4 for exposed ducts.
- H. Aluminum Sheets: ASTM B 209, alloy 3003, temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- I. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts.
- J. Tie Rods: For rectangular ducts having a side dimension of 48 inches or greater. Galvanized steel, 3/8-inch minimum diameter.

2.3 ZERO-CLEARANCE PREFABRICATED RANGE HOOD EXHAUST DUCT

- A. Manufacturers:
 - 1. AMPCO; American Metal Products; Model IVSI-4ZC.
 - 2. Metal-Fab Inc.; Model IPIC-3G/4G.
 - 3. Schebler Chimney Systems; FyreGuard.
 - 4. Selkirk Inc.; Selkirk Metalbestos; ZeroClear Z3.
- B. Description: Factory-fabricated, -listed, and -labeled, double-wall ducts tested according to UL 1978 and rated for 500 deg F continuously, or 2000 deg F for 30 minutes; with positive or negative duct pressure and complying with NFPA 211, and suitable for zero-clearance installations.
- C. Construction: Inner shell and outer jacket separated by a 3-inch to 4-inch annular space filled with high-temperature, ceramic-fiber insulation.
 - 1. Inner Shell: ASTM A 666, Type 304 [316] stainless steel.
 - 2. Outer Jacket: Aluminized steel indoors and Type 304 stainless steel outdoors. Seams shall be fully welded.
- D. Gaskets and Flanges: Ensure that gaskets and sealing materials are rated at 1500 deg F minimum.
- E. Hood Connectors: Constructed from same material as grease duct with internal or external continuously welded or brazed joints.
- F. Accessories: Tees, elbows, increasers, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly. Include unique components required to comply with NFPA 96 including cleanouts, transitions, adapters, and drain fittings.
 - 1. Termination: Suitable for connection to kitchen exhaust fan.
- G. Grease Duct Supports: Construct duct bracing and supports from non-combustible material.
 - 1. Design bracing and supports to carry static and seismic loads within stress limitations of the International Building Code.

2. Ensure that bolts, screws, rivets and other mechanical fasteners do not penetrate duct walls.

2.4 DUCT LINER

- A. Fibrous-Glass Liner: Comply with NFPA 90A or NFPA 90B and with NAIMA AH124.
 - 1. Manufacturers:
 - a. CertainTeed Corp.; Insulation Group.
 - b. Johns Manville International, Inc.
 - c. Knauf Fiber Glass GmbH.
 - 2. Materials: ASTM C 1071, Type I, flexible; surfaces exposed to airstream shall be coated to prevent erosion of glass fibers.
 - a. Thickness: [1 inch] [1-1/2 inches] [2 inches].
 - b. Density: 1-1/2 pounds per cubic foot.
 - c. Thermal Conductivity (k-Value): 0.26 at 75 deg F mean temperature.
 - d. Fire-Hazard Classification: Maximum flame-spread index of 25 and smokedeveloped index of 50 when tested according to ASTM E 84.
 - e. Maximum Operating Temperature: 250 deg F when tested according to ASTM C 411.
 - f. Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 - g. Mechanical Fasteners: Galvanized steel suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in duct.
 - 1) Tensile Strength: Indefinitely sustain a 50-lb- tensile, dead-load test perpendicular to duct wall.
 - 2) Fastener Pin Length: As required for thickness of insulation and without projecting more than 1/8 inch into airstream.
 - 3) Adhesive for Attaching Mechanical Fasteners: Comply with fire-hazard classification of duct liner system.
 - 3. Noise reduction coefficient (NRC): Sound absorption coefficients shall not be less than those in the table below as tested by ASTM C423 using an ASTM E795 Type A mounting.

Sound absorption coefficients at	
octave band center frequencies, Hz	

Thickness Inches (mm)	125	250	500	1000	2000	4000	NRC
1 (25)	.08	.31	.59	.84	.91	.90	.70
1-1/2 (38)	.10	.47	.83	.93	.97	.96	.80
2 (51)	.24	.64	.96	1.03	1.00	.99	.90

2.5 SEALANTS AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Elastomeric Sealant Tape: 3 inches wide; modified butyl adhesive backed.

- 1. Manufacturers:
 - a. Hardcast; Foil-Grip 1402 and Foil-Grip 1402-181BFX.
- C. Water-Based Joint and Seam Sealant:
 - 1. Manufacturers:
 - a. Hardcast; Flex-Grip 550 and Versa-Grip 181.
 - b. Polymer Adhesives; No. 11.
 - c. United McGill.
 - 2. Application Method: Brush on.
 - 3. Solids Content: Minimum 65 percent.
 - 4. Shore A Hardness: Minimum 20.
 - 5. Water resistant.
 - 6. Mold and mildew resistant.
 - 7. VOC: Maximum 75 g/L (less water).
 - 8. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 9. Service: Indoor or outdoor.
 - 10. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Solvent-Based Joint and Seam Sealant:
 - 1. Manufacturers:
 - a. Hardcast; Sure-Grip 404.
 - b. United McGill.
 - 2. Application Method: Brush on.
 - 3. Base: Synthetic rubber resin.
 - 4. Solvent: Toluene and heptane.
 - 5. Solids Content: Minimum 60 percent.
 - 6. Shore A Hardness: Minimum 60.
 - 7. Water resistant.
 - 8. Mold and mildew resistant.
 - 9. VOC: Maximum 395 g/L.
 - 10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.

- 11. Service: Indoor or outdoor.
- 12. Substrate: Compatible with galvanized sheet steel, stainless steel, or aluminum sheets.
- E. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- F. Gaskets: Chloroprene elastomer, 40 durometer, 1/8 inch thick, full face, one piece vulcanized or dovetailed at joints.
- G. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

- A. Building Attachments: Concrete inserts, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
- B. Hanger Materials: Galvanized sheet steel or threaded steel rod.
 - 1. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
 - 2. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
 - 3. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct."
 - 4. Galvanized-steel straps attached to aluminum ducts shall have contact surfaces painted with zinc-chromate primer.
- C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials. Attachments for stainless steel and PVC-coated duct shall be stainless steel.
- D. Trapeze and Riser Supports: Steel shapes complying with ASTM A 36/A 36M.
 - Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.

- 2. Supports for Stainless-Steel Ducts: Stainless-steel support materials.
- 3. Supports for Aluminum Ducts: Aluminum support materials unless materials are electrolytically separated from ducts.
- E. Load Rated Cable Suspension System for Noncorrosive Environments: Tested to five times the Safe Working Loads and verified by the SMACNA Testing and Research Institute.
 - 1. Cable: Aircraft quality 7 x 7 and 7 x 19 wire rope.
 - a. Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
 - b. Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
 - 2. Fastener: One-piece, die-cast zinc housing with Type 302 S26 stainless steel hardened and tempered springs, and oil impregnated, sintered, hardened and tempered steel locking wedges.
 - 3. End Fixings: Loop, stud or toggle; or plain end suitable for wire rope beam clamp.
 - 4. Manufacturers:
 - a. Ductmate Industries, Inc.; Clutcher and EZ-Lock.
 - b. Duro Dyne Corp.; Dyna-Tite System.
 - c. Gripple Inc.; Hang-Fast System.
- F. Stainless Steel Load Rated Cable Suspension System for Corrosive Environments: Tested to five times the Safe Working Loads and verified by the SMACNA Testing and Research Institute.
 - 1. Cable: Aircraft quality stainless steel 7 x 7 and 7 x 19 wire rope.
 - a. Stainless steel complying with ASTM A 492.
 - 2. Fastener: One-piece, stainless steel housing with Type 302 S26 stainless steel hardened and tempered springs, and ceramic locking wedges.
 - End Fixings:
 - a. Loop End: Type 316L/A4 stainless steel.
 - b. Stud or Toggle End: Type 304L/A2 stainless steel.
 - c. Plain end suitable for stainless steel wire rope beam clamp.
 - 4. Manufacturers:
 - a. Ductmate Industries, Inc.; Clutcher and EZ-Lock.
 - b. Duro Dyne Corp.; Dyna-Tite System.
 - c. Gripple Inc.; Hang-Fast System.
- G. Welded Supports: Structural steel shapes with zinc rich paint. Equivalent, proprietary design, rolled steel structural support systems may be used in lieu of mill rolled structural steel.
- 2.7 ROOF MOUNTED DUCT SUPPORTS
 - A. General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted duct.

- B. Support: Assembly of bases, and vertical and horizontal members, for roof installation without membrane penetration.
 - Manufacturer:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. ERICO/Michigan Hanger Co.
 - c. MIRO Industries.
 - d. Portable Pipe Hangers.
 - 2. Bases: Two or more plastic, stainless steel, or recycled rubber.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.

2.8 RECTANGULAR DUCT FABRICATION

- A. Fabricate ducts, elbows, transitions, offsets, branch connections, and other construction according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" and complying with requirements for metal thickness, reinforcing types and intervals, tie-rod applications, and joint types and intervals.
 - 1. Lengths: Fabricate rectangular ducts in lengths appropriate to reinforcement and rigidity class required for pressure class.
 - Deflection: Duct systems shall not exceed deflection limits according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."
 - 3. Internal Tie Rod: Ducts having a side dimension of 48 inches or greater only.
- B. Transverse Joints: Prefabricated slide-on joints and components constructed using manufacturer's and SMACNA guidelines for material thickness, reinforcement size and spacing, and joint reinforcement.
 - 1. Manufacturers:
 - Ductmate Industries, Inc.
 - b. Nexus Inc.
 - c. Ward Industries, Inc.
- Cross Breaking or Cross Beading: Cross break or cross bead duct sides 19 inches and larger and 0.0359 inch thick or less, with more than 10 sq. ft. of nonbraced panel area unless ducts are lined.

2.9 APPLICATION OF LINER IN RECTANGULAR DUCTS

- A. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
- B. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
- C. Butt transverse joints without gaps and coat joint with adhesive.
- D. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.

- E. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and standard liner product dimensions make longitudinal joints necessary.
- F. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm or greater.
- G. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - 1. Fan discharges.
 - 2. Intervals of lined duct preceding unlined duct.
 - 3. Upstream edges of transverse joints in ducts where air velocities are greater than 2500 fpm or where indicated.
- H. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 - 1. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
- I. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.10 ROUND AND FLAT-OVAL DUCT AND FITTING FABRICATION

- A. Diameter as applied to flat-oval ducts in this Article is the diameter of a round duct with a circumference equal to the perimeter of a given size of flat-oval duct.
- B. Round and Flat-Oval, Spiral Lock-Seam Ducts:
 - 1. Manufacturers:
 - a. Eastern Sheet Metal (ESM).
 - b. LaPine Metal Products.
 - c. Lindab Inc.
 - d. McGill AirFlow Corporation.
 - e. SEMCO Incorporated.
 - f. SET Duct Manufacturing, Inc.
 - g. Tangent Air, Inc.
 - h. Universal Spiral Air.
- C. Round, Spiral Lock-Seam Ducts: Fabricate supply ducts of galvanized steel according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" or SMACNA "Industrial Duct Construction Standards" as required based on pressure class.
 - 1. Round fittings shall be factory fabricated welded design. Use of field fabricated fittings (welded design) shall only be permitted when factory fabricated fittings are unavailable.
- D. Flat-Oval, Spiral Lock-Seam Ducts: Fabricate supply ducts according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" or SMACNA "Industrial Duct Construction Standards" as required based on pressure class.

1. Flat-oval fittings shall be factory fabricated welded design. Use of field fabricated fittings (welded design) shall only be permitted when factory fabricated fittings are unavailable.

E. Duct Joints:

- 1. Ducts up to 20 Inches in Diameter: Interior, center-beaded slip coupling, sealed before and after fastening, attached with sheet metal screws.
- 2. Ducts 21 to 72 Inches in Diameter: Three-piece, gasketed, flanged joint consisting of two internal flanges with sealant and one external closure band with gasket.
- 3. Ducts Larger Than 72 Inches in Diameter: Companion angle flanged joints per SMACNA "HVAC Duct Construction Standards--Metal and Flexible." Figure 3-2.
- 4. Bolts and fasteners for galvanized steel duct shall be carbon steel, zinc coated per ASTM A153. Bolts and fasteners for stainless steel and polyvinyl chloride coated steel duct shall be stainless steel.
- 5. Round Ducts: Prefabricated connection system consisting of double-lipped, EPDM rubber gasket. Manufacture ducts according to connection system manufacturer's tolerances.
 - a. Manufacturers:
 - 1) AccuDuct Mfg. Inc.
 - 2) Ductmate Industries, Inc.
 - 3) Eastern Sheet Metal (ESM).
 - 4) Lindab Inc.
 - 5) Universal Spiral Air.
- 6. Flat-Oval Ducts: Prefabricated connection system consisting of two flanges and one synthetic rubber gasket.
 - a. Manufacturers:
 - 1) AccuDuct Mfg. Inc.
 - 2) Ductmate Industries, Inc.
 - 3) Eastern Sheet Metal (ESM).
 - 4) McGill AirFlow Corporation.
 - 5) SEMCO Incorporated.
 - 6) Universal Spiral Air.
- F. Low Pressure Ductwork (plus or minus 2 inches W.G. Static Pressure Class)
 - 1. Construct T's, bends, and elbows with radius of not less than 1-1/2 times width of duct on centerline. Where not possible provide single thickness turning vanes.
 - 2. Increase duct sizes gradually, not exceeding 15 degrees divergence wherever possible. Divergence upstream of equipment shall not exceed 30 degrees; convergence downstream shall not exceed 45 degrees.
- G. Medium and High Pressure Ductwork (For Static Pressure Class Greater than plus or minus 2 inches W.G.)
 - 1. Construct T's, bends, and elbows with radius of not less than 1-1/2 times width of duct on centerline. Where not possible provide single thickness turning vanes.

- 2. Transform duct sizes gradually, not exceeding 15 degrees divergence and 30 degrees convergence.
- 3. Fabricate continuously welded medium and high pressure round and oval duct fittings two gauges heavier than duct gauges indicated in SMACNA Standard. Joints shall be minimum 4 inch cemented slip joint, brazed or electric welded. Prime coat welded joints.
- 4. Provide standard 45 degree lateral wye takeoffs unless otherwise indicated where 90 degree conical tee connections may be used.
- H. 90-Degree Tees and Laterals and Conical Tees: Fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," with metal thicknesses specified for longitudinal-seam straight ducts.
- I. Diverging-Flow Fittings: Fabricate with reduced entrance to branch taps and with no excess material projecting from fitting onto branch tap entrance.
- J. Fabricate elbows using die-formed, gored, pleated, or mitered construction. Bend radius of dieformed, gored, and pleated elbows shall be 1-1/2 times duct diameter. Unless elbow construction type is indicated, fabricate elbows as follows:
 - Mitered-Elbow Radius and Number of Pieces: Welded construction complying with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," unless otherwise indicated.
 - 2. Round Mitered Elbows: Welded construction with the following metal thickness for pressure classes from minus 2- to plus 2-inch wg:
 - a. Ducts 3 to 36 Inches in Diameter: 0.034 inch.
 - b. Ducts 37 to 50 Inches in Diameter: 0.040 inch.
 - c. Ducts 52 to 60 Inches in Diameter: 0.052 inch.
 - d. Ducts 62 to 84 Inches in Diameter: 0.064 inch.
 - 3. Round Mitered Elbows: Welded construction with the following metal thickness for pressure classes from 2- to 10-inch wg:
 - a. Ducts 3 to 26 Inches in Diameter: 0.034 inch.
 - b. Ducts 27 to 50 Inches in Diameter: 0.040 inch.
 - c. Ducts 52 to 60 Inches in Diameter: 0.052 inch.
 - d. Ducts 62 to 84 Inches in Diameter: 0.064 inch.
 - 4. Flat-Oval Mitered Elbows: Welded construction with same metal thickness as longitudinal-seam flat-oval duct.
 - 5. 90-Degree, 2-Piece, Mitered Elbows: Use only for supply systems or for material-handling Class A or B exhaust systems and only where space restrictions do not permit using radius elbows. Fabricate with single-thickness turning vanes.
 - 6. Round Elbows 8 Inches and Less in Diameter: Fabricate die-formed elbows for 45- and 90-degree elbows and pleated elbows for 30, 45, 60, and 90 degrees only. Fabricate nonstandard bend-angle configurations or nonstandard diameter elbows with gored construction.
 - 7. Round Elbows 9 through 14 Inches in Diameter: Fabricate gored or pleated elbows for 30, 45, 60, and 90 degrees unless space restrictions require mitered elbows. Fabricate

- nonstandard bend-angle configurations or nonstandard diameter elbows with gored construction.
- 8. Round Elbows Larger Than 14 Inches in Diameter and All Flat-Oval Elbows: Fabricate gored elbows unless space restrictions require mitered elbows.
- 9. Die-Formed Elbows for Sizes through 8 Inches in Diameter and All Pressures 0.040 inch thick with 2-piece welded construction.
- 10. Round Gored-Elbow Metal Thickness: Same as non-elbow fittings specified above.
- 11. Flat-Oval Elbow Metal Thickness: Same as longitudinal-seam flat-oval duct specified above.
- 12. Pleated Elbows for Sizes through 14 Inches in Diameter and Pressures through 10-Inch wg: 0.022 inch.

2.11 DOUBLE-WALL DUCT AND FITTING FABRICATION

A. Manufacturers:

- 1. Eastern Sheet Metal (ESM).
- 2. LaPine Metal Products.
- 3. Lindab Inc.
- 4. McGill AirFlow Corporation.
- 5. SEMCO Incorporated.
- 6. SET Duct Manufacturing, Inc.
- 7. Tangent Air Inc.
- 8. Universal Spiral Air.
- B. Ducts: Fabricate double-wall (insulated) ducts with an outer shell and an inner duct. Dimensions indicated are for inner ducts.
 - 1. Outer Shell: Base metal thickness on outer-shell dimensions. Fabricate outer-shell lengths 2 inches longer than inner duct and insulation and in metal thickness specified for single-wall duct.
 - 2. Insulation: 1-inch- thick fibrous glass, unless otherwise indicated. Terminate insulation where double-wall duct connects to single-wall duct or uninsulated components, and reduce outer shell diameter to inner duct diameter.
 - a. Thermal Conductivity (k-Value): 0.26 at 75 deg F mean temperature.
 - 3. Solid Inner Ducts: Use the following sheet metal thicknesses and seam construction:
 - a. Ducts 3 to 8 Inches in Diameter: 0.019 inch with standard spiral-seam construction.
 - b. Ducts 9 to 42 Inches in Diameter: 0.019 inch with single-rib spiral-seam construction.
 - c. Ducts 44 to 60 Inches in Diameter: 0.022 inch with single-rib spiral-seam construction.
 - d. Ducts 62 to 88 Inches in Diameter: 0.034 inch with standard spiral-seam construction.

- 4. Perforated Inner Ducts: Fabricate with 0.028-inch- thick sheet metal having 3/32-inch- diameter perforations, with overall open area of 23 percent.
 - a. Provide 1 mil mylar liner between acoustical insulation and perforated inner liner.
- 5. Maintain concentricity of inner duct to outer shell by mechanical means. Prevent dislocation of insulation by mechanical means.
- C. Fittings: Fabricate double-wall (insulated) fittings with an outer shell and an inner duct.
 - 1. Solid Inner Ducts: Use the following sheet metal thicknesses:
 - a. Ducts 3 to 34 Inches in Diameter: 0.028 inch.
 - b. Ducts 35 to 58 Inches in Diameter: 0.034 inch.
 - c. Ducts 60 to 88 Inches in Diameter: 0.040 inch.
 - 2. Perforated Inner Ducts: Fabricate with 0.028-inch- thick sheet metal having 3/32-inch-diameter perforations, with overall open area of 23 percent.

PART 3 - EXECUTION

- 3.1 DUCTWORK APPLICATION SCHEDULE
 - A. Ductwork materials and performance requirements are scheduled on the Drawing.
- 3.2 DUCTWORK APPLICATION SCHEDULE
 - A. Ductwork materials and performance requirements are scheduled on the Drawing.
- 3.3 DUCT INSTALLATION
 - A. Construct and install ducts according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," unless otherwise indicated.
 - B. Install round and flat-oval ducts in lengths not less than 12 feet unless interrupted by fittings.
 - C. Install ducts with fewest possible joints.
 - D. Install fabricated fittings for changes in directions, size, and shape and for connections.
 - E. Install couplings tight to duct wall surface with a minimum of projections into duct. Secure couplings with sheet metal screws. Install screws at intervals of 12 inches, with a minimum of 3 screws in each coupling.
 - F. Install ducts, unless otherwise indicated, vertically and horizontally and parallel and perpendicular to building lines; avoid diagonal runs.
 - G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
 - H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
 - I. Conceal ducts from view in finished spaces. Do not encase horizontal runs in solid partitions unless specifically indicated.
 - J. Coordinate layout with suspended ceiling, fire- and smoke-control dampers, lighting layouts, and similar finished work.

- K. Seal all joints and seams. Apply sealant to male end connectors before insertion, and afterward to cover entire joint and sheet metal screws.
- L. Electrical Equipment Spaces: Route ducts to avoid passing through transformer vaults and electrical equipment spaces and enclosures.
- M. Non-Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls and are exposed to view, conceal spaces between construction openings and ducts or duct insulation with sheet metal flanges of same metal thickness as ducts. Overlap openings on 4 sides by at least 1-1/2 inches.
- N. Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls, install appropriately rated fire dampers, and sleeves. Fire and smoke dampers are specified in Division 23 Section "Duct Accessories."
- O. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.
- P. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G. "Duct Cleanliness for New Construction Guidelines."
 - 1. Intermediate level.

3.4 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.5 DUCT SEALING

- - 1. Seal Class: Refer to Application Schedule on the Drawings.
 - 2. Seal ducts before external insulation is applied.
 - 3. After pressure testing, remake leaking joints until leakage is equal to or less than maximum allowable. Refer to Application Schedule on the Drawings for allowable leakage rates.

3.6 HANGING AND SUPPORTING

A. Support horizontal ducts within 24 inches of each elbow and within 48 inches of each branch intersection.

- B. Support vertical ducts at maximum intervals of 16 feet and at each floor.
- C. Install concrete inserts before placing concrete.
- D. Support ductwork from building structure, not from roof deck, floor slab, pipe, other ducts, or equipment.
- E. Install upper attachments to structures with an allowable load not exceeding one-fourth of failure (proof-test) load.
- F. Install roof mounted duct supports in accordance with manufacturer's instructions. Provide additional membrane layer or walkpads under support bases as required.
- G. Use load rated cable suspension system for round duct in exposed locations.

3.7 CONNECTIONS

- A. Make connections to equipment with flexible connectors according to Division 23 Section "Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.8 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.9 FIELD QUALITY CONTROL

- A. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
- B. Duct system will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.10 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing."

END OF SECTION

NONMETAL DUCTS

PART 1 -	· GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	PERFORMANCE REQUIREMENTS	1
	DEFINITIONS	
1.4	SUBMITTALS	2
1.5	QUALITY ASSURANCE	3
PART 2 -	PRODUCTS	3
2.1	MANUFACTURERS	
2.2	FABRIC DUCTS	
	HANGERS AND SUPPORTS	
DADT 2	EXECUTION	6
	APPLICATION AND INSTALLATION	
	HANGER AND SUPPORT INSTALLATION	0
3.2		
	FIELD QUALITY CONTROL	
3.4	START UP	7

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 23 Section "Duct Accessories" for dampers, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.2 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including duct closure, reinforcements, and hangers and supports, shall comply with SMACNA's "Fibrous Glass Duct Construction Standards" and performance requirements and design criteria indicated.
 - 1. Static-Pressure Classes:
 - a. Supply Ducts (except in Mechanical Rooms): 1-inch wg.
 - b. Supply Ducts (Upstream from Air Terminal Units): 2-inch wg.
 - c. Supply Ducts (Downstream from Air Terminal Units): 1-inch wg.
 - d. Supply Ducts (in Mechanical Equipment Rooms): 2-inch wg.
 - e. Return Ducts (Negative Pressure): 1-inch wg.
 - f. Exhaust Ducts (Negative Pressure): 1-inch wg.

1.3 DEFINITIONS

- A. Thermal Conductivity and Apparent Thermal Conductivity (k-Value): As defined in ASTM C 168. In this Section, these values are the result of the formula Btu x in./h x sq. ft. x deg F at temperature differences specified. Values are expressed as Btu.
 - 1. Example: Apparent Thermal Conductivity (k-Value): 0.26.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - Fabric ducts.
- B. Shop Drawings: Drawn to 1/4 inch equals 1 foot. Show fabrication and installation details for nonmetal ducts.
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Duct layout indicating sizes and pressure classes.
 - 3. Elevations of top and bottom of ducts.
 - 4. Dimensions of main duct runs from building grid lines.
 - 5. Fittings.
 - 6. Reinforcements and spacing.
 - 7. Seam and joint construction.
 - 8. Penetrations through fire-rated and other partitions.
 - 9. Equipment installation based on equipment being used on Project.
 - 10. Duct accessories, including access doors and panels.
 - 11. Hangers and supports, including methods for duct and building attachment, vibration isolation.
- C. Delegated-Design Submittal:
 - Duct materials and thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Design Calculations: Calculations for selecting hangers and supports.
- D. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Other systems installed in same space as ducts.
 - 3. Ceiling- and wall-mounting access doors and panels required to provide access to dampers and other operating devices.
 - 4. Ceiling-mounting items, including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- A. Welding certificates.

B. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
- B. NFPA Compliance:
 - NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."
 - 2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- C. UL Compliance: UL listed and labeled as complying with UL 181.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 FABRIC DUCTS

- A. Manufacturers:
 - 1. Ductsox Corporation.
 - 2. FabricAir, Inc.
- B. Performance Requirements: Classified by UL in accordance with the 25/50 flame spread/smoke developed requirements of NFPA 90A.
- C. Material: Air diffusers shall be constructed of a woven fire retardant fabric complying with the following physical characteristics:
 - 1. Fabric Construction: Fabric shall be constructed of a polyester that includes 55 percent recycled content (80 percent post-industrial and 20 percent post-consumer), treated with a machine wash-able anti-microbial agent by the fabric manufacturer, of a non-linting filament yarn to meet the requirements of ISO Class 3 environment, and 100percent flame retardant.
 - 2. Weight: 6.8 oz./sg yd in accordance with ASTM D3776
 - 3. Color: Custom color as selected by Architect.
 - 4. Fabric Porosity: 2 (+2/-1) cfm/sq ft in accordance with ASTM D737, Frazier.
 - 5. Temperature Range: 0 deg F to 180 deg F.
 - 6. Fire Retardancy: Classified by Underwriters Laboratories in accordance with the flame spread/smoke developed requirements NFPA 90, ICC AC167 and UL 2518.

7. Antimicrobial agent shall be proven 99 percent effective after 10 laundry cycles in accordance with AATCC Test Method 100.

D. System Fabrication Requirements:

- 1. Textile system constructed in modular lengths (zippered) with proper securing clips, inlets, end caps, and mid-sections.
- 2. Integrated air dispersion shall be:
 - a. Linear Vents:
 - Air dispersion accomplished by linear vent and permeable fabric. Linear vents must be sized in 1 CFM per linear foot increments (based on 0.5 inch static pressure), starting at 1 CFM through 90 CFM per linear foot. Linear vent is to consist of an array of open orifices rather than a mesh style vent to reduce maintenance requirements of mesh style vents. Linear vents should also be designed to minimize dusting on fabric surface.
 - 2) Size of vent openings and location of linear vents to be specified and approved by manufacturer.

b. Fixed Nozzles:

- 1) Air dispersion accomplished by using conical aerodynamic nozzles and permeable fabric. Diameter of nozzles and nozzle height shall be minimum 1/2 inch. Due to exact requirements of throw and maximum level of noise alternative flow models are not acceptable.
- 2) Color of nozzles must match color of fabric. Unless otherwise specifically mentioned on drawings or otherwise in this specification, suppliers standard table is used for selection of color.
- 3) Location and number of nozzles shall be specified and approved by manufacturer.
- 3. Inlet connection to metal duct via fabric draw band with anchor patches as supplied by manufacturer. Anchor patches shall be secured to metal duct via. zip screw fastener (supplied by contractor).
- 4. Inlet connection includes zipper for easy removal and maintenance.
- 5. Lengths shall include required intermediate zippers as specified by manufacturer.
- 6. System shall include adjustable flow devices to balance turbulence, airflow and distribution as needed. Flow restriction device shall include ability to adjust the airflow resistance from 0.06 to 0.60 in wg static pressure.
- 7. End cap includes zipper for easy maintenance.
- 8. Each section of fabric duct shall include identification labels documenting order number, section diameter, section length, piece number, code certifications and other pertinent information.

E. Design Parameters:

1. Designed for 0.5 inch water gage, yielding maximum operating pressure of 3.1 inches water gage.

- 2. Fabric diffusers limited to design temperatures between 10 deg F and 180 deg F.
- Design cfm, static pressure, and diffuser length shall be designed or approved by manufacturer.
- 4. Do not use fabric diffusers in concealed locations.
- 5. Use fabric diffusers for positive pressure air distribution components of the mechanical ventilation system only.

F. Suspension Hardware:

- 1. 3x1 Extruded Track Suspension: (Available for duct diameters from 10-inches to 48-inches) System shall consist of a 3x1 hanger used in conjunction with an extruded track suspension system. System shall include a 3 Row connection to fabric system at 10, 12, and 2 o'clock locations. The powder-coated aluminum hangers are secured and connected to a single (1 Row) extruded aluminum track every 3 feet and connect to the fabric system at the 10 and 2 o'clock locations with detachable D-Clasps. The fabric system will also have intermediate track tabs located at 12 o'clock and between the hangers to attach directly to the extruded track suspension system located 3 inches above top-dead-center location of the fabric system. Hardware to include 8-foot sections of track, splice connectors, track end caps, and vertical cable support kits consisting of a length of cable with a locking stud end and Gripple quick cable connectors. Radius aluminum track must be included for all radius sections.
- 2. Internal Hoop System and Extruded Track Suspension System: (Available for duct diameters from 8-inches to 60 inches). System consists of metallic internal hoops spaced 5 feet apart and attached to the interior of the fabric duct at the 4, 8, and 12 o'clock positions. Suspension system consists of 8 foot sections of extruded track, couplers, end caps, locking cable drop supports or surface mount clips, and gliders spaced every 24 inches. Furnish T-bar connection hardware where required.

2.3 HANGERS AND SUPPORTS

- A. Building Attachments: Concrete inserts, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
- B. Hanger Materials: Galvanized sheet steel or threaded steel rod.
 - 1. Hangers Installed in Corrosive Atmospheres: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
 - 2. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for steel sheet width and thickness and for steel rod diameters.
 - 3. Galvanized-steel straps attached to aluminum ducts shall have contact surfaces painted with zinc-chromate primer.
- C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials. Attachments for stainless steel and PVC-coated duct shall be stainless steel.
- D. Trapeze and Riser Supports: Steel shapes complying with ASTM A 36/A 36M.
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel support materials.

- 3. Supports for Aluminum Ducts: Aluminum support materials unless materials are electrolytically separated from ducts.
- E. Load Rated Cable Suspension System: Tested to five times the Safe Working Loads and verified by the SMACNA Testing and Research Institute.
 - 1. Cable: Aircraft quality zinc coated 7 x 7 and 7 x 19 wire rope.
 - 2. Fastener: One-piece, die-cast zinc housing with Type 302 S26 stainless steel hardened and tempered springs, and oil impregnated, sintered, hardened and tempered steel locking wedges.
 - 3. End Fixings: Loop, stud or toggle; or plain end suitable for wire rope beam clamp.
 - 4. Manufacturers:
 - a. Ductmate Industries, Inc.; Clutcher and EZ-Lock.
 - b. Duro Dyne Corp.; Dyna-Tite System.
 - c. Gripple Inc.; Hang-Fast System.
- F. Welded Supports: Structural steel shapes with zinc rich paint. Equivalent, proprietary design, rolled steel structural support systems may be used in lieu of mill rolled structural steel.

PART 3 - EXECUTION

3.1 APPLICATION AND INSTALLATION

- A. Install nonmetal duct where indicated and as detailed on Drawings.
- B. Install ducts with fewest possible joints.
- C. Install ducts, unless otherwise indicated, vertically and horizontally and parallel and perpendicular to building lines; avoid diagonal runs.
- D. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- E. Install ducts with a clearance of 1 inch.
- F. Conceal ducts from view in finished spaces. Do not encase horizontal runs in solid partitions unless specifically indicated.
- G. Non-Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls and are exposed to view, conceal spaces between construction openings and ducts with sheet metal flanges. Overlap opening on 4 sides by at least 1-1/2 inches.
- H. Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls, install appropriately rated fire dampers and sleeves. Fire and smoke dampers are specified in Division 23 Section "Duct Accessories."

3.2 HANGER AND SUPPORT INSTALLATION

- A. Duct Attachments: Support horizontal ducts with trapeze-type hangers.
- B. Hangers: Suspend duct attachments from building attachments with one of the following hanger types:
 - 1. Galvanized sheet metal strips, a minimum of 0.034 by 1 inch wide.

- 2. Galvanized-steel rods, 1/4 inch in diameter, threaded along entire length.
- 3. Load rated cable suspension system.
- C. Attach hangers to joints and reinforcing channels that occur within required hanger spacing. Attach hangers to transmit load to sides and bottom channels and no more than 6 inches from sides of ducts.
- D. Support equipment and metal duct components and accessories independent of ducts.
- E. Support terminal components separately.
- F. Install sheet metal sleeves to support dampers. For motorized dampers, extend sleeves to support operators.
- G. Install concrete inserts before placing concrete.
- H. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- 3.3 FIELD QUALITY CONTROL
 - A. Perform tests and inspections.
 - B. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - C. Duct system will be considered defective if it does not pass tests and inspections.
 - D. Prepare test and inspection reports.
- 3.4 START UP
 - A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing."

END OF SECTION

DUCT ACCESSORIES

PΑ	RT 1 -	GENERAL	1
	1.1	RELATED DOCUMENTS	1
	1.2	DEFINITIONS	2
	1.3	SUBMITTALS	2
	1.4	QUALITY ASSURANCE	2
	1.5	EXTRA MATERIALS	
- ^	DT 0	PROPULCTO	_
РА		PRODUCTS	პ
	2.1	MANUFACTURERS	
	2.2	SHEET METAL MATERIALS	
	2.3	BACKDRAFT DAMPERS	
	2.4	LOW PRESSURE MANUAL VOLUME DAMPERS	
	2.5	MEDIUM OR HIGH PRESSURE MANUAL VOLUME DAMPERS	
	2.6	LOW LEAKAGE MANUAL VOLUME DAMPERS	
	2.7	MANUAL VOLUME DAMPERS (IRIS STYLE)	
	2.8	MOTORIZED CONTROL DAMPERS	
		BLAST GATES	
		FIRE DAMPERS (CURTAIN STYLE)	
		FIRE DAMPERS (MULTIPLE BLADE TYPE)	
		SMOKE DAMPERS	
		COMBINATION FIRE AND SMOKE DAMPERS	
		TURNING VANES	
	2.15	DUCT-MOUNTING ACCESS DOORS	14
	2.16	DUCT ACCESS PANEL ASSEMBLIES	15
	2.17	FLEXIBLE CONNECTORS	15
	2.18	FLEXIBLE DUCTS, LOW AND MEDIUM PRESSURE	16
	2.19	FLEXIBLE DUCT ELBOW SUPPORTS	17
	2.20	DUCT ACCESSORY HARDWARE	17
		FINISHES	
- ^			
۲A		EXECUTION	
		APPLICATION AND INSTALLATION	
		FIELD QUALITY CONTROL	
	3.3	ADJUSTING	20

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 23 Section "Testing, Adjusting, and Balancing" for duct test holes.
 - 3. Division 23 Section "Temperature Controls" for motorized control dampers.
 - 4. Division 28 Section "Fire Alarm" for duct-mounting fire and smoke detectors.

1.2 DEFINITIONS

- A. NVLAP: National Voluntary Laboratory Accreditation Program.
- B. Low Pressure: Up to 2 inch WG and velocities less than 1,500 fpm. Construct for 2 inch WG positive or negative static pressure.
- C. Medium Pressure: Greater than 2 inch WG to 6 inch WG and velocities greater than 1,500 fpm and less than 2,500 fpm. Construct for 6 inch WG positive or negative static pressure.
- D. High Pressure: Greater than 6 inch WG to 12 inch WG and velocities greater than 2,500 fpm. Construct for 12 inch WG positive or negative static pressure.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. For turning vanes, include data for pressure loss generated sound power levels.
 - 2. For duct silencers, include pressure drop and dynamic insertion loss data.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control damper installations.
 - d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 - e. Duct security bars.
 - f. Wiring Diagrams: Power, signal, and control wiring.
- C. Coordination Drawings: Reflected ceiling plans, drawn to scale and coordinating penetrations and ceiling-mounting items. Show ceiling-mounting access panels and access doors required for access to duct accessories.
- D. Source quality-control reports.
- E. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with AMCA 500-D testing for damper rating.

1.5 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fusible Links: Furnish quantity equal to 10 percent of amount installed for each temperature rating.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SHEET METAL MATERIALS

- A. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated.
- B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A 653/A 653M and having G90 coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.
- C. Stainless Steel: ASTM A 480/A 480M, Types 304 and 316 as indicated.
- D. Aluminum Sheets: ASTM B 209, alloy 3003, temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- E. Extruded Aluminum: ASTM B 221, alloy 6063, temper T6.
- F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.
- H. Tie Rods: Stainless steel, 1/4-inch diameter for lengths 36 inches or less; 3/8-inch diameter for lengths longer than 36 inches for use in ducts in humid or corrosive atmospheres.
- I. Bird Screens: No. 2 mesh, 0.063 inch diameter galvanized wire screen with open area of not less than 72 percent. Conceal sharp edges by adding metal edging consisting of rod, flat or angle iron, or 16 gage galvanized sheet steel turned over at least 3/4 inch on both sides.

2.3 BACKDRAFT DAMPERS

- A. Manufacturers:
 - 1. American Warming and Ventilating.
 - 2. Greenheck.
 - 3. Ruskin Company.
- B. Description: Multiple-blade, parallel action counterbalanced, with blades of maximum 6-inch width, with sealed edges, assembled in rattle-free manner with 90-degree stop, steel ball bearings, and axles; adjustment device to permit setting for varying differential static pressure.
- C. Performance: Based on tests in accordance with AMCA Standard 500:

- 1. Pressure drop not to exceed 0.15 inch wg at face velocity of 2500 fpm.
- 2. Leakage not to exceed 9.2 cfm per square foot at 1 inch wg differential and temperature of 70 deg F.
- D. Frame: 0.052-inch- thick, galvanized sheet steel or 0.063-inch- thick extruded aluminum, with welded corners and mounting flange.
- E. Blades: 0.025-inch- thick, roll-formed aluminum or 0.050-inch- thick aluminum sheet.
- F. Blade Seals: Manufacturer's standard seal material.
- G. Blade Axles: Nonferrous or galvanized steel.
- H. Tie Bars and Brackets: Aluminum or galvanized steel.
- 2.4 LOW PRESSURE MANUAL VOLUME DAMPERS
 - A. Manufacturers:
 - 1. American Warming and Ventilating.
 - 2. Arrow United Industries.
 - Greenheck.
 - 4. Krueger.
 - 5. Louvers and Dampers.
 - 6. Nailor Industries Inc.
 - 7. Ruskin Company.
 - 8. Vent Products Company, Inc.
 - 9. Young Regulator Company.
 - B. General Description: Factory fabricated, with required hardware and accessories. Stiffen damper blades for stability. Include locking device to hold single-blade dampers in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.
 - Except for dampers in round ductwork sized 12 inches and smaller, provide end bearings.
 - C. Rectangular Volume Dampers: Multiple-opposed-blade design, AMCA certified for maximum leakage of 2 percent of total fan volume at shutoff, and suitable for horizontal or vertical applications.
 - D. Round Volume Dampers 16-inch Diameter and Smaller: Single-blade design, AMCA certified for maximum leakage of 2 percent of total fan volume at shutoff, and suitable for horizontal or vertical applications.

- E. Round Volume Dampers Larger than 16-inch Diameter: Multiple-opposed-blade design AMCA certified for maximum leakage of 2 percent of total fan volume at shutoff, and suitable for horizontal or vertical applications.
- F. Damper Materials:
 - 1. Steel Frames: Hat-shaped, galvanized sheet steel channels, minimum of 0.064 inch thick, with mitered and welded corners; frames with flanges where indicated for attaching to walls and flangeless frames where indicated for installing in ducts.
 - 2. Roll-Formed Steel Blades: 0.064-inch- thick, galvanized sheet steel.
 - 3. Blade Axles: Galvanized steel.
 - 4. Bearings: Oil-impregnated bronze, molded synthetic, or stainless-steel sleeve type.
 - 5. Tie Bars and Brackets: Galvanized steel.
- G. Jackshaft: 1-inch- diameter, galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 1. Length and Number of Mountings: Appropriate to connect linkage of each damper in multiple-damper assembly.
- H. Damper Hardware: Zinc-plated, die-cast core with dial and handle made of 3/32-inch- thick zincplated steel, and a 3/4-inch hexagon locking nut. Include center hole to suit damper operatingrod size. Include elevated platform for insulated duct mounting.
- 2.5 MEDIUM OR HIGH PRESSURE MANUAL VOLUME DAMPERS
 - A. Manufacturers:
 - 1. American Warming and Ventilating.
 - 2. Greenheck.
 - 3. Louvers and Dampers.
 - 4. Nailor Industries Inc.
 - 5. Ruskin Company.
 - 6. Vent Products Company, Inc.
 - B. General Description: Factory fabricated, galvanized steel or extruded aluminum construction, with required hardware and accessories. Stiffen damper blades for stability. Include locking device to hold single-blade dampers in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.
 - C. Rectangular Volume Dampers: Multiple-opposed-blade design, AMCA certified for maximum leakage of 2 percent of total fan volume at shutoff, and suitable for horizontal or vertical applications. Construction and assembly such that no noise producing blade vibration occurs at velocities 20 percent greater than maximum system design velocity.
 - D. Round Volume Dampers 16-inch Diameter and Smaller: Single-blade, or multiple-opposed-blade design, AMCA certified for maximum leakage of 2 percent of total fan volume at shutoff,

and suitable for horizontal or vertical applications. Construction and assembly such that no noise producing blade vibration occurs at velocities 20 percent greater than maximum system design velocity.

- E. Round Volume Dampers Larger than 16-inch Diameter: Multiple-opposed-blade design, AMCA certified for maximum leakage of 2 percent of total fan volume at shutoff, and suitable for horizontal or vertical applications. Construction and assembly such that no noise producing blade vibration occurs at velocities 20 percent greater than maximum system design velocity.
- F. Damper Materials:
 - 1. Steel Frames: Hat-shaped, galvanized sheet steel channels, minimum of 0.064 inch thick, with mitered and welded corners; frames with flanges where indicated for attaching to walls and flangeless frames where indicated for installing in ducts.
 - 2. Roll-Formed Steel Blades: 0.064-inch- thick, galvanized sheet steel.
 - 3. Aluminum Frames: Hat-shaped, 0.10-inch- thick, aluminum sheet channels; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.
 - 4. Extruded-Aluminum Blades: 0.050-inch- thick extruded aluminum.
 - 5. Blade Axles: Galvanized steel or stainless steel.
 - 6. Bearings: Oil-impregnated bronze, molded synthetic, or stainless-steel sleeve type.
 - 7. Tie Bars and Brackets: Aluminum or galvanized steel.
- G. Jackshaft: 1-inch- diameter, galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 1. Length and Number of Mountings: Appropriate to connect linkage of each damper in multiple-damper assembly.
- H. Damper Hardware: Zinc-plated, die-cast core with dial and handle made of 3/32-inch- thick zincplated steel, and a 3/4-inch hexagon locking nut. Include center hole to suit damper operatingrod size. Include elevated platform for insulated duct mounting.
- 2.6 LOW LEAKAGE MANUAL VOLUME DAMPERS
 - A. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. Manufacturers:
 - American Warming and Ventilating.
 - b. Greenheck.
 - c. Louvers and Dampers; a division of Mestek, Inc.
 - d. Nailor Industries Inc.
 - e. Ruskin Company.
 - f. Vent Products Company, Inc.
 - 2. Low-leakage rating and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

- 3. Suitable for horizontal or vertical applications.
- 4. Frames:
 - a. Angle shaped.
 - b. Galvanized-steel channels, 0.064 inch thick.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
- 5. Blades:
 - a. Multiple or single blade.
 - b. Opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized, roll-formed steel, 0.064 inch thick.
- 6. Blade Axles: Galvanized steel.
- 7. Bearings:
 - a. Stainless-steel sleeve.
 - Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Blade Seals: Neoprene.
- 9. Jamb Seals: Cambered aluminum.
- Tie Bars and Brackets: Galvanized steel.
- 11. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- B. Low-Leakage, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers:
 - a. American Warming and Ventilating.
 - b. Greenheck.
 - c. Louvers and Dampers; a division of Mestek, Inc.
 - d. Nailor Industries Inc.
 - e. Ruskin Company.
 - f. Vent Products Company, Inc.
 - 2. Low-leakage rating and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames: Angle-shaped, 0.10-inch- thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.

Blades:

- a. Multiple or single blade.
- b. Opposed-blade design.
- c. Roll-Formed Aluminum Blades: 0.10-inch- thick aluminum sheet.
- d. Extruded-Aluminum Blades: 0.050-inch- thick extruded aluminum.
- 6. Blade Axles: Galvanized steel.
- 7. Bearings:
 - a. Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Blade Seals: Neoprene.
- 9. Jamb Seals: Cambered aluminum.
- 10. Tie Bars and Brackets: Galvanized steel.
- 11. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.

C. Jackshaft:

- 1. Size: 1-inch diameter.
- 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
- 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

D. Damper Hardware:

- 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
- 2. Include center hole to suit damper operating-rod size.
- 3. Include elevated platform for insulated duct mounting.

2.7 MANUAL VOLUME DAMPERS (IRIS STYLE)

A. Manufacturers:

- 1. Continental Fan Manufacturing, Inc.; IRIS Series.
- 2. Fantech; Systemair Group; IR Series.
- 3. Ruskin Company; VFBD35.

- B. Description: Round manual volume damper complete with pressure ports, constructed of galvanized steel, fitted with a neoprene gasket, and using interlocking steel plates and calibrated control lever to form an adjustable aperture.
- 2.8 MOTORIZED CONTROL DAMPERS
 - A. Refer to Division 23 Section "Temperature Controls."
- 2.9 BLAST GATES
 - A. Manufacturers:
 - 1. Dixie Sheet Metal.
 - LaPine Metal Products.
 - Semco.
 - B. Full-body style, factory fabricated of minimum 18 gage, galvanized sheet metal.
- 2.10 FIRE DAMPERS (CURTAIN STYLE)
 - A. Manufacturers:
 - 1. Air Balance, Inc.
 - 2. Greenheck.
 - 3. NCA Manufacturing, Inc.
 - 4. Nailor Industries Inc.
 - 5. Ruskin Company.
 - B. Dynamic fire dampers with curtain style blades, and labeled according to UL 555, maximum velocity 2000 fpm, maximum static pressure 4 inches w.g.
 - C. Fire Rating:
 - 1. 1-1/2 hours for 2 hour rated walls.
 - 2. 3 hours for 4 hour rated walls.
 - D. Frame: Type B or Type C Curtain type with blades outside airstream; fabricated with roll-formed, galvanized steel in gages required by manufacturer's UL listing; with mitered and interlocking corners.
 - E. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Thickness: Equal to or thicker than the duct connected to it, and of length to suit application.
 - 2. Exceptions: Omit sleeve where damper frame width permits direct attachment of perimeter mounting angles on each side of wall or floor, and thickness of damper frame complies with sleeve requirements.

- F. Mounting Orientation: Vertical or horizontal as indicated.
- G. Blades: Roll-formed, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.
- H. Fusible Links: Replaceable, 165 deg F rated.
- 2.11 FIRE DAMPERS (MULTIPLE BLADE TYPE)
 - A. Manufacturers:
 - 1. Greenheck.
 - 2. NCA Manufacturing, Inc.
 - Nailor Industries Inc.
 - 4. Ruskin Company.
 - B. Dynamic fire dampers with multiple blades, and labeled according to UL 555, maximum velocity of 2000 fpm, maximum static pressure 4 inches w.g.
 - C. Fire Rating:
 - 1. 1-1/2 hours for 2 hour rated walls.
 - 2. 3 hours for 4 hour rated walls.
 - D. Frame: Fabricated with roll-formed, galvanized steel in gages required by manufacturer's UL listing; with mitered and interlocking corners.
 - E. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Thickness: Equal to or thicker than the duct connected to it, and of length to suit application.
 - 2. Exceptions: Omit sleeve where damper frame width permits direct attachment of perimeter mounting angles on each side of wall or floor, and thickness of damper frame complies with sleeve requirements.
 - F. Mounting Orientation: Vertical or horizontal as indicated.
 - G. Blades: Parallel operation, single-piece airfoil type construction with 0.078 inch equivalent thickness, or 0.064 inch thick, roll-formed, triple v-groove.
 - H. Axles: 1/2 inch plated steel hex.
 - I. Bearings: Stainless steel, or oil-impregnated bronze sleeve type, pressed into frame.
 - J. Linkage: Concealed in frame.
 - K. Fusible Links: Replaceable, 165 deg F rated.
- 2.12 SMOKE DAMPERS
 - A. Manufacturers:

- 1. Air Balance, Inc.
- Greenheck.
- Nailor Industries Inc.
- 4. NCA Manufacturing, Inc.
- 5. Ruskin Company.
- B. General Description: Smoke dampers with airfoil blades, labeled according to UL 555S, with minimum Class II leakage rating.
- C. Smoke Detector: Integral, factory wired for single-point connection.
- D. Frame and Blades: 16 gage, galvanized sheet steel.
- E. Mounting Sleeve: Factory-installed, galvanized sheet steel.
 - 1. Thickness: Equal to or thicker than the duct connected to it, and of length to suit application.
- F. Rated pressure and velocity to exceed design airflow conditions.
- G. Damper Actuators: Electric modulating or two-position action as required.
 - 1. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 2. Size for torque required for damper seal at load conditions.
 - 3. Overload Protection: Microprocessor or an electronic based motor controller providing burnout protection if stalled before full rotation is reached. The actuator shall be electronically cut off at full open to eliminate noise generation with the holding noise level to be inaudible.
 - 4. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 - 5. Power Requirements (Two-Position Spring Return): 24 or 120 V ac.
 - 6. Power Requirements (Proportional): Maximum (running) 12 VA at 24-V ac or 8 W at 24-V dc. Maximum (holding) 5VA at 24-V ac or 3 W at 24-V dc holding.
 - 7. Proportional Actuators (24V ac/dc): Control signal shall be 0-10vdc, 2-10vdc or 4-20mA as required to operate with associated controller. Include position feedback signal for 0-10vdc, 2-10vdc or 4-20mA as required to be monitored by associated controller.
 - 8. Actuator timing shall meet 15 sec.
 - 9. Temperature Rating: Actuator shall have a UL555S listing by the damper manufacturer for 250 deg F.
- H. Damper Actuators: Pneumatic modulating or two-position action.

- 1. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing.
- 2. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
- 3. Actuator Degradation Temperature: Not to exceed 250 deg F.
- I. Damper blade position end switches: Factory installed damper position switch package for both full open and full closed indication (equivalent to Ruskin SP100 switch package).
- J. Test Switch: Damper Remote mounted momentary "test" push-button mounted 3-position "normal/closed/override" toggle switch rated for 24V or 120V as required to allow testing and/or maintenance of motorized dampers.
 - 1. For pneumatic actuators, include factory installed electric/pneumatic (EP) switch for testing function.
 - 2. Include damper remote mounted "open" and "closed" indication lights on switch plate for connection to factory installed damper blade position end switches.

2.13 COMBINATION FIRE AND SMOKE DAMPERS

- A. Manufacturers:
 - 1. Air Balance, Inc.
 - 2. Greenheck.
 - 3. Nailor Industries Inc.
 - 4. NCA Manufacturing, Inc.
 - 5. Ruskin Company.
- B. General Description: Combination fire and smoke dampers shall be labeled according to UL 555 and UL 555S. Leakage shall not exceed 10 cfm per square foot at 1 inch WG differential pressure (Leakage Class II).
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 4000-fpm velocity.
- D. Fire Rating:
 - 1. 1-1/2 hours for 2 hour rated walls.
 - 2. 3 hours for 4 hour rated walls.
- E. Smoke Detector: Integral, factory wired for single-point connection.
- F. Frame and Blades: 0.064-inch- thick, galvanized sheet steel.
- G. Mounting Sleeve: Factory-installed, galvanized sheet steel.
 - 1. Thickness: Equal to or thicker than the duct connected to it, and of length to suit application.

- H. Rated pressure and velocity to exceed design airflow conditions.
- I. Damper Actuators: Electric modulating or two-position action as required.
 - Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 - 2. Size for torque required for damper seal at load conditions.
 - 3. Overload Protection: Microprocessor or an electronic based motor controller providing burnout protection if stalled before full rotation is reached. The actuator shall be electronically cut off at full open to eliminate noise generation with the holding noise level to be inaudible.
 - 4. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 - 5. Power Requirements (Two-Position Spring Return): 24 or 120 V ac.
 - 6. Power Requirements (Proportional): Maximum (running) 12 VA at 24-V ac or 8 W at 24-V dc. Maximum (holding) 5VA at 24-V ac or 3 W at 24-V dc holding.
 - 7. Proportional Actuators (24V ac/dc): Control signal shall be 0-10vdc, 2-10vdc or 4-20mA as required to operate with associated controller. Include position feedback signal for 0-10vdc, 2-10vdc or 4-20mA as required to be monitored by associated controller.
 - 8. Actuator timing shall meet 15 sec.
 - 9. Temperature Rating: Actuator shall have a UL555S listing by the damper manufacturer for 250 deg F.
- J. Damper Actuators: Pneumatic modulating or two-position action.
 - 1. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing.
 - 2. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
 - 3. Actuator Degradation Temperature: Not to exceed 250 deg F.
- K. Manual Heat Responsive Fuse Link with Reset and Damper Blade Position End Switches: Factory installed manual heat responsive fuse link with reset switch / damper position switch package for both full open and full closed indication (equivalent to Ruskin TS150 switch package).
- L. Test Switch: Damper Remote mounted momentary "test" push-button mounted 3-position "normal/closed/override" toggle switch rated for 24V or 120V as required to allow testing and/or maintenance of motorized dampers.
 - 1. Include damper remote mounted "open" and "closed" indication lights on switch plate for connection to factory installed damper blade position end switches.

2.14 TURNING VANES

A. Manufactured Turning Vanes:

- 1. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for vanes and vane runners. Vane runners shall automatically align vanes.
- 2. Double-vane or airfoil-shaped, curved blades of galvanized sheet steel set into vane runners suitable for duct mounting.
- 3. Generated sound power level shall not exceed 54 decibels in octave band 4 at 2000 fpm in a 24-inch by 24-inch duct.
- 4. Manufacturers:
 - a. Aero/Dyne Company; H-E-P Turning Vanes.
 - b. Ductmate Industries, Inc.
 - c. Duro Dyne Corp.
 - d. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Manufactured Acoustic Turning Vanes:
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for vanes and vane runners. Vane runners shall automatically align vanes.
 - 2. Double-vane curved blades of galvanized sheet steel with perforated faces and fibrousglass fill set into vane runners suitable for duct mounting.
 - 3. Manufacturers:
 - a. Ductmate Industries, Inc.
 - b. Ward Industries, Inc.; a division of Hart & Cooley, Inc.

2.15 DUCT-MOUNTING ACCESS DOORS

- A. General Description: Fabricate doors airtight and suitable for duct pressure class. Doors may be field fabricated in accordance with SMACNA Standards, or commercially produced.
- B. Door: Double wall, duct mounting, and rectangular; fabricated of galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class. Include vision panel where indicated. Include 1-by-1-inch butt or piano hinge and cam latches.
 - 1. Manufacturers:
 - a. Air Balance. Inc.
 - b. Greenheck.
 - c. Nailor Industries Inc.
 - d. Ruskin Company.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Provide number of hinges and locks as follows:
 - a. Less Than 12 Inches Square: Secure with two sash locks.
 - b. Up to 18 Inches Square: Two hinges and two compression locks.

- c. Up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.
- d. Sizes 24 by 48 Inches and Larger: One additional hinge.
- C. Door: Double wall, duct mounting, and round; fabricated of galvanized sheet metal with insulation fill and 1-inch thickness. Include cam latches.
 - Manufacturers:
 - a. Ductmate Industries, Inc.
 - b. Flexmaster U.S.A., Inc.
 - 2. Frame: Galvanized sheet steel, with spin-in notched frame.
- D. Seal around frame attachment to duct and door to frame with neoprene or foam rubber.
- E. Insulation: 1-inch-thick, fibrous-glass or polystyrene-foam board.
- 2.16 DUCT ACCESS PANEL ASSEMBLIES
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Flame Gard, Inc.
 - 3. 3M.
 - B. Labeled according to UL 1978 by an NRTL.
 - C. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.
 - D. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.
 - E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.
 - F. Minimum Pressure Rating: 10-inch wg, positive or negative.
- 2.17 FLEXIBLE CONNECTORS
 - A. Manufacturers:
 - 1. ADSCO Manufacturing LLC.
 - 2. Duro Dyne Corp.
 - 3. Senior Flexonics Pathway.
 - 4. Ventfabrics, Inc.
 - B. General Description: Flame-retardant or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.

- C. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Select metal compatible with ducts.
- D. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- F. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd..
 - 2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- G. High-Corrosive-Environment System, Flexible Connectors: Glass fabric with chemical-resistant coating.
 - 1. Minimum Weight: 14 oz./sq. yd..
 - 2. Tensile Strength: 450 lbf/inch in the warp and 340 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- 2.18 FLEXIBLE DUCTS, LOW AND MEDIUM PRESSURE
 - A. Manufacturers:
 - 1. Flexmaster Type 8M, UL 181, Class 1.
 - 2. Automation Industries Thermaflex.
 - 3. Hart & Cooley.
 - B. Flexible Ducts: Interlocking spiral of galvanized steel or aluminum construction or fabric supported by helically wound spring steel wire or flat steel bands; rated to 6 inches WG positive and 4 inches WG negative for low and medium pressure ducts.
 - C. Insulated Flexible Ducts: Flexible duct wrapped with flexible glass fiber insulation, enclosed by a fire retardant polyethylene vapor barrier jacket; maximum 0.23 K value at 75 deg F.

D. Acoustical performance tested in accordance with the Air Diffusion Council's *Flexible Air Duct Test Code FD 72-R1*, *Section 3.0*, *Sound Properties* shall be as follows:

The insertion loss (dB) of a 10 foot length of straight duct when tested in accordance with ASTM E477, at a velocity of 2500 feet per minute, shall be minimum:

Octave Band	2	3	4	5	6	7
Hz.	125	250	500	1000	2000	4000
6" diameter	8	32	38	35	39	25
8" diameter	13	32	36	35	36	21
12" diameter	15	29	28	33	26	14

The radiated noise reduction (dB) of a 10 foot length of straight duct when tested in accordance with ASTM E477, at a velocity of 2500 feet per minute, shall be minimum:

Octave Band	2	3	4	5	6	7
Hz.	125	250	500	1000	2000	4000
6" diameter	6	8	7	8	9	13
8" diameter	9	6	6	7	8	10
12" diameter	9	7	6	6	8	11

The self generated sound power levels (LW) dB are 10-12 Watt of a 10 foot length of straight duct for an empty sheet metal duct when tested in accordance with ASTM E477, at a velocity of 1000 feet per minute, shall not exceed:

Octave Band	2	3	4	5	6	7
Hz.	125	250	500	1000	2000	4000
6" diameter	42	31	23	18	17	21
8" diameter	41	34	27	19	18	21
12" diameter	53	44	36	27	21	22

- E. Flexible Duct Fittings: Galvanized steel, twist-in design with damper. Size as indicated.
- F. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 through 18 inches to suit duct size.

2.19 FLEXIBLE DUCT ELBOW SUPPORTS

- A. Manufacturer:
 - 1. Automation Industries Thermaflex; FlexFlow Elbow.
 - 2. Smart Air & Energy Solutions; SMART Flow Elbow.
- B. Elbow supports shall be constructed of durable composite material and be fully adjustable to support flexible duct diameters 6 inches through 16 inches.
- C. Elbow supports shall be UL listed for use in return air plenum spaces.

2.20 DUCT ACCESSORY HARDWARE

A. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

2.21 FINISHES

A. Chemical Resistant Coating: P-403 manufactured by Heresite Chemical Company.

PART 3 - EXECUTION

3.1 APPLICATION AND INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Provide duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts and PVC coated ducts; and aluminum accessories in aluminum ducts.
- C. Install control dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers in ducts with liner in a manner that avoids damage to and erosion of duct liner.
- E. Provide balancing dampers at points on supply, return, and exhaust systems where branches lead from larger ducts as required for air balancing. Install at a minimum of two duct widths from branch takeoff.
- F. Install fire and smoke dampers according to UL listing.
- G. Install duct security bars. Construct duct security bars from 0.164-inch steel sleeve, continuously welded at all joints and 1/2-inch- diameter steel bars, 6 inches o.c. in each direction in center of sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-by-1/4-inch steel angle to 4 sides and both ends of sleeve. Connect duct security bars to ducts with flexible connections. Provide 12-by-12-inch hinged access panel with cam lock in duct in each side of sleeve.
- H. Install duct silencers rigidly to ducts.
- I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - On both sides of duct coils.
 - 2. Upstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 7. Control devices requiring inspection.
 - 8. Elsewhere as indicated.

- J. Install access doors with swing against duct static pressure.
- K. Install duct-mounting, rectangular access doors with long dimension at right angles to direction of airflow and of largest standard size which can be accommodated in duct. Maximum size: 21 by 14 inches.
- L. Install pressure relief doors vertically and level in accordance with manufacturer's instructions, between the fan and first operable damper.
- M. Label access doors according to Division 20 Section "Mechanical Identification."
- N. Install flexible connectors immediately adjacent to equipment in ducts associated with fans and motorized equipment supported by vibration isolators.
- O. For fans developing static pressures of 5-inch wg and higher, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- P. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.
- Q. Connect diffusers or light troffer boots to low pressure ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- R. Connect flexible ducts to metal ducts with draw bands.
- S. Install flexible duct elbow supports at each diffuser, grille, or register, and elsewhere as indicated.
- T. Install turning vanes in rectangular duct elbows in excess of 45 degrees, and where indicated:
 - 1. Use manufactured double-vane turning vanes unless otherwise specified.
 - 2. Seat outboard-most vane in heal of duct elbow.
 - 3. Provide vanes for all runner punchings, practice of eliminating every other vane is prohibited.
 - 4. Use single-vane turning vanes in low pressure square elbows.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
 - 4. Inspect turning vanes for proper and secure installation.
 - Operate remote damper operators to verify full range of movement of operator and damper.

3.3 ADJUSTING

- A. Adjust duct accessories for proper settings.
- B. Adjust fire and smoke dampers for proper action.
- C. Final positioning of manual-volume dampers is specified in Division 23 Section "Testing, Adjusting, and Balancing."

END OF SECTION

CENTRIFUGAL FANS

PART 1	- GENERAL
1.1	RELATED DOCUMENTS
1.2	SUMMARY
1.3	PERFORMANCE REQUIREMENTS
1.4	SUBMITTALS
1.5	QUALITY ASSURANCE
1.6	DELIVERY, STORAGE, AND HANDLING
1.7	COORDINATION
1.8	EXTRA MATERIALS
DADTA	PROPULATO
	- PRODUCTS
2.1	CENTRIFUGAL FANS
2.2	PLENUM/PLUG FANS
2.3	SOURCE QUALITY CONTROL
DADTO	EVECUTION
	- EXECUTION
3.1	INSTALLATION
3.2	CONNECTIONS
3.3	FIELD QUALITY CONTROL
3.4	DEMONSTRATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Motors."
 - 3. Division 23 Section "Common Work Results for HVAC" for common mechanical drive requirements for fans and air moving equipment.

1.2 SUMMARY

A. This Section includes replacement fans for air-handling units and similar equipment.

1.3 PERFORMANCE REQUIREMENTS

- A. AMCA Compliance:
 - 1. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.

- 2. Certified fan sound-power ratings.
- 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
- 4. Material thickness and finishes, including color charts.
- 5. Dampers, including housings, linkages, and operators.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
 - 2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 - 3. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.
- C. Coordination Drawings: Show fan room layout and relationships between components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate and certify field measurements.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For centrifugal fans to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.
- 1.6 DELIVERY, STORAGE, AND HANDLING
 - A. Deliver fans as factory-assembled units, to the extent allowable by shipping limitations, with protective crating and covering.
 - B. Disassemble and reassemble units, as required for moving to the final location, according to manufacturer's written instructions.
 - C. Lift and support units with manufacturer's designated lifting or supporting points.

1.7 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Belts: One set for each belt-driven unit.
 - 2. Sheaves: For fan speed adjustment, sheave size determined at time of air quantity balancing operation, one set for each multiple belt-driven, non-VFC unit.
 - 3. Fan Wall Array: Fan/motor cartridge for emergency replacement, one for each type of assembly provided on the project.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL FANS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme Engineering & Mfg. Corp.
 - 2. Aerovent; a Twin City Fan Company.
 - 3. Chicago Blower Corporation.
 - 4. Loren Cook Company.
 - 5. Penn Barry; a unit of Tomkins PLC.
 - 6. Trane.
- B. General: Select fans to avoid instability in service and compute outlet areas to outlet velocities in accordance with AMCA Standards. Maintain fan duty point to the right of the peak static pressure point farthest from shut-off and at approximately 60 percent overall efficiency.
- C. Description: AMCA certified, factory-fabricated, -assembled, -tested, and -finished, belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, and support structure.
- D. Housings: Formed panels to make curved-scroll housings with shaped cutoff, with doors or panels to allow access to internal parts and components.
 - 1. Panel Bracing: Steel angle- or channel-iron member supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 - 2. Horizontally split, bolted-flange housing.
 - 3. Spun inlet cone with flange.
 - 4. Outlet flange.
- E. Fan Wheels: Airfoil, backward-inclined, or forward-curved as indicated on Drawings.

- 1. Airfoil Wheels: Single-width-single-inlet and double-width-double-inlet construction with curved inlet flange; heavy backplate; hollow die-formed, airfoil-shaped blades continuously welded at tip flange and backplate; and cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.
- Backward-Inclined Wheels: Single-width-single-inlet and double-width-double-inlet construction with curved inlet flange, backplate, backward-inclined blades welded or riveted to flange and backplate; cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.
- 3. Forward-Curved Wheels: Black-enameled or galvanized steel construction with inlet flange, backplate, shallow blades with inlet and tip curved forward in direction of airflow, mechanically secured to flange and backplate; cast-steel hub swaged to backplate and fastened to shaft with set screws.

F. Accessories:

- 1. Scroll Access Doors: For fans larger than 18 inches in diameter, shaped to conform to scroll, with quick-opening latches and gaskets.
- 2. Cleanout Door: Quick-opening, latch-type gasketed door allowing access to fan scroll, of same material as housing.
- 3. Scroll Drain Connection: NPS 1 steel pipe coupling welded to low point of fan scroll.
- 4. Companion Flanges: Rolled flanges for duct connections of same material as housing.
- 5. Variable Inlet Vanes: With blades supported at both ends with two permanently lubricated bearings of same material as housing. Variable mechanism terminating in single control lever with control shaft for double-width fans.
- 6. Discharge Dampers: Assembly with opposed blades constructed of two plates formed around and to shaft, channel frame, and sealed ball bearings; with blades linked outside of airstream to single control lever of same material as housing.
- 7. Inlet Screens: Grid screen of same material as housing.
- 8. Shaft Cooler: Metal disk between bearings and fan wheel, designed to dissipate heat from shaft.
- 9. Spark-Resistant Construction: AMCA 99.
- 10. Shaft Seals: Airtight seals installed around shaft on drive side of single-width fans.
- 11. Weather Cover: Enameled-steel sheet with ventilation slots, bolted to housing.
- G. Motors: Comply with requirements in Division 20 Section "Motors."
 - 1. Enclosure Type: Totally enclosed, fan cooled.
- H. Capacities And Characteristics:
 - 1. Refer to schedules on the Drawings.
 - 2. Sound Power Level Ratings:

- a. Ducted Fans: Rated in accordance with AMCA 301, when tested in accordance with AMCA 300.
- b. Nonducted Fans: Rated in zones at 5 feet from acoustic center of fan and in accordance with AMCA 301, tested in accordance with AMCA 300 and converted to AMCA 302.

I. Fan Construction:

- Housing Material: Reinforced steel. Metal thickness not less than minimum specified by AMCA for the class of service.
- 2. Special Housing Coating: Powder-baked enamel.
- 3. Wheel Material: Steel. Metal thickness not less than minimum specified by AMCA for the class of service.
- 4. Vibration Isolators: Spring isolators having a static deflection of 1 inch.
- 5. Spark Arrestance Class: C.
- 6. Refer to schedules on Drawings for additional requirements.

2.2 PLENUM/PLUG FANS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme Engineering & Mfg. Corp.
 - 2. Aerovent; a Twin City Fan Company.
 - 3. Chicago Blower Corporation.
 - 4. Greenheck.
 - 5. Loren Cook Company.
 - 6. PennBarry; a unit of Tomkins PLC.
 - 7. Trane.
- B. General: Select fans to avoid instability in service and compute outlet areas to outlet velocities in accordance with AMCA Standards. Maintain fan duty point to the right of the peak static pressure point farthest from shut-off and at approximately 60 percent overall efficiency.
- C. Description: AMCA certified, factory-fabricated, -assembled, -tested, and -finished, unhoused, belt-driven centrifugal plenum/plug fans consisting of wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, and support structure.
- D. Airfoil Wheels: Single-width-single-inlet construction with smooth-curved inlet flange; heavy backplate; hollow die-formed, airfoil-shaped blades continuously welded at tip flange and backplate; and cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.
- E. Accessories:

- Shaft Cooler: Metal disk between bearings and fan wheel, designed to dissipate heat from shaft.
- F. Motors: Comply with requirements in Division 20 Section "Motors."
 - 1. Enclosure Type: Totally enclosed, fan cooled.
- G. Capacities And Characteristics:
 - 1. Refer to schedules on the Drawings.
 - 2. Sound Power Level Ratings:
 - a. Ducted Fans: Rated in accordance with AMCA 301, when tested in accordance with AMCA 300.
 - b. Nonducted Fans: Rated in zones at 5 feet from acoustic center of fan and in accordance with AMCA 301, tested in accordance with AMCA 300 and converted to AMCA 302.

H. Fan Construction:

- Wheel Material: Steel. Metal thickness not less than the minimum specified by AMCA for the class of service.
- 2. Vibration Isolators: Spring isolators having a static deflection of 1 inch.
- 3. Spark Arrestance Class: C.
- 4. Refer to schedules on Drawings for additional requirements.

2.3 SOURCE QUALITY CONTROL

- A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210/ASHRAE 51, "Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install centrifugal fans level and plumb.
- B. Disassemble and reassemble units, as required for moving to the final location, according to manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.
- D. Support floor-mounting units using vibration-control devices as specified in Division 20 Section "Mechanical Vibration Controls."
 - 1. Secure vibration controls to concrete bases using anchor bolts cast in concrete base.

- 2. Exception: Fan arrays that meet the balancing specification do not require spring isolation.
- E. Install floor-mounting units on concrete bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."
- F. Support suspended units from structure using threaded steel rods and spring hangers with vertical-limit stops having a static deflection of 1 inch. Vibration-control devices are specified in Division 20 Section "Mechanical Vibration Controls."
- G. Install units with clearances for service and maintenance.
- H. Label fans according to requirements specified in Division 20 Section "Mechanical Identification."

3.2 CONNECTIONS

- A. Install line-sized piping from scroll drain connection, with trap with seal equal to 1.5 times specified static pressure, to nearest floor drain.
- B. Ground equipment according to Division 26 Section "Grounding and Bonding."
- C. Connect wiring according to Division 26 Section "Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.
 - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 9. Refer to Division 23 Section "Testing, Adjusting, and Balancing" for testing, adjusting, and balancing procedures.
 - 10. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain centrifugal fans. Refer to Division 20 Section "Mechanical General Requirements."

END OF SECTION

POWER VENTILATORS

PART 1-	- GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	PERFORMANCE REQUIREMENTS	1
	SUBMITTALS	
	QUALITY ASSURANCE	
	DELIVERY, STORAGE, AND HANDLING	
	COORDINATION	
1.7	EXTRA MATERIALS	3
DADT 2	- PRODUCTS	2
2.1	CENTRIFUGAL ROOF VENTILATORS	2
	KITCHEN HOOD EXHAUST FANS	
	ROOF CURBS AND ACCESSORIES	
	MOTORS	
2.4	SOURCE QUALITY CONTROL	6
PART 3 -	- EXECUTION	7
3.1	INSTALLATION	7
	CONNECTIONS	
	FIELD QUALITY CONTROL	
3.4	ADJUSTING	8
PART 1 -	- GENERAL	

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
 - B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Motors."
 - 3. Division 23 Section "Common Work Results for HVAC" for common mechanical drive requirements for fans and air moving equipment.

1.2 PERFORMANCE REQUIREMENTS

A. Classify according to AMCA 99.

1.3 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.

- 4. Material thickness.
- 5. Dampers, including housings, linkages, and operators.
- 6. Roof curbs.
- 7. Fan speed controllers.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
 - 2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 - Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.
- C. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Roof framing and support members relative to duct penetrations.
 - 2. Ceiling suspension assembly members.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For power ventilators to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.
- C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.
- D. UL Standard: Power ventilators shall comply with UL 705.
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Deliver fans as factory-assembled units, to the extent allowable by shipping limitations, with protective crating and covering.

- B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.

1.6 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- C. Coordinate delivery and placement of roof curbs, and equipment supports. Installation of roof curbs, equipment supports, and roof penetrations is specified in Division 07 Section "Roof Accessories."

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Belts: One set for each belt-drive unit.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme Engineering & Mfg. Corp.; Models PRN and PV.
 - 2. Aerovent; a Twin City Fan Company.
 - 3. Greenheck; Models G and GB.
 - 4. Loren Cook Company; Models ACED and ACEB.
 - 5. Moffitt Corporation, Inc.
 - 6. PennBarry; a unit of Tomkins PLC; Domex.
- B. Description: Direct- or belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, curb base, and accessories.
- C. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
- D. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.
- E. Belt-Driven Drive Assembly: Resiliently mounted to housing, with the following features:
 - 1. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 2. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 3. Sheaves: Cast-iron, adjustable-pitch motor sheave.

- 4. Fan and motor isolated from exhaust airstream.
- 5. Refer to Division 23 Section "Common Work Results for HVAC" for additional requirements.

F. Accessories:

- 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
- 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
- 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
- G. Provide prefabricated roof curbs for each fan.
- H. Capacities and Characteristics: Refer to schedule(s) on Drawings.

2.2 KITCHEN HOOD EXHAUST FANS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme Engineering & Mfg. Corp.; Models PDURG and PNURG.
 - 2. Aerovent; a Twin City Fan Company.
 - 3. Greenheck; CUBE Series.
 - 4. JencoFan; Div. of Breidert Air Products.
 - 5. Loren Cook Company.
 - 6. Moffitt Corporation, Inc.
 - 7. PennBarry; a unit of Tomkins PLC; Fumex with Fatrap.
- B. Description: UL 762 labeled belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, heat baffle, curb base, and accessories.
- C. Housing: Spun-aluminum construction with square, one-piece, aluminum base with venturi inlet cone. Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains, grease collector, and drain connection.
 - 1. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- D. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.
- E. Belt-Driven Drive Assembly: Resiliently mounted to housing, with the following features:
 - 1. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 2. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 3. Sheaves: Cast-iron, adjustable-pitch motor sheave.

- 4. Fan and motor isolated from exhaust airstream.
- 5. Refer to Division 23 Section "Common Work Results for HVAC" for additional requirements.

F. Accessories:

- 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
- 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
- 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
- G. Provide prefabricated roof curbs for each fan. Provide vented curb extension as required to locate fan discharge at a minimum of 40 inches above the roof.
- H. Capacities and Characteristics: Refer to schedule(s) on Drawings.

2.3 ROOF CURBS AND ACCESSORIES

- A. Construction: Galvanized steel; mitered and welded corners; 1-1/2-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch chemically treated wood nailer. Size as required to suit roof opening and fan base.
 - 1. Manufacturers: Roof curbs shall be provided by the fan manufacturer, or one of the following:
 - a. Creative Metals.
 - b. Pate.
 - c. Roof Products & Systems.
 - d. ThyCurb.
 - e. Any of the approved roof mounted exhaust fan manufacturers.
 - 2. Configuration: Self-flashing without a cant strip, with mounting flange, and suitable for flat roofs with tapered insulation.
 - 3. Height: Curb shall extend a minimum 18 inches above top surface of roof insulation.
 - 4. Sound Curb: Curb with sound-absorbing insulation matrix.
 - 5. Metal Liner: Galvanized steel.
 - 6. Burglar Bars: Minimum 1/2-inch- thick steel bars welded in place to form 6-inch squares.
 - 7. Mounting Pedestal: Galvanized steel with removable access panel.
- B. Construction: Galvanized steel; mitered and welded corners; 1-1/2-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch chemically treated wood nailer. Size as required to suit roof opening and fan base.
 - 1. Manufacturers: Roof curbs shall be provided by the fan manufacturer, or one of the following:
 - a. Creative Metals.
 - b. Pate.

- c. Roof Products & Systems.
- d. ThyCurb.
- e. Any of the approved roof mounted exhaust fan manufacturers.
- 2. Configuration: Built-in raised cant with step dimension matching insulation thickness, with mounting flange, and suitable for sloped roofs with uniform insulation thickness.
- 3. Height: Curb shall extend a minimum 18 inches above top surface of roof insulation.
- 4. Sound Curb: Curb with sound-absorbing insulation matrix.
- 5. Pitch Mounting: Manufacture curb for roof slope, top of curb shall be level.
- 6. Metal Liner: Galvanized steel.
- 7. Burglar Bars: Minimum 1/2-inch- thick steel bars welded in place to form 6-inch squares.
- 8. Mounting Pedestal: Galvanized steel with removable access panel.
- C. Roof Curb Extensions and Adapters:
 - 1. Manufacturers: Roof curbs shall be provided by the fan manufacturer, or one of the following:
 - a. Creative Metals.
 - b. Pate.
 - c. Roof Products & Systems.
 - d. ThyCurb.
 - e. Any of the approved roof mounted exhaust fan manufacturers.
 - 2. Curb Extensions: Constructed of minimum 18 ga. galvanized steel.
 - a. 4-inch high construction with no damper shelf and no damper access.
 - b. 8-inch high construction with damper shelf; and removable panel, or access door.
 - c. 12-inch high construction with damper shelf; and removable panel, or access door (minimum required for motorized damper).
 - 3. Curb Adapters: Constructed of minimum 18 ga. galvanized steel and designed to adapt or reduce curb cap dimensions to match new fans to existing roof curbs.

2.4 MOTORS

A. Comply with requirements in Division 20 Section "Motors."

2.5 SOURCE QUALITY CONTROL

- A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."

POWER VENTILATORS

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install power ventilators level and plumb.
- B. Install floor-mounting units as specified in Division 20 Section "Mechanical Vibration Controls."
- C. Secure roof-mounting fans to roof curbs with cadmium-plated hardware. Refer to Division 07 Section "Roof Accessories" for installation of roof curbs.
- D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- E. Support suspended units from structure using threaded steel rods and spring hangers having a static deflection of 1 inch. Vibration-control devices are specified in Division 20 Section "Mechanical Vibration Controls."
- F. Install units with clearances for service and maintenance.
- G. Label units according to requirements specified in Division 20 Section "Mechanical Identification."

3.2 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding."
- D. Connect wiring according to Division 26 Section "Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.

- 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
- 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
- 10. Shut unit down and reconnect automatic temperature-control operators.
- 11. Remove and replace malfunctioning units and retest as specified above.
- B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Refer to Division 23 Section "Testing, Adjusting, and Balancing" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor sheaves as required to achieve design airflow.
- E. Lubricate bearings.

END OF SECTION

POWER VENTILATORS 23 3423 - 8

AIR TERMINAL UNITS

PART 1	- GENERAL	. 1
1.1	RELATED DOCUMENTS	
1.2	SUBMITTALS	. 1
1.3	QUALITY ASSURANCE	. 2
1.4	COORDINATION	. 2
PART 2	- PRODUCTS	2
2.1	MANUFACTURERS	. 2
2.2	SINGLE-DUCT AIR TERMINAL UNITS	. 2
2.3	HANGERS AND SUPPORTS	. 3
2.4	SOURCE QUALITY CONTROL	. 4
PART 3	- EXECUTION	. 4
3.1	INSTALLATION	
3.2	HANGER AND SUPPORT INSTALLATION	
3.3	CONNECTIONS	
3.4	FIELD QUALITY CONTROL	. 5
3.5	STARTUP SERVICE	. 5
3.6	DEMONSTRATION	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 23 Section "Metal Ducts."
 - 3. Division 23 Section "Temperature Controls."

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated, include rated capacities, furnished specialties, sound-power ratings, and accessories.
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Include a schedule showing unique model designation, room location, model number, size, and accessories furnished.
 - 2. Wiring Diagrams: Signal, and control wiring.
- C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

- 1. Ceiling suspension assembly members.
- 2. Method of attaching hangers to building structure.
- 3. Size and location of initial access modules for acoustical tile.
- 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- D. Operation and Maintenance Data: For air terminal units to include in operation and maintenance manuals. Include the following:
 - 1. Instructions for resetting minimum and maximum air volumes.
 - 2. Instructions for adjusting software set points.

1.3 QUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, and dimensional requirements of air terminal units and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- C. NFPA Compliance: Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."

1.4 COORDINATION

A. Coordinate layout and installation of air terminal units and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SINGLE-DUCT AIR TERMINAL UNITS

- A. Manufacturers:
 - 1. Anemostat; a Mestek Company.
 - 2. Krueger; Tomkins PLC.
 - Nailor Industries of Texas Inc.
 - 4. Price Industries.

- 5. Titus; Tomkins PLC.
- 6. Tuttle & Bailey; Tomkins PLC.
- B. Configuration: Variable and constant volume, medium pressure terminal units with casing, 100 percent tight shutoff volume regulator, velocity sensor, and sound attenuating thermal insulation.
- C. Casing: Constructed of 0.034-inch mill galvanized steel or 0.032-inch aluminum.
 - 1. Casing Lining: 1-inch- thick, coated, fibrous-glass duct liner complying with ASTM C 1071; secured with adhesive. Cover liner with nonporous foil.
 - 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 - 3. Air Outlet: S-slip and drive connections, size matching inlet size.
 - 4. Access: Removable panels for access to dampers and other parts requiring service, adjustment, or maintenance; with airtight gasket.
- D. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 - 1. Maximum Damper Leakage: ARI 880 rated, 2 percent of nominal airflow at 3-inch wg inlet static pressure.
- E. Velocity Sensor: Multipoint averaging array. Sensor located in air inlet.
- F. Attenuator Section: 0.034-inch mill galvanized steel or 0.032-inch aluminum sheet metal.
 - 1. Lining: 1-inch- thick, coated, fibrous-glass duct liner complying with ASTM C 1071; secured with adhesive. Cover liner with nonporous foil.
- G. Hot-Water Heating Coil: Copper tube, mechanically expanded into aluminum-plate fins; leak tested underwater to 200 psig; and factory installed.
- H. Factory-Mounted and -Wired Controls: Electrical components shall be mounted in control box with removable cover. Incorporate single-point electrical connection to power source.
 - Control Transformer: Factory mounted for control voltage on electric and electronic control units with terminal strip in control box for field wiring of thermostat and power source
 - 2. Wiring Terminations: Fan and controls to terminal strip, and terminal lugs shall match quantities, sizes, and materials of branch-circuit conductors. Enclose terminal lugs in terminal box that is sized according to NFPA 70.
- I. Control Panel Enclosure: NEMA 250, Type 1, with access panel sealed from airflow and mounted on side of unit.
- J. DDC Controls: Single-package unitary controller and actuator specified in Division 23 Section "Temperature Controls."
- K. Control Sequence: Refer to Temperature Control Diagrams on Drawings.
- 2.3 HANGERS AND SUPPORTS
 - A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

- B. Steel Cables: Galvanized steel complying with ASTM A 603.
- C. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- D. Air Terminal Unit Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- E. Trapeze and Riser Supports: Steel shapes and plates for units with steel casings; aluminum for units with aluminum casings.

2.4 SOURCE QUALITY CONTROL

- A. Identification: Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, coil type, and ARI certification seal.
- B. Verification of Performance: Rate air terminal units according to ARI 880.
- C. Acoustical Applications and Sound Evaluation: Based on ARI Standard 885-98, "Procedure for Estimating Occupied Space Sound Levels in the Application of Air Terminals and Air Outlets."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
- B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Hangers and Supports."
- B. Building Attachments: Concrete inserts or structural-steel fasteners appropriate for construction materials to which hangers are being attached. Refer to Division 20 Section "Hangers and Supports" for additional information.
 - 1. Where practical, install concrete inserts before placing concrete.
- C. Hangers Exposed to View: Threaded rod and angle or channel supports.
- D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to air terminal units to allow service and maintenance.
- C. Hot-Water Piping: In addition to requirements in Division 23 Section "Hydronic Piping," connect heating coils to supply with shutoff valve, strainer, control valve, and union or flange; and to return with balancing valve and union or flange.

- D. Connect ducts to air terminal units according to Division 23 Section "Metal Ducts."
- E. Connect wiring according to Division 26 Section "Conductors and Cables."
- F. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Remove and replace malfunctioning units and retest as specified above.

3.5 STARTUP SERVICE

- A. Complete installation and startup checks according to manufacturer's written instructions and do the following:
 - 1. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
 - 2. Verify that controls and control enclosure are accessible.
 - 3. Verify that control connections are complete.
 - 4. Verify that nameplate and identification tag are visible.
 - 5. Verify that controls respond to inputs as specified.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION

DIFFUSERS, REGISTERS, AND GRILLES

PART 1	- GENERAL	1
1.1	RELATED DOCUMENTS	1
1.2	SUBMITTALS	1
PART 2	- PRODUCTS	2
	AIR DIFFUSION DEVICES	
2.2	SOURCE QUALITY CONTROL	2
PART 3	- EXECUTION	2
3.1	EXAMINATION	2
3.2	INSTALLATION	2
3.3	ADJUSTING	3

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 10 Section "Louvers and Vents" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 - 2. Division 20 Section "Mechanical General Requirements."
 - 3. Division 23 Section "Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.2 SUBMITTALS

- A. Product Data: For each product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate Drawing designation, room location, quantity, model number, size, and accessories furnished.
- B. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Method of attaching hangers to building structure.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 - 5. Duct access panels.

PART 2 - PRODUCTS

2.1 AIR DIFFUSION DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Anemostat; a Mestek Company.
 - 2. Krueger; Tomkins PLC.
 - Nailor Industries of Texas Inc.
 - 4. Price Industries.
 - 5. Titus; Tomkins PLC.
 - 6. Tuttle & Bailey; Tomkins PLC.
- B. Terminal air diffusion devices have been chosen in terms of specific air distribution requirements, spacing, and sound characteristics.
- C. Provide plaster frames for units installed in plaster ceilings.
- D. Provide gaskets for supply terminal air devices mounted in finished surfaces.
- E. Air diffusion devices shall be standard off white baked enamel finish unless noted otherwise. Provide air diffusion device interior surfaces, including blank-offs, with black matte finish.
- F. Air pattern adjustments shall be made from the face of the device.
- G. Refer to drawings and schedules for quantities, types, and finishes.
- H. Coordinate frame types with Architectural Reflected Ceiling Plan.

2.2 SOURCE QUALITY CONTROL

- A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."
- B. Acoustical Applications and Sound Evaluation: Based on ARI Standard 885-98, "Procedure for Estimating Occupied Space Sound Levels in the Application of Air Terminals and Air Outlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practicable. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Wall-Mounted Supply Registers: Install 6 inches below finished ceiling unless otherwise indicated.
- D. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION

COMMERCIAL KITCHEN HOODS

PART 1 -	- GENERAL	
1.1	RELATED DOCUMENTS	1
	DEFINITIONS	
	SUBMITTALS	
	QUALITY ASSURANCE	
	COORDINATION	
1.6	EXTRA MATERIALS	3
DADT 2	- PRODUCTS	2
21	HOOD MATERIALS	3
2.1	HOOD MATERIALS	J
2.2	HOOD FABRICATION, GENERAL	4
2.3	TYPE I EXHAUST HOOD FABRICATION	5
PART 3 -	- EXECUTION	7
3.1	EXAMINATION	7
	INSTALLATION	
	CONNECTIONS	
3.4	FIELD QUALITY CONTROL	8
	CLEANING	
3.6	DEMONSTRATION	9

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 23 Section "Rooftop Make-Up Air Units" for makeup air units.
 - 3. Division 23 Section "Power Ventilators" for exhaust fans.
 - 4. Division 23 Section "HVAC Instrumentation and Controls" for automatic controls for exhaust fans, makeup air heaters, and fire alarm systems.

1.2 DEFINITIONS

- A. Listed Hood: A hood tested according to UL 710 by a NRTL acceptable to authorities having jurisdiction.
- B. Standard Hood: A hood that complies with design, construction, and performance criteria of applicable national and local codes.
- C. Type I Hood: A hood designed for grease exhaust applications.
- D. Type II Hood: A hood designed for heat and steam removal and other nongrease applications.
- 1.3 SUBMITTALS
 - A. Product Data: For the following:

- 1. Hoods.
- 2. Grease removal devices.
- 3. Fire-suppression systems.
- 4. Lighting fixtures.

B. Shop Drawings:

- 1. Show plan view, elevation view, sections, roughing-in dimensions, service requirements, duct connection sizes, and attachments to other work.
- 2. Show cooking equipment plan and elevation to confirm minimum code-required overhang.
- Indicate performance, exhaust and makeup air airflow and pressure loss, at actual Projectsite elevation.
- 4. Indicate method of attaching hangers to building structure.
- 5. Show exhaust and makeup air ducts, and fittings connecting to hoods.
- 6. Show water-supply and drain piping.
- 7. Show control cabinets.
- 8. Show fire-protection piping, actuation devices, and manual control devices.
- 9. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 10. Wiring Diagrams: Power, signal, and control wiring.
- C. Piping Diagrams: Detail fire-suppression piping and components and differentiate between manufacturer-installed and field-installed piping. Include roughing-in requirements for drain connections. Show cooking equipment plan and elevation to illustrate fire-suppression nozzle locations.
- D. Coordination Drawings: Reflected ceiling plans drawn to scale and coordinating penetrations and ceiling-mounted items. Show the following:
 - 1. Relative location of ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings to hoods and accessory equipment.
 - 2. Roof framing and support members for duct penetrations.
 - 3. Ceiling suspension assembly members.
 - 4. Size and location of initial access modules for acoustical tile.
- E. Welding certificates.
- F. Field test reports.

1.4 QUALITY ASSURANCE

- A. Engineering Responsibility: Preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer.
- B. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel," for hangers and supports; and AWS D9.1, "Sheet Metal Welding Code," for joint and seam welding.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- D. NSF Compliance: Fabricate hoods according to NSF 2, "Food Equipment."
- E. SMACNA Compliance:
 - 1. Fabricate hoods to comply with SMACNA's "HVAC Duct Construction Standards: Metal and Flexible," second edition.
- F. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination."

1.5 COORDINATION

A. Coordinate equipment layout and installation with other Work, including light fixtures, HVAC equipment, and fire-suppression system components.

1.6 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Furnish one complete set of grease removal devices.

PART 2 - PRODUCTS

2.1 HOOD MATERIALS

- A. Stainless-Steel Sheet: ASTM A 666, Type 304.
 - 1. Minimum Thickness: 0.03 inch.
 - 2. General: Comply with SSINA's "Finishes for Stainless Steel" for recommendations for applying and designating finishes.
 - 3. Remove tool and die marks and stretch lines or blend into finish. Grind and polish surfaces to produce uniform, directionally textured, polished finish indicated, free of cross scratches. Run grain with long dimension of each piece.
 - 4. Concealed Stainless-Steel Surfaces: ASTM A 480/A 480M, No. 2B finish (bright, cold-rolled, unpolished finish).
 - 5. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.
- B. Carbon-Steel Sheets: ASTM A 366/A 366M, cold-rolled sheets; commercial quality; with oiled, exposed matte finish.

- C. Galvanized Steel Sheet: Lock-forming quality; ASTM A 653/A 653M, G90 coating designation; mill-phosphatized finish for surfaces of ducts exposed to view.
 - Minimum Thickness: 0.03 inch.
- D. Zinc-Coated Steel Shapes: ASTM A 36/A 36M, zinc coated according to ASTM A 123/A 123M requirements.
- E. Sealant: ASTM C 920; Type S, Grade NS, Class 25, Use NT. Elastomeric sealant shall be NSF certified for commercial kitchen hood application. Sealants, when cured and washed, shall comply with requirements in 21 CFR, Section 177.2600, for use in areas that come in contact with food.
 - 1. Color: As selected by Architect from manufacturer's full range.
 - 2. Backer Rod: Closed-cell polyethylene, in diameter larger than joint width.
- F. Sound Dampening: NSF-certified, nonabsorbent, hard-drying, sound-deadening compound for permanent adhesion to metal in minimum 1/8-inch thickness that does not chip, flake, or blister.
- G. Gaskets: NSF certified for end-use application indicated; of resilient rubber, neoprene, or PVC that is nontoxic, stable, odorless, nonabsorbent, and unaffected by exposure to foods and cleaning compounds, and passes testing according to UL 710.

2.2 HOOD FABRICATION, GENERAL

- A. Welding: Use welding rod of same composition as metal being welded. Use methods that minimize distortion and develop strength and corrosion resistance of base metal. Make ductile welds free of mechanical imperfections such as gas holes, pits, or cracks.
 - 1. Welded Butt Joints: Full-penetration welds for full-joint length. Make joints flat, continuous, and homogenous with sheet metal without relying on straps under seams, filling in with solder, or spot welding.
 - 2. Grind exposed welded joints flush with adjoining material and polish to match adjoining surfaces.
 - 3. Where fasteners are welded to underside of equipment, finish reverse side of weld smooth and flush.
 - 4. Coat concealed stainless-steel welded joints with metallic-based paint to prevent corrosion.
 - 5. After zinc-coated steel is welded, clean welds and abraded areas and apply SSPC-Paint 20, high-zinc-dust-content, galvanizing repair paint to comply with ASTM A 780/A 780M.
- B. For metal butt joints, comply with SMACNA's "Kitchen Equipment Fabrication Guidelines."
- C. Where stainless steel is joined to a dissimilar metal, use stainless-steel welding material or fastening devices.
- D. Form metal with break bends that are not flaky, scaly, or cracked in appearance; where breaks mar uniform surface appearance of material, remove marks by grinding, polishing, and finishing.
- E. Sheared Metal Edges: Finish free of burrs, fins, and irregular projections.
- F. In food zones, as defined in NSF, fabricate surfaces free from exposed fasteners.

- G. Cap exposed fastener threads, including those inside cabinets, with stainless-steel lock washers and stainless-steel cap (acorn) nuts.
- H. Fabricate pipe slots on equipment with turned-up edges sized to accommodate service and utility lines and mechanical connections.
- Fabricate enclosures, including panels, housings, and skirts, to conceal service lines, operating components, and mechanical and electrical devices including those inside cabinets, unless otherwise indicated.
- J. Fabricate equipment edges and backsplashes according to SMACNA's "Kitchen Equipment Fabrication Guidelines."
- K. Fabricate enclosure panels to ceiling and wall as follows:
 - 1. Fabricate panels on all exposed sides with same material as hood, and extend from ceiling to top of hood canopy and from canopy to wall.
 - 2. Wall Offset Spacer: Minimum of 3 inches.
 - 3. Wall Shelves and Overshelves: Fabricate according to SMACNA's "Kitchen Equipment Fabrication Guidelines," with minimum 0.0625-inch- thick, stainless-steel shelf tops.

2.3 TYPE I EXHAUST HOOD FABRICATION

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Commercial Kitchen Hoods:
 - a. AVTEK Industries, Inc.; a DI Foodservice Company; Hi-Slot Model AXWP Grease Extractor Module.
 - b. Gaylord Industries, Inc.
 - c. Southern Equipment Co.; Div. of Duke Manufacturing Co.
 - d. Greenheck.
 - 2. Wet-Chemical Fire-Suppression Systems:
 - a. Ansul Incorporated; a Tyco International Ltd. Company.
 - b. Badger Fire Protection, Inc.
 - c. Fenwall Safety Systems, Inc.; Div. of Kidde Technologies, Inc.
 - d. Pyro Chem, Inc.
- B. Weld all joints exposed to grease with continuous welds and make grease removal devices and makeup air diffusers easily accessible for cleaning.
 - 1. Hood shall be listed and labeled, according to UL 710.
 - 2. Include access panels as required for access to fire dampers and fusible links.
 - 3. Fire Dampers: Labeled, according to UL 555.
 - a. Fire Rating: One and one-half hours.
 - b. Frame: SMACNA Type A or B, with blades in airstream; fabricated with roll-formed, 0.034-inch- thick stainless steel; with mitered and interlocking corners.

- c. Mounting Sleeve: Stainless steel sheet, with a minimum thickness of 0.052 or 0.138 inch and length to suit application.
- d. Mounting Orientation: Vertical as indicated.
- e. Blades: Roll-formed, interlocking, 0.034-inch- thick, stainless steel sheet. In place of interlocking blades, use full-length, 0.034-inch- thick, stainless steel blade connectors.
- f. Fusible Link: Replaceable, 286 deg F rated.
- 4. Exhaust-Duct Collars: Minimum 0.0625-inch- thick stainless steel at least 3 inches long, continuously welded to top of hood and at corners.
- C. Hood Configuration: Exhaust and makeup air.
- D. Hood Style: Wall-mounted canopy.
- E. Grease Removal Devices: Removable, stainless-steel, filter/baffle grease filters with spring-loaded fastening. Fabricate with minimum 0.0781-inch- thick stainless steel for filter frame and removable collection cup and trough. Exposed surfaces shall be pitched to drain to collection cup. Filters/baffles shall comply with UL 1046, "Grease Filters for Exhaust Ducts."
- F. Light Fixtures: UL-listed, surface-mounted, incandescent fixtures and lamps with lenses sealed vaportight. Wiring shall be installed in stainless-steel conduit on hood exterior. Number and location of fixtures shall provide a minimum of 70 fc on cooking surface below hood.
 - 1. Switches shall be mounted on wall adjacent to hood.
 - 2. Incandescent Lighting Fixtures: Comply with UL 1571.
- G. Wet-Chemical Fire-Suppression System: Preengineered distribution piping designed for automatic detection and release or manual release of fire-suppression agent by hood operator. Fire-suppression system shall be listed and labeled by a testing agency acceptable to authorities having jurisdiction.
 - Steel Pipe, NPS 2 and Smaller: ASTM A 53/A 53M, Type S, Grade A, Schedule 40, plain ends.
 - 2. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300.
 - 3. Pipe Covers: Chrome-plated aluminum tubing.
 - 4. Piping, fusible links and release mechanism, tank containing the suppression agent, and controls shall be factory installed. Controls shall be in stainless-steel control cabinet mounted on hood or wall. Furnish manual pull station for wall mounting adjacent to hood. Exposed piping shall be covered with stainless-steel sleeves. Exposed fittings shall be chrome plated.
 - 5. Liquid Extinguishing Agent: Noncorrosive, low-pH liquid.
 - 6. Furnish an electric-operated, gas shutoff valve with clearly marked open and closed indicator for field installation.
 - 7. Fire-suppression system controls shall be integrated with controls for fans, lights, and fuel supply and located in a single cabinet for each group of hoods immediately adjacent.
 - 8. Wiring shall have color-coded, numbered terminal blocks and grounding bar. Spare terminals for fire alarm, optional wiring to start fan with fire alarm, red pilot light to indicate fan

operation, and control switches shall all be factory wired in control cabinet with relays or starters.

- H. Hood Controls: Single, wall-mounting control cabinet shall control groups of adjacent hoods and shall be fabricated of stainless steel.
 - Exhaust Fan: On-off switches shall start and stop the exhaust fan. Interlock exhaust fan with makeup air supply fan to operate simultaneously. Interlock exhaust fan with fire-suppression system to operate fans during fire-suppression-agent release and to remain in operation until manually stopped. Motor starters shall comply with Division 26 Section "Enclosed Controllers."
 - 2. High-Temperature Control: Alarm shall sound and cooking equipment shall shut down before hood discharge temperature rises to actuation temperature of fire-suppression system.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting installation.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before equipment installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install hoods level and plumb.
- B. Complete field assembly of hoods where required.
 - 1. Make closed butt and contact joints that do not require filler.
 - 2. Grind field welds on stainless-steel equipment smooth, and polish to match adjacent finish. Comply with welding requirements in Part 2 "General Hood Fabrication" Article.
- C. Install hoods and associated services with clearances and access for maintaining, cleaning, and servicing hoods, grease removal devices, and fire-suppression systems according to manufacturer's written instructions and requirements of authorities having jurisdiction.
- D. Make cutouts in hoods where required to run service lines and to make final connections.
- E. Securely anchor and attach items and accessories to walls, floors, or bases with stainless-steel fasteners, unless otherwise indicated.
- F. Install hoods to operate free from vibration.
- G. Install trim strips and similar items requiring fasteners in a bed of sealant. Fasten with stainless-steel fasteners at 48 inches o.c. maximum.
- H. Install sealant in joints between equipment and abutting surfaces with continuous joint backing, unless otherwise indicated. Provide airtight, watertight, vermin-proof, sanitary joints.
- I. Install lamps, with maximum recommended wattage, in equipment with integral lighting.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20, 21, and 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine with clearance to allow service and maintenance.
- C. Install reduced-pressure backflow preventer on washer-water supply. Backflow preventer is specified in Division 22 Section "Domestic Water Piping Specialties."
- D. Install washer-water drain piping full size of hood connection to an adjacent floor drain or floor sink.
- E. Duct Connections: Comply with applicable requirements in Division 23 Section "Duct Accessories" for flexible connectors on makeup air supply duct. Weld exhaust-duct connections.
- F. Fire-Suppression Piping: Install piping connections for remote-mounted suppression systems according to NFPA 17, "Wet Chemical Extinguishing Systems."
- G. Ground equipment.
- H. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

- 1. Test each equipment item for proper operation. Repair or replace equipment that is defective, including units that operate below required capacity or that operate with excessive noise or vibration.
- 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- 3. Test water, drain, gas, and liquid-carrying components for leaks. Repair or replace leaking components.
- 4. Perform hood performance tests required by authorities having jurisdiction.
- 5. Perform fire-suppression system performance tests required by authorities having jurisdiction.
- E. Prepare test and inspection reports.

3.5 CLEANING

- A. Remove protective coverings and clean and sanitize hoods and associated services, both inside and out, according to manufacturer's written instructions.
- B. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain hoods.

END OF SECTION

BREECHINGS, CHIMNEYS, AND STACKS

	- GENERAL	
1.1	RELATED DOCUMENTS	. 1
1.2	SUBMITTALS	. 1
	QUALITY ASSURANCE	
1.4	COORDINATION	. 2
1.5	WARRANTY	. 2
PART 2.	- PRODUCTS	2
21	MATERIALS	2
	LISTED TYPE B AND BW VENTS	
2.2	LISTED DOUBLE-WALL STACKS (1000/1700 DEG F)	. 3
2.4	LISTED SPECIAL GAS VENT	. 4
	GUYING AND BRACING MATERIALS	
PART 3.	- EXECUTION	5
	EXAMINATION	
	APPLICATION	
	INSTALLATION OF LISTED VENTS, CHIMNEYS AND STACKS	
	CLEANING	
3.4	OLLANING	. 0

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
 - 3. Division 23 Section "Draft Control Devices" for induced-draft and mechanical fans and motorized and barometric dampers.

1.2 SUBMITTALS

- A. Product Data: For the following:
 - 1. Type B and BW vents.
 - 2. Listed double-wall stacks.
 - 3. Special gas vents.
 - 4. Guy wires and connectors.
- B. Shop Drawings: For vents, breechings, chimneys, and stacks. Include plans, elevations, sections, details, and attachments to other work.

- Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, methods of field assembly, components, hangers, and location and size of each field connection.
- 2. Provide engineered sizing data.
- C. Welding certificates.
- D. Warranties: Special warranties specified in this Section.

1.3 QUALITY ASSURANCE

- A. Source Limitations: Obtain listed system components through one source from a single manufacturer.
- B. Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel," for hangers and supports and AWS D9.1, "Sheet Metal Welding Code," for shop and field welding of joints and seams in vents, breechings, and stacks.
- C. Certified Sizing Calculations: Manufacturer shall certify venting system sizing calculations.

1.4 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

1.5 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of venting system that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, structural failures caused by expansion and contraction.
- B. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Combustion-Air Intake: Complete system, stainless steel, pipe, vent terminal with screen, inlet air coupling, and sealant.
- B. PVC Plastic Pipe: ASTM D 1785, Schedules 40 plain end.
 - 1. PVC Plastic Pipe Fittings: Socket-type pipe fittings, ASTM D 2466 for Schedule 40 pipe.
 - 2. PVC Solvent Cement: ASTM D 2564.
- C. CPVC Plastic Pipe: ASTM F 441/F 441M, Schedule 40 Pipe.
 - 1. CPVC Schedule 40 Fittings: ASTM F 438, socket type.
 - CPVC Solvent Cement: ASTM F 493.

2.2 LISTED TYPE B AND BW VENTS

A. Manufacturers:

- 1. AMPCO; American Metal Products; Model AmeriVent Type B Vent.
- 2. Metal-Fab, Inc.; Model M.
- 3. Security Chimneys International; CG Gas Vent.
- 4. Selkirk Inc.; Selkirk Metalbestos; Model RV for 3" to 8" diameter, Model DF for 10" to 24" diameter, and Model QC for 26" to 48" diameter.
- 5. Van-Packer Co./Don Park Inc.; Model B-Vent.
- B. Description: Double-wall metal vents tested according to UL 441 and rated for 480 deg F continuously for Type B, or 550 deg F continuously for Type BW; with neutral or negative flue pressure, complying with NFPA 211; and suitable for certified gas-fired appliances.
- C. Construction: Inner shell and outer jacket separated by at least 1/4-inch airspace.
- D. Inner Shell: ASTM B 209 aluminum for vents less than 10 inches in diameter. ASTM A 666, Type 430 stainless steel for vents 10 to 24 inches in diameter. ASTM B 209 aluminum for vents larger than 24 inches in diameter.
- E. Outer Jacket: Galvanized steel for vents less than 10 inches in diameter. Aluminized steel indoors and Type 304 stainless steel outdoors for vents 10 to 24 inches in diameter. Galvanized steel for vents larger than 24 inches in diameter.
- F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
 - 1. Termination: Round Chimney Top designed to exclude 98 percent of rainfall. A "Pointed Hat" stack cap is not acceptable.

2.3 LISTED DOUBLE-WALL STACKS (1000/1700 DEG F)

A. Manufacturers:

- 1. AMPCO; American Metal Products; Model VSI-II.
- 2. Cleaver-Brooks, Inc.; Model CBILA.
- 3. Metal-Fab, Inc.; Model PIC.
- 4. Schebler Chimney Systems; Model PA.
- 5. Selkirk Inc.; Selkirk Metalbestos; Model PS.
- 6. Van-Packer Co.; Model DW.
- 7. AMPCO; American Metal Products; Model IVSI.

- 8. Cleaver-Brooks, Inc.; Models CBIL1, CBIL1F, CBIL2, CBIL2F, and CBIL4F.
- 9. Metal-Fab, Inc.; Model IPIC.
- 10. Schebler Chimney Systems; Model P1.
- 11. Security Chimneys International; Type CI.
- 12. Selkirk Inc.: Selkirk Metalbestos: Model IPS.
- 13. Van-Packer Co.; Model DW Plus.
- B. Description: Double-wall metal vents tested according to UL 103 and rated for 1000 deg F continuously, or 1700 deg F for 10 minutes; with positive or negative flue pressure, complying with NFPA 211; and suitable for gas-fired boilers, oil-fired boilers, dual-fuel boilers, oven vents, and water heaters, or exhaust for engines.
- C. Construction: Inner shell and outer jacket separated by at least a 1-inch annular space filled with high-temperature, ceramic-fiber insulation.
- D. Inner Shell: ASTM A 666, Type 304 stainless steel.
- E. Outer Jacket: Aluminized steel indoors and Type 304 stainless steel outdoors. Seams shall be fully welded.
- F. Accessories: Tees, elbows, increasers, appliance connectors, explosion relief valves, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
 - 1. Termination: Open Stack with drain section incorporated into riser. There shall be no flow restrictions on the termination. A "Pointed Hat" stack cap is not acceptable.
 - 2. Termination: Flip top.
 - 3. Termination: Miter cut with birdscreen.

2.4 LISTED SPECIAL GAS VENT

- A. Manufacturers:
 - 1. Cleaver-Brooks, Inc.; CBHL.
 - 2. Heat-Fab, Inc.; Model Saf-T Vent CI.
 - 3. Metal-Fab Inc.; Model Corr/Guard.
 - 4. Schebler Chimney Systems; eVent.
 - 5. Security Chimneys International; Secure Seal SSD.
 - 6. Selkirk Inc.; Selkirk Metalbestos; Model DCV.

- 7. Van-Packer Co.; Model CS.
- B. Description: Double-wall metal vents tested according to UL 1738 and rated for 550 deg F continuously, with positive, negative, or neutral flue pressure, complying with NFPA 211 and suitable for condensing gas-fired appliances.
- C. Construction: Inner shell and outer jacket separated by at least 3/32-inch airspace.
- D. Inner Shell: ASTM A 959, Type 29-4C stainless steel.
- E. Outer Jacket: Aluminized steel indoors and Type 304 stainless steel outdoors.
- F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
 - 1. Termination: Round chimney top design to exclude 98 percent of rainwater. A "Pointed Hat" stack cap is not acceptable.
 - 2. Termination: Adjustable wall thimble and horizontal termination with bird screen.

2.5 GUYING AND BRACING MATERIALS

- A. Cable: Four galvanized, stranded wires of the following thickness:
 - 1. Minimum Size: 1/4 inch in diameter.
 - 2. For ID Sizes 4 to 15 Inches: 5/16 inch.
 - 3. For ID Sizes 18 to 24 Inches: 3/8 inch.
 - For ID Sizes 27 to 30 Inches: 7/16 inch.
 - 5. For ID Sizes 33 to 36 Inches: 1/2 inch.
 - 6. For ID Sizes 39 to 48 Inches: 9/16 inch.
 - 7. For ID Sizes 51 to 60 Inches: 5/8 inch.
- B. Pipe: Two galvanized steel, NPS 1-1/4.
- C. Angle Iron: Two galvanized steel, 2 by 2 by 0.25 inch.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATION

A. Listed Type B and BW Vents: Vents for certified gas appliances.

- B. Listed Special Gas Vent: Condensing gas appliances, and direct vented finned water-tube boilers and water heaters.
- C. PVC Plastic Pipe and Fittings: Condensing gas appliances.
- D. CPVC Plastic Pipe and Fittings: Condensing gas water heaters reaching sanitizing temperatures.
- E. Listed Double-Wall Stacks (1000/1700 deg F): Gas-fired boilers, oil-fired boilers, dual-fuel boilers, oven vents, water heaters, and exhaust for engines.

3.3 INSTALLATION OF LISTED VENTS, CHIMNEYS AND STACKS

- A. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing, local regulations, or NFPA 31 and 211, whichever is most stringent.
- B. Seal between sections of positive-pressure vents according to manufacturer's written installation instructions, using sealants recommended by manufacturer.
- C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.
- D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.

3.4 CLEANING

- A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.
- B. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish.
- C. Provide temporary closures at ends of breechings, chimneys, and stacks that are not completed or connected to equipment.

END OF SECTION

CONDENSING BOILERS

PART 1 -	- GENERAL
1.1	RELATED DOCUMENTS
1.2	SUMMARY
1.3	SUBMITTALS
1.4	QUALITY ASSURANCE
1.5	COORDINATION
1.6	WARRANTY
DADTO	PROPULATO
	PRODUCTS
2.1	MODULAR CAST-ALUMINUM CONDENSING BOILERS
2.2	HOT-WATER BOILER TRIM
2.3	CONTROLS
2.4	ELECTRICAL POWER
2.5	VENTING KITS
2.6	ACCESSORIES
2.7	SOURCE QUALITY CONTROL
DADTO	EVECUTION
	EXECUTION
	CONNECTIONS
3.4	FIELD QUALITY CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged, factory-fabricated and -assembled, gas-fired, fire-tube modular aluminum stainless steel vertical fire-tube condensing boilers, trim, and accessories for generating hot water.

1.3 SUBMITTALS

- A. Product Data: Include performance data, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: For boilers, boiler trim, and accessories. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Design calculations and vibration isolation base details.
 - a. Design Calculations: Calculate requirements for selecting vibration isolators for designing vibration isolation bases.
 - b. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails and equipment mounting frames.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
- C. Source quality-control test reports.

- D. Full function factory fire test must be performed and documented on fire test label on boiler. A factory authorized start-up must be completed prior to final acceptance by Owner.
- E. Field quality-control test reports.
- F. Operation and Maintenance Data: For boilers to include in operation and maintenance manuals.
- G. Other Informational Submittals:
 - 1. ASME Stamp Certification and Report: Submit "A," "S," or "PP" stamp certificate of authorization, as required by authorities having jurisdiction, and document hydrostatic testing of piping external to boiler.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASME Compliance: Fabricate and label boilers to comply with ASME Boiler and Pressure Vessel Code.
- C. ASHRAE/IESNA 90.1 Compliance: Boilers shall have minimum efficiency according to "Gas and Oil Fired Boilers Minimum Efficiency Requirements."
- D. DOE Compliance: Minimum efficiency shall comply with 10 CFR 430, Subpart B, Appendix N, "Uniform Test Method for Measuring the Energy Consumption of Furnaces and Boilers."
- E. UL Compliance: Test boilers for compliance with UL 795, "Commercial-Industrial Gas Heating Equipment." Boilers shall be listed and labeled by a NRTL acceptable to authorities having jurisdiction.
- F. ASME CSD-1 Certification, in the form of completed data sheet.

1.5 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of boilers that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Condensing Boilers:
 - a. Leakage and Materials: 10 years from date of Substantial Completion.
 - b. Heat Exchanger Damaged by Thermal Stress and Corrosion: Nonprorated for five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MODULAR CAST-ALUMINUM CONDENSING BOILERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Patterson-Kelley Co./a Harsco Co.; MACH Series.
- B. Description: Factory-fabricated, -assembled, and -tested, modular aluminum condensing boiler with heat exchanger sealed pressure tight, built on a steel base; including insulated jacket; fluegas vent; combustion-air intake connections; water supply, return, and condensate drain connections; and controls. Water heating service only.
- C. Individual Heat Exchangers: Corrosion-resistant cast-aluminum alloy sections mounted in parallel. Water enters and exits through external headers. Water flow surrounds burner cavity.
- D. Burner: Cylindrical metal fiber mesh, natural gas, forced draft.
- E. Blower: Centrifugal fan to operate during each burner firing sequence and to prepurge and postpurge the combustion chamber.
 - 1. Motors: Comply with requirements specified in Division 20 Section "Motors."
 - a. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- F. Gas Train: Shall include a minimum of one manual shut-off valve, two safety solenoid valves, venturi style gas valve, one low gas pressure switch, one high gas pressure switch and two test ports.
- G. Ignition: Spark ignition with 100 percent main-valve shutoff with electronic flame supervision.
- H. Casing:
 - 1. Jacket: Sheet metal, with snap-in or interlocking closures.
 - 2. Control Compartment Enclosures: NEMA 250, Type 1A.
 - 3. Finish: Baked-enamel or powder-coated protective finish.
 - 4. Insulation: Minimum 2-inch- thick, mineral-fiber or polyurethane-foam insulation surrounding the heat exchanger.
 - 5. Combustion-Air Connections: Inlet and vent duct collars.
 - 6. Mounting base to secure boiler.
- I. Characteristics and Capacities: Refer to Schedule on Drawings.
- 2.2 HOT-WATER BOILER TRIM
 - A. Aquastat Controllers: Operating, firing rate, and high limit.

- B. Safety Relief Valve: ASME rated.
- C. Pressure and Temperature Gage: Minimum 3-1/2-inch- diameter, combination water-pressure and -temperature gage. Gages shall have operating-pressure and -temperature ranges so normal operating range is about 50 percent of full range.
- D. Boiler Air Vent: Automatic.
- E. Drain Valve: Minimum NPS 3/4 hose-end gate valve.
- F. Low water/flow cut off.
- G. High and low gas pressure switch.
- H. Flame rectification rod.

2.3 CONTROLS

- A. Boiler Control System:
 - 1. Each boiler shall be provided with all necessary controls, all necessary programming sequences, and all safety interlocks. Each boiler control system shall be properly interlocked with all safeties.
 - Each boiler shall be provided with a "Full Modulating" firing control system whereby the
 firing rate is infinitely proportional at any firing rate between 20% and 100% as
 determined by the pulse width modulation input control signal. Both fuel input and air
 input must be sequenced in unison to the appropriate firing rate without the use of
 mechanical linkage.
 - 3. Control system shall provide the minimum capabilities:
 - a. Maintain single set point.
 - b. Reset the set point based on outdoor air temperature.
 - c. Boiler shutdown based on outdoor air temperature.
 - d. Internal dual set point program with an external point of closure.
 - e. Alarm relay for any manual reset alarm function.
 - f. Programmable Low Fire Delay to prevent short cycling based on a time and temperature factor for release to modulation.
 - g. LCD text display showing current supply and return temperatures, current set points as well as differential set points. It must also display any fault codes whether automatically reset or manually reset.
 - h. Local Manual Operation.
 - i. Cascade control for up to 8 boilers without the need for external control source.

- j. Remote Control System (Building Management/Sequencer Control) The boiler control shall be capable of accepting a 0 to 10vdc remote external analog signal or 4-20 Ma input to control the firing rate and temperature setpoint.
- k. On board Domestic Hot Water Priority capable of changing from the heating pump to the DHW pump as well as changing the boiler set point from a heating temperature to a higher set point temperature to satisfy the DHW system and then return to the heating mode.
- I. Domestic Hot Water may run concurrent with Comfort Heat mode.
- m. All equipment shall be provided with necessary communication capabilities and hardware to allow integration with Mod-Bus Communications with building Automation System (provided by others.)
- n. Optional converter for LONWORKS® and BacNet® must be available.

2.4 ELECTRICAL POWER

- A. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.
- B. Single-Point Field Power Connection: Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to boiler.
 - 1. House in NEMA 250, Type 1 enclosure.
 - 2. Wiring shall be numbered and color-coded to match wiring diagram.
 - 3. Install factory wiring outside of an enclosure in a metal raceway.
 - 4. Field power interface shall be lockable, nonfused disconnect switch.
 - 5. Provide branch power circuit to each motor and to controls with a disconnect switch or circuit breaker.
 - 6. Provide each motor with overcurrent protection.

2.5 VENTING KITS

- A. Kit: Complete system, ASTM A 959, Type 29-4C stainless steel, pipe, vent terminal, thimble, indoor plate, vent adapter, condensate trap and dilution tank, and sealant.
- B. Combustion-Air Intake: Complete system, stainless steel, pipe, vent terminal with screen, inlet air coupling, and sealant.

2.6 ACCESSORIES

- A. Flue Side Condensate Neutralizer:
 - 1. Description: Designed to raise the PH level of flue side condensate to near neutral prior to condensate entering the sanitary drainage system.

2. Materials: Neutralizer constructed of PVC pipe and fittings mounted on channel strut base with galvanized or stainless steel clamps and hardware; and charged with calcium carbonate.

Manufacturers:

- a. BKI Industries, Inc.; Acid Neutralizer Kits.
- b. J.J.M. Boiler Works; JM Neutralizing Tubes.
- c. Any of the approved boiler manufacturers.

2.7 SOURCE QUALITY CONTROL

- A. Burner and Hydrostatic Test: Factory adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions, and carbon monoxide in flue gas and to achieve combustion efficiency; perform hydrostatic test.
- B. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.
- C. Allow Owner access to source quality-control testing of boilers. Notify Architect 14 days in advance of testing.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Before boiler installation, examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, and piping and electrical connections to verify actual locations, sizes, and other conditions affecting boiler performance, maintenance, and operations.
 - 1. Final boiler locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.
- B. Examine mechanical spaces for suitable conditions where boilers will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 BOILER INSTALLATION

- A. Install boilers level on concrete base. Concrete base is specified in Division 20 Section "Basic Mechanical Materials and Methods," and concrete materials and installation requirements are specified in Division 03.
- B. Vibration Isolation: Elastomeric isolation pads with a minimum static deflection of 0.25 inch (6.35 mm). Vibration isolation devices and installation requirements are specified in Division 20 Section "Mechanical Vibration Controls."
- C. Install natural gas-fired boilers according to NFPA 54.
- D. Install propane-fired boilers according to NFPA 58.
- E. Assemble and install boiler trim.
- F. Install electrical devices furnished with boiler but not specified to be factory mounted.
- G. Install control wiring to field-mounted electrical devices.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to boiler to allow service and maintenance.
- C. Install piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Provide an isolation valve if required.
- D. Connect piping to boilers, except safety relief valve connections, with flexible connectors of materials suitable for service. Flexible connectors and their installation are specified in Division 20 Section "Pipe Flexible Connectors, Expansion Fittings and Loops."
- E. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gas train connection. Provide a reducer if required.
- F. Connect hot-water piping to supply- and return-boiler tappings with shutoff valve and union or flange at each connection.
- G. Connect steam and condensate piping to supply-, return-, and blowdown-boiler tappings with shutoff valve and union or flange at each connection.
- H. Install piping from safety relief valves to nearest floor drain.
- I. Install piping from safety valves to drip-pan elbow and to nearest floor drain.
- J. Boiler Venting:
 - 1. Install flue venting kit and combustion-air intake.
 - 2. Connect full size to boiler connections.
- K. Ground equipment according to Division 26 Section "Grounding and Bonding."
- L. Connect wiring according to Division 26 Section "Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Perform installation and startup checks according to manufacturer's written instructions.
 - 2. Leak Test: Hydrostatic test. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: Start units to confirm proper motor rotation and unit operation. Adjust air-fuel ratio and combustion.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

- a. Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level and water temperature.
- b. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other than normal occupancy hours for this purpose.

3.5 DEMONSTRATION

Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain boilers.

END OF SECTION

AIR-COOLED ROTARY-SCREW WATER CHILLERS

	GENERAL	
1.1	RELATED DOCUMENTS	1
	SUMMARY	
1.3	DEFINITIONS	
1.4	PERFORMANCE REQUIREMENTS	
1.5	SUBMITTALS	
1.6	QUALITY ASSURANCE	
1.7	DELIVERY, STORAGE, AND HANDLING	
1.8	COORDINATION	
1.9	WARRANTY	3
PART 2 -	PRODUCTS	3
2.1	MANUFACTURERS	
2.2	PACKAGED WATER CHILLERS	
2.3	COMPRESSORS	4
2.4	HEAT EXCHANGERS	4
2.5	INSULATION	5
2.6	ACCESSORIES	-
2.7	MOTORS	
2.8	ELECTRICAL POWER	
2.9	MOTOR STARTERS	
	CHILLER CONTROLS	
2.11	SOURCE QUALITY CONTROL	3
PART 3 -	EXECUTION	8
3.1	EXAMINATION	
3.2	WATER CHILLER INSTALLATION	8
3.3	CONNECTIONS	8
	STARTUP SERVICE	9
3.5	DEMONSTRATION	9
DΔRT 1 -	GENERAL	

1.1 **RELATED DOCUMENTS**

- Drawings and general provisions of the Contract, including General and Supplementary Conditions A. and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - Division 20 Section "Mechanical General Requirements." 1.
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
 - 3. Division 20 Section "Motors."
 - 4. Division 23 Section "Hydronic Piping."
 - 5. Division 23 Section "Air-Cooled Condensers."
 - 6. Division 28 Section "Refrigerant Monitoring and Safety Equipment" for refrigerant monitors, alarms, supplemental breathing apparatus, and ventilation equipment interlocks.

1.2 SUMMARY

- A. This Section includes packaged, air-cooled, electric-motor-driven, rotary-screw water chillers with the following features:
 - Motor controller.
 - 2. Microprocessor-based controls.

1.3 DEFINITIONS

- A. BAS: Building automation system.
- B. COP: Coefficient of performance. The ratio of the rate of heat removal to the rate of energy input using consistent units for any given set of rating conditions.
- C. EER: Energy-efficiency ratio. The ratio of the cooling capacity given in terms of Btu/h to the total power input given in terms of watts at any given set of rating conditions.
- D. HGBP: Hot gas by-pass.
- E. IPLV: Integrated part-load value.
- F. kW/Ton: The ratio of total power input of the chiller in kilowatts to the net refrigerating capacity in tons at any given set of rating conditions.
- G. NPLV: Nonstandard part-load value. A single number part-load efficiency figure of merit calculated per the method defined by AHRI 550/590 and intended for operating conditions other than the AHRI standard rating conditions.

1.4 PERFORMANCE REQUIREMENTS

A. Site Altitude: Chiller shall be suitable for altitude in which installed without affecting performance indicated. Make adjustments to affected chiller components to account for site altitude.

1.5 SUBMITTALS

- A. Product Data: Include refrigerant, rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Complete set of manufacturer's certified prints of water chiller assemblies, control panels, sections, and elevations, and unit isolation. Include the following:
 - Assembled unit dimensions.
 - 2. Operating weight and load distribution.
 - 3. Required clearances for maintenance and operation.
 - 4. Size and location of piping and wiring connections.
 - 5. Wiring Diagrams: Power, signal, and control wiring.
- C. Certificates: For certification required in "Quality Assurance" Article.
- D. Source quality-control test reports.

- E. Startup service reports.
- F. Operation and Maintenance Data: For each water chiller to include in operation and maintenance manual.

1.6 QUALITY ASSURANCE

- A. AHRI Compliance: Comply with requirements in AHRI 550/590, "Water Chilling Packages Using the Vapor Compression Cycle."
- B. ASHRAE Compliance:
 - 1. ASHRAE 15 for safety code for mechanical refrigeration.
 - 2. ASHRAE 147 for refrigerant leaks, recovery, and handling and storage requirements.
- C. ASME Compliance: Fabricate and label water chiller heat exchangers to comply with ASME Boiler and Pressure Vessel Code: Section VIII. Division 1.
- D. Comply with NFPA 70.
- E. Comply with requirements of UL and UL Canada and include label by an NRTL showing compliance.
- 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Ship water chillers from the factory fully charged with refrigerant or nitrogen.
 - B. Ship each oil-lubricated chiller with a full charge of oil.
 - 1. Ship oil factory installed in chiller.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of water chillers that fail in materials or workmanship.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Daikin Applied; a member of Daikin Industries, Ltd.

2.2 PACKAGED WATER CHILLERS

A. Description: Factory-assembled and -tested water chiller complete with compressor, heat exchanger, and controls integrated with compressor operation.

- B. Description: Factory-assembled and -tested water chiller complete with casing, compressor, heat exchanger, condenser coils and fans, and controls integrated with compressor operation.
 - 1. Casing: Weatherproof, constructed of hot-dip galvanized steel with factory-painted finish.
 - 2. Fans: Propeller type, statically and dynamically balanced, with vertical air discharge for high efficiency and low sound; located in its own compartment to eliminate cross flow of condenser air during fan cycling; and equipped with heavy-gage, weather-protected fan guard.
 - 3. Fan Motor: Direct drive, weatherproof, with bearings permanently lubricated, and having built-in current- and thermal-overload protection.
- C. Water Chiller Characteristics and Capacities:
 - 1. Refer to Schedule on Drawings.

2.3 COMPRESSORS

- A. Description: Positive displacement, oil injected with direct-drive, open or hermetically sealed motor.
 - 1. Casing: Cast iron, precision machined for minimum clearance about periphery of rotors.
 - 2. Rotors: Twin screw.
- B. Capacity Control: Hydraulically operated, modulating or stepped sliding valve to maintain chilled-water temperature set point without hunting within throttling range. Throttling range shall be from 100 to 10 percent of full load. Include HGBP as required.
 - 1. Maintain stable operation throughout range of operation. Configure to achieve most energy-efficient operation possible.
 - 2. For units equipped with a variable frequency controller, capacity control shall be both "valveless" and "stepless," requiring no slide valve or capacity-control valve(s) to operate at reduced capacity.
- C. Oil Lubrication System: Positive-displacement submersible pump with heater, oil filter, and sight glass.
- D. Refrigerant and Oil: R-134a.
- E. Refrigerant Compatibility: Seals, O-rings, motor windings, and internal water chiller parts exposed to refrigerants shall be fully compatible with refrigerants, and pressure components shall be rated for refrigerant pressures.
- F. Refrigerant Circuit: Provide independent circuits as scheduled. Each circuit shall include an electronic expansion valve, compressor suction and discharge shutoff valves, a liquid-line shutoff valve, a replaceable-core filter drier, a sight glass with moisture indicator, a liquid-line solenoid valve, and an insulated suction line.

2.4 HEAT EXCHANGERS

- A. Evaporator:
 - 1. Description: Shell-and-tube design, ASME labeled.

- 2. Shell Material: Carbon steel.
- 3. Tube Construction: Externally enhanced and individually replaceable, expanded into tube sheets.
 - a. Material: Copper.
 - b. Minimum Size: 3/4-inch OD; minimum 0.028-inch wall thickness.
 - c. Internal Finish: Enhanced.
- B. Air-Cooled Condenser: Copper tubes with mechanically bonded aluminum or copper fins, integral subcooling circuit, leak tested at 450 psig.
 - 1. Safety and Operating Options: Low-ambient controls for operation down to 0 deg F.

2.5 INSULATION

- A. Cold Surfaces: Closed-cell, flexible elastomeric, thermal insulation complying with ASTM C 534, Type II, for sheet materials.
 - 1. Thickness: 3/4 inch.
 - 2. Adhesive: As recommended by insulation manufacturer.
 - 3. Factory apply insulation over entire surfaces of water chiller components.
 - a. Apply adhesive to 100 percent of insulation contact surface.
 - b. Seal seams and joints.
 - c. After adhesive has fully cured, apply two coats of protective coating to insulation.

2.6 ACCESSORIES

A. Pressure Relief Valve: Single- or multiple-reseating-type, spring-loaded relief valve.

2.7 MOTORS

A. Comply with requirements in Division 20 Section "Motors."

2.8 ELECTRICAL POWER

- A. Single-Point Field Power Connection: Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to chiller.
 - 1. House in NEMA 250, Type 1 enclosure.
 - 2. Wiring shall be numbered and color-coded to match wiring diagram.
 - 3. Install wiring outside of an enclosure in a metal raceway.
 - 4. Field power interface shall be to a lockable, non-fused, flanged disconnect switch.
 - 5. Provide branch power circuit to each motor and to controls with a disconnect switch or circuit breaker.
 - 6. Provide each motor with overcurrent protection.

2.9 MOTOR STARTERS

- A. Provide unit mounted variable speed drive where necessary as indicated on documents.
- B. Accessories: Devices shall be factory installed in controller enclosure, unless otherwise indicated.
 - 1. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:
 - a. Selectable, digital display of the following:
 - 1) Phase Currents, Each Phase: Plus or minus 1 percent.
 - 2) Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 - 3) Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 - 4) Three-Phase Real Power: Plus or minus 2 percent.
 - 5) Three-Phase Reactive Power: Plus or minus 2 percent.
 - 6) Power Factor: Plus or minus 2 percent.
 - 7) Frequency: Plus or minus 0.5 percent.
 - 8) Integrated Demand with Demand Interval Selectable from 5 to 60 Minutes: Plus or minus 2 percent.
 - 9) Accumulated energy, in megawatt hours (joules), plus or minus 2 percent; stored values unaffected by power outages for up to 72 hours.
 - b. Mounting: Display and control unit flush or semirecessed in instrument compartment door.
 - 2. Phase-Failure and Undervoltage Relays: Solid-state sensing circuit with adjustable undervoltage setting and isolated output contacts for hard-wired connections.

2.10 CHILLER CONTROLS

- A. Control Panel: Stand-alone, microprocessor based.
- B. Enclosure: Unit-mounted, NEMA 250, Type 1 enclosure, hinged or lockable; factory wired.
- C. Status Display: Multiple-character liquid-crystal display or light-emitting diodes and keypad. Display the following conditions:
 - Date and time.
 - 2. Operating or alarm status.
 - 3. Operating hours.
 - 4. Outside-air temperature if required for chilled-water reset.
 - 5. Temperature and pressure of operating set points.
 - 6. Entering and leaving temperatures of chilled water.
 - 7. Entering and leaving temperatures of condenser water (for water-cooled water chillers only).
 - 8. Refrigerant pressures in evaporator and condenser.

- 9. Saturation temperature in evaporator and condenser.
- 10. Oil temperature and pressure.
- 11. Percent of maximum motor amperage.
- 12. Current-limit set point.
- 13. Number of compressor starts.
- D. Control Functions:
 - 1. Manual or automatic startup and shutdown time schedule.
 - 2. Entering and leaving chilled-water temperature, control set points, and motor load limit. Chilled-water temperature shall be reset based on outside-air temperature.
 - 3. Current limit and demand limit.
 - 4. Condenser-water temperature.
 - 5. External water chiller emergency stop.
- E. Manually Reset Safety Controls: The following conditions shall shut down water chiller and require manual reset:
 - 1. Low evaporator pressure and temperature; high condenser pressure.
 - 2. Low chilled-water temperature.
 - 3. Low oil differential pressure.
 - 4. High or low oil pressure.
 - 5. High oil temperature.
 - 6. High compressor-discharge temperature.
 - 7. Loss of chilled- or condenser-water flow.
 - 8. Electrical overload.
 - 9. Sensor- or detection-circuit fault.
 - 10. Processor communication loss.
 - 11. Starter fault.
- F. Building Management System Interface: Factory-installed translator or gateway to enable building management system to monitor and control chilled-water set point and chiller-control displays and alarms.

2.11 SOURCE QUALITY CONTROL

- A. Factory test and rate water chillers, before shipping, according to AHRI 550/590, "Water Chilling Packages Using the Vapor Compression Cycle." Stamp with AHRI label.
- B. Factory test heat exchangers hydrostatically at 1.50 times the design pressure.
- C. Factory test and inspect evaporator according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1. Stamp with ASME label.
- D. Rate sound power level according to AHRI 575 procedure.
- E. Rate sound power level according to AHRI 370 procedure.
- F. Allow Owner access to places where water chillers are being source quality-control tested. Notify Architect 14 days in advance of testing.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine chillers before installation. Reject chillers that are damaged.
- B. Before water chiller installation, examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, piping, and electrical to verify actual locations, sizes, and other conditions affecting water chiller performance, maintenance, and operations.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 WATER CHILLER INSTALLATION

- A. Install water chillers on concrete base. Concrete base is specified in Division 20 Section "Basic Mechanical Materials and Methods," and concrete materials and installation requirements are specified in Division 03.
- B. Vibration Isolation: Mount water chiller on vibration isolation equipment base as specified in Division 20 Section "Mechanical Vibration Controls."
- C. Maintain manufacturer's recommended clearances for service and maintenance.
- D. Charge water chiller with refrigerant if not factory charged.
- E. Install and wire separate devices furnished by manufacturer.

3.3 CONNECTIONS

- A. Chilled-water piping installation requirements are specified in Division 23 Section "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to chiller to allow service and maintenance.
- C. Evaporator Connections: Connect inlet to evaporator with controller-bulb well, shutoff valve, thermometer, strainer, pressure gage, and union or flange. Connect outlet to evaporator with shutoff valve, flow switch, balancing valve, thermometer, pressure gage, and union or flange.

- D. Ground water chillers according to Division 26 Section "Grounding and Bonding."
- E. Connect wiring according to Division 26 Section "Conductors and Cables."
- F. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Inspect field-assembled components, equipment installation, and piping and electrical connections for proper assemblies, installations, and connections.
- C. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 1. Verify that refrigerant charge is sufficient and water chiller has been leak tested.
 - 2. Verify that pumps are installed and functional.
 - 3. Verify that thermometers and gages are installed.
 - 4. Operate water chiller for run-in period according to manufacturer's written instructions.
 - 5. Check bearing lubrication and oil levels.
 - 6. Verify proper motor rotation.
 - 7. Verify static deflection of vibration isolators, including deflection during water chiller startup and shutdown.
 - 8. Verify and record performance of chilled-water flow and low-temperature interlocks.
 - 9. Verify and record performance of water chiller protection devices.
 - 10. Test and adjust controls and safeties. Replace damaged or malfunctioning controls and equipment.
- D. Prepare a written startup report that records results of tests and inspections.
- E. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site outside normal occupancy hours for this purpose.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain water chillers.

END OF SECTION

CENTRAL HVAC EQUIPMENT

PART 1 -	- GENERAL	
1.1	RELATED DOCUMENTS	. 1
1.2	REFERENCES	. 1
1.3	SUBMITTALS	. 2
1.4	QUALITY ASSURANCE	
1.5	DELIVERY, STORAGE, AND HANDLING	. 3
1.6	ENVIRONMENTAL REQUIREMENTS	. 3
1.7	EXTRA MATERIALS	. 3
PART 2 -	- PRODUCTS	3
2.1	CENTRIFUGAL DOUBLE AND SINGLE WIDTH FANS	. 3
2.2	PLENUM/PLUG FANS	
2.3	CENTRAL STATION AIR HANDLING UNITS	
2.4	AIR COOLED CONDENSING UNIT	. 7
2.5	ROOF CURBS	. 8
2.6	DISPOSABLE, EXTENDED AREA PANEL FILTERS (PRE-FILTER)	. 8
2.7	HIGH CAPACITY EXTENDED SURFACE (V-STYLE) FILTERS	. 8
2.8	FILTER GAUGES	. 9
PART 3 -	- EXECUTION	. 9
3.1	INSTALLATION	. 9
3.2	CONNECTIONS	. 9
3.3	LUBRICATION	10
3.4	FIELD QUALITY CONTROL	
3.5	START-UP SERVICE	
3.6	DEMONSTRATION	10

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 01 specification sections, apply to work of this section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 23 Section "Common Work Results for HVAC" for common mechanical drive requirements for fans and air moving equipment.
 - 3. Division 23 Section "Heating and Cooling Coils."

1.2 REFERENCES

- A. Standards referenced in this Section:
 - 1. ABMA 9 Load Ratings and Fatigue Life for Ball Bearings.
 - 2. ABMA 11 Load Ratings and Fatigue Life for Roller Bearings.
 - 3. AMCA 99 Standards Handbook.
 - 4. AMCA 210 Laboratory Methods of Testing Fans for Rating Purposes.

- 5. AMCA 300 Test Code for Sound Rating Air Moving Devices.
- 6. AMCA 301 Method of Publishing Sound Ratings for Air Moving Devices.
- 7. AMCA 500 Test Methods for Louvers, Dampers, and Shutters.
- 8. AHRI 410 Forced-Circulation Air-Cooling and Air-Heating Coils.
- 9. ANSI/AHRI 430 Central Station Air Handling Units.
- 10. ANSI/AHRI 440 Performance Rating of Room Fan-Coils.
- 11. NEMA MG1 Motors and Generators.
- 12. NFPA 70 National Electrical Code.
- 13. SMACNA HVAC Duct Construction Standards Metal and Flexible.
- 14. ANSI/UL 586 Test Performance of High Efficiency Particulate Air Filter Units.
- 15. ANSI/UL 900 Test Performance of Air Filter Units.
- 16. ASHRAE 52 Method of Testing Air Cleaning Devices Used in General Ventilation for Removing Particulate Matter.
- 17. MIL-STD-282 Filter Units, Protective Clothing, Gas-Mask Components and Related Products: Performance-Test Methods.
- 18. UL Standard 1995 Standard for Heating and Cooling Equipment.

1.3 SUBMITTALS

- A. Product Data: Include manufacturer's technical data for each model indicated, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.
- B. Filters: Filter performance data, filter assembly, and filter frames.
- C. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 - 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 - 3. Wiring Diagrams: Power, signal, and control wiring.
- D. Field quality-control test reports.
- E. Start-up reports.
- F. Operation and Maintenance Data: For environmental equipment to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

A. Air handling units shall be ETL listed to UL Standard 1995.

B. Filters:

- 1. Filter media shall be ANSI/UL 900 listed, Class 1 or Class 2, as approved by local authorities.
- 2. Provide all filters as product of one manufacturer.
- 3. Assemble filter components to form filter banks from products of one manufacturer.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Accept products on site in factory-fabricated protective containers, with factory-installed shipping skids and lifting lugs. Inspect for damage.
- B. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.
- C. Protect coil fins from crushing and bending by leaving in shipping cases until installation, and by storing indoors.
- D. Protect coils from entry of dirt and debris with pipe caps or plugs.

1.6 ENVIRONMENTAL REQUIREMENTS

A. Do not operate equipment for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings lubricated, and fan has been test run under observation.

1.7 EXTRA MATERIALS

- A. Provide one set of fan belts for each fan.
- B. Provide one additional set of each filter type for each unit, to be installed at project closeout.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL DOUBLE AND SINGLE WIDTH FANS

- A. Centrifugal double and single width fans shall include housing, wheel, fan shaft, fan shaft seals, bearings and side support structure in arrangement as indicated on drawings. Fans shall be air foil, backward inclined or forward curved as indicated on drawings. Air foil and backward inclined fans shall be non-overloading type. Select fans to avoid instability in service and compute outlet areas to outlet velocities per AMCA Standards. Maintain fan duty point to the right of the peak static pressure point farthest from shut-off and at approximately 60 percent overall efficiency. After mounting in cabinet, balance fan wheels on shafts supported pillow blocks mounted on the cabinet.
- B. Fan scrolls shall have bolted or continuously welded construction and shall be rigidly braced to prevent vibration. Metal thickness of the wheels, scroll, and side sheets shall not be less than that specified by the AMCA for the class of service.
- C. Fan inlet cones shall be streamline design, bolted to fan housing to allow for wheel removal. Bearing pedestals shall be carried to the main structural framework. Fans shall carry the AMCA rating seal.

- D. Where there are duct connections to fan inlets and outlets, provide frames or flanges for duct attachment. Fans shall be prime and finish painted on all interior and exterior surfaces with approved corrosion inhibiting enamel.
- E. Hinged access doors shall be provided for fans larger than 18 inches in diameter and shall be located in the lower section of the fan scroll.
- F. Vibration isolation provisions shall be as specified in Division 20 Section "Mechanical Vibration Controls."
- G. Manufacturers:
 - 1. Buffalo Forge Co.
 - 2. Trane.
 - 3. Acme.
 - 4. Aerovent; a Twin City Fan Company.
 - 5. Twin City.
 - 6. Chicago Blower.
 - 7. Greenheck.
 - 8. Loren Cook.
 - 9. PennBarry.

2.2 PLENUM/PLUG FANS

- A. General: Select fans to avoid instability in service and compute outlet areas to outlet velocities in accordance with AMCA Standards. Maintain fan duty point to the right of the peak static pressure point farthest from shut-off and at approximately 60 percent overall efficiency.
- B. Description: AMCA certified, factory-fabricated, -assembled, -tested, and -finished, belt-driven, unhoused centrifugal plenum/plug fans consisting of wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, and support structure.
- C. Motors: Comply with requirements in Division 20 Section "Motors."
- D. Manufacturers:
 - 1. Acme Engineering & Mfg. Corp.
 - 2. Aerovent; a Twin City Fan Company.
 - 3. PennBarry.
 - 4. Chicago Blower Corporation.
 - 5. Loren Cook Company.
 - 6. Trane.

- 7. Twin City Fan & Blower; a Twin City Fan Company.
- 8. Howden Buffalo; Buffalo Forge.

2.3 CENTRAL STATION AIR HANDLING UNITS

A. General:

- 1. Furnish central station type air handling units, factory fabricated and sectionally or fully assembled, including components and auxiliaries as indicated and specified elsewhere herein, and classified and defined, as applicable, under ANSI/ARI Standard 430-2009.
- Performance test and rate air handling unit and components, where applicable, per AMCA Bulletin 203 except as otherwise specified. Provide air handling ratings in accordance with ANSI/AHRI 430 and classify total static pressure in accordance with AMCA Standard 1401.
- 3. Furnish DWDI centrifugal scroll type fan as specified. Confirm unit components to be included and edit appropriately.
- 4. Provide components including but not limited to: Piping, hot water heating coils, cooling coils, dampers, fan, motors, drives, filters, blank/access sections, thermal insulation and dampers, as specified.

5. Fans:

- a. Fans, located within cabinets of packaged central station air handling equipment shall be backward curved, air foil or forward curved centrifugal scroll type as indicated on the drawings. Determine catalogued capacity with fan installed within fan-section cabinet. Backward inclined and air foil type shall be non-overloading type. Select fans to avoid instability in service and compute outlet areas to outlet velocities per AMCA Standards. Maintain fan duty point to the right of the peak static pressure point farthest from shutoff and at approximately 60 percent overall efficiency. After mounting in cabinet, balance fan wheels on shafts supported by pillow blocks mounted on the cabinet. Fit draw-through fan scroll with drainage provisions from lowest point for moisture disposal.
- b. Fan scrolls shall have bolted or continuously welded construction and shall be rigidly braced to prevent vibration. Metal thickness of the wheels, scroll, and side sheets shall not be less than that specified by the AMCA for the class of service. Fan inlet cones shall be streamline design, bolted to fan housing to allow for wheel removal. Bearing pedestals shall be carried to the main structural framework. Fans shall carry the AMCA rating seal.
- c. Where there are duct connections to fan inlets and outlets, provide frames or flanges for duct attachment.

B. Materials and Construction:

- 1. Fabricate enclosure from mill galvanized carbon steel or aluminum sheet, and finish with manufacturer's standard painting system.
- Construct unit cabinet suitable for AMCA Class A pressure with leaktight joints, closures, penetrations and access provisions. Seal joints between cabinet sections and between exterior panels and structural frames with closed-cell foam gasketing for leak seal and for thermal/acoustical break.
- 3. Construct cabinet so as not to expand or contract perceptibly during starting and stopping of fan and not to pulsate during operation. Stiffen pulsating panels which produce low frequency

noise due to diaphragming of unstable panel walls to raise natural frequency to an easily attenuated level.

- 4. All sections of the central station air handling unit cabinet including coil segments shall be 2-inch double-wall construction with solid inner and outer panels. Insulation between panels shall be 2 inches thick with characteristics specified below.
- 5. Where man access is possible, strengthen floor to permit entry without damage to any part. Provide access doors and size as large as unit will permit. Reinforce access doors and panels with mill rolled structural steel if necessary and hinge and latch doors at a spacing sufficiently close to preclude leaks caused by distortion. Effectively gasket the door and furnish latches operable from either side of man access plenums. Door swing shall be such that the door is held shut by normal system operating pressure.
- 6. Extend integral IAQ compliant drain pan under all areas where condensate collects. Fabricate of AISI Type 304 stainless steel watertight with welded or brazed joints piped to drain, and insulated against sweating. Enclose and factory insulate cooling coil ends against sweating or drain to drain pan.
- 7. Furnish intermediate IAQ compliant coil drip pans for each tiered coil bank where needed to restrict downstream carryover of condensate. Fabricate pan of minimum 22 gauge AISI Type 304 stainless steel with brazed joints and pipe bottom of pan to drain.
- 8. Provide all necessary piping internal to cabinet and including penetration of cabinet walls and terminal connection for piping external to cabinet. Seal cabinet penetrations air tight and protect against condensation within cabinet walls.
- Where space within a cabinet does not allow including water seals of sufficient depth, provide seals external to the cabinet.
- 10. Coordinate, in sufficient time during construction, placement of drain piping external to the cabinet to safe disposal point. Do not place drain piping on floor surface unless so indicated.
- 11. Furnish unit, factory insulated with internally fitted sound attenuating-thermal insulating fibrous glass material with a surface deeply impregnated with chloroprene. Insulation shall be 1-1/2 lb./cu.ft. matt faced type, with thickness as specified above. Furnish insulation which precludes condensation on any exterior cabinet surface under ambient conditions of 90 deg F and 75 percent relative humidity, normal to the unit installed location. Efficiency of acoustic treatment shall be such as to effectively attenuate fan noise. Apply material to the cabinet with adhesive on a 100 percent coverage basis, welded pins and speed clips or channels. Furnish adhesive and insulating materials conforming to requirements of NFPA 90A.
- 12. Should any condensation occur on exterior surfaces or enclosure once system is in operation, remove any installed materials and effectively apply new materials to the affected surfaces to preclude condensation at no increase in the Contract Sum and to the satisfaction of the Architect.
- 13. Provide motors, fans, fan drives, unit coils, filters, power transmission, guards, air blenders and the like in conformance with requirements specified under appropriate headings in this section.
- 14. Provide dampers in conformance with requirements specified in Division 23 Section "Temperature Controls."

- 15. Units shall be factory balanced as a complete assembly to 0.2 in./sec. measured in the horizontal, vertical and axial direction at the bearings of the unit (not the motor).
- 16. All cabinet sections shall be installed on a six inch high (minimum) galvanized steel base rail.
- C. Coils: As specified in Division 23 Section "Heating and Cooling Coils."
- D. Vibration Isolation:
 - Fans, motors and drives shall be internally vibration isolated from cabinet. Provide internal
 vibration isolation in accordance with Division 20 Section "Mechanical Vibration Controls"
 requirements for centrifugal fans. Where units are not internally vibration isolated, provide
 external vibration isolation in accordance with Division 20 Section "Mechanical Vibration
 Controls" requirements for central station air handling units.

E. Manufacturers:

- 1. Trane.
- 2. JCI/York.
- Buffalo.
- 4. Daikin Applied.
- 5. Carrier.

2.4 AIR COOLED CONDENSING UNIT

- A. Outdoor unit shall be factory assembled, charged, and tested air cooled scroll compressor condensing unit with capacities as scheduled. Unit shall be provided with two independent refrigeration circuits with service valves.
- B. Condenser coils shall be internally enhanced seamless copper tubes with aluminum fins. Design working pressure shall be 450 PSIG.
- C. Fans shall be statically and dynamically balanced, direct drive, with low noise, full airfoil section blades and fan guard.
- D. Microprocessor control center shall manufacturers standard with liquid crystal display, and programmable setpoints, and shall automatically start, stop, cycle fans, modulate unit output, and prevent short cycling of the compressors when enabled through the building automation system.
- E. Provide unit with standard outdoor ambient control, single point terminal block and non-fused disconnect, pressure and temperature transducers and sensors, control power transformer, hot gas by-pass, building automation system reset interface, and sound reduction package including low speed reduced noise fans and compressor acoustic blankets.

F. Manufacturers

- 1. Carrier.
- JCI/York.
- Daikin Applied.

4. Trane.

2.5 ROOF CURBS

- A. Isolation Curb: Refer to Division 20 Section "Mechanical Vibration [and Seismic] Controls."
- B. Provide prefabricated roof curbs where indicated. Coordinate installation and type with Architectural Trades. Top of curb shall be level and extend a minimum of 10 inches above top of roof insulation.
 - 1. Manufacturers:
 - a. Pate.
 - b. Thycurb.
 - c. Roof Products and Systems.
 - d. Greenheck.
 - e. Creative Metals.
 - f. Any of the approved rooftop equipment manufacturers.

2.6 DISPOSABLE, EXTENDED AREA PANEL FILTERS (PRE-FILTER)

- A. Media: Pleated, non-woven cotton/polyester blend, bonded to galvanized expanded metal or welded wire grid. Media pack shall be enclosed in a heavy duty, moisture resistant beverage board frame with support members on both upstream and downstream sides. Filters shall contain not less than 5.5 square feet of media per square foot of filter face area. Filters shall be UL Listed, Class II as to flammability.
- B. Rating (unless otherwise indicated on drawings) MERV 7 in accordance with ASHRAE 52.2 (30 percent dust spot in accordance with ASHRAE 52.1), 592 fpm face velocity, 0.30 inch W.G. maximum initial resistance, 1.0 inch W.G. maximum recommended final resistance.
- C. Manufacturers:
 - 1. Eco Air; C35II.
 - 2. Filtration Group; Series 400.
 - Flanders.
 - 4. Camfil Farr; 30/30.
 - 5. American Air Filter; Amair300X.

2.7 HIGH CAPACITY EXTENDED SURFACE (V-STYLE) FILTERS

- A. Media: Ultra fine synthetic media, (fiberglass media is not acceptable) pleated, totally rigid and totally disposable type. Each filter shall consist of wet-laid, high efficiency media bonded to V-bank design high-strength, impact-resistant plastic enclosing frame. Each filter shall have foam gasketing on the vertical sides of the header. Capacity, efficiency and nominal size shall be indicated on the drawings. Filters shall be UL Listed, Class II as to flammability.
- B. Rating: AHU's-MERV 14 in accordance with ASHRAE 52.2 (90-95 percent dust spot in accordance with ASHRAE 52.1), ERU's-MERV 11 in accordance with ASHRAE 52.2 (60-65 percent dust spot in accordance with ASHRAE 52.1), 500 fpm face velocity, maximum initial resistance: 0.55 inch W.G.

for MERV 14, 0.25 inch W.G. for MERV 11. Maximum recommended final resistance is 1.5 inches W.G. for both.

C. Manufacturers:

- 1. Eco Air.
- 2. Filtration Group.
- Flanders.
- 4. Camfil Farr; Durafil 2V.
- 5. American Air Filter.

2.8 FILTER GAUGES

- A. Direct Reading Dial: 3-1/2 inch diameter diaphragm actuated dial in metal case, vent valves, black figures on white background, front recalibration adjustment, range 0-2.0 inch WG, 2 percent of full scale accuracy.
- B. Manufacturer:
 - 1. Dwyer Magnehelic.
- C. Provide filter gauges across each filter bank.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Furnish, install and apply equipment and materials in accordance with the manufacturer's published instructions, and approved shop Drawings.
- B. Install central station air handling units in accordance with manufacturer's recommended procedures.
- C. Hoist, transport, and rig air handling units or their shipping sections into position following procedures recommended by the manufacturer.
- D. Replace filters in each unit at time of project final acceptance. Refer to Division 20 Section "Mechanical General Requirements" for additional information.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 23 Sections.
- B. Install piping adjacent to machine to allow service and maintenance.
 - 1. Gas Piping: Comply with applicable requirements in Division 23 Section "Fuel Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.
 - 2. Hot-Water Heating Piping: Comply with applicable requirements in Division 23 Section "Hydronic Piping." Connect to supply and return coil tappings with shutoff or balancing valve and union or flange at each connection.

- 3. Steam and Condensate Piping: Comply with applicable requirements in Division 23 Section "Steam and Condensate Piping." Connect to supply and return coil tappings with shutoff valve and union or flange at each connection.
- C. Duct installation requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of ducts.
- D. Electrical System Connections: Comply with applicable requirements in Division 26 Sections for power wiring, switches, and motor controls.
- E. Ground equipment according to Division 26 Section "Grounding and Bonding."
- F. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 LUBRICATION

A. Lubricate equipment and fill lubrication systems per manufacturer's published instructions.

3.4 FIELD QUALITY CONTROL

A. Perform tests in accordance with manufacturer's published data.

3.5 START-UP SERVICE

A. Provide a field Engineer for start-up of factory fabricated, built-up air handling and exhaust units. Field Engineer shall provide start-up service for temporary construction use, final inspection and adjustment of the units. Include labor, materials, travel, per diem and any other costs as part of the "Field Engineer" work.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain equipment. Refer to Division 20 Section "Mechanical General Requirements." Provide copies of operation and maintenance manuals as specified.

END OF SECTION

AIR-TO-AIR ENERGY RECOVERY EQUIPMENT

PART 1-	- GENERAL	
1.1	RELATED DOCUMENTS	
1.2	SUBMITTALS	
1.3	QUALITY ASSURANCE	
	COORDINATION	
1.5	EXTRA MATERIALS	2
PART 2 -	- PRODUCTS	2
2.1	MANUFACTURERS	
2.2	FIXED-PLATE HEAT EXCHANGERS	2
2.3	DEHUMIDIFICATION UNITS	3
PART 3 -	- EXECUTION	8
3.1	INSTALLATION	8
3.2	CONNECTIONS	9
3.3	FIELD QUALITY CONTROL	9
3.4	DEMONSTRATION	9

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."

1.2 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, details, and attachments to other Work. For installed products indicated to comply with design loads, include structural analysis data.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
- C. Field quality-control test reports.

1.3 QUALITY ASSURANCE

- A. Source Limitations: Obtain air-to-air energy recovery units through one source from a single manufacturer.
- B. Product Options: Drawings indicate size, profiles, and dimensional requirements of air-to-air energy recovery units and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.

- D. ARI Compliance: Ratings for energy recovery devices shall comply with ARI 1060, "Rating Air-to-Air Heat Exchangers for Energy Recovery Ventilation Equipment."
- E. ASHRAE Compliance:
 - 1. Capacity ratings for air-to-air energy recovery equipment shall comply with ASHRAE 84, "Method of Testing Air-to-Air Heat Exchangers."
- F. NRCA Compliance: Roof curbs for roof-mounted equipment shall be constructed according to recommendations of NRCA.
- G. UL Compliance:
 - 1. Packaged heat recovery ventilators shall comply with requirements in UL 1812, "Ducted Heat Recovery Ventilators"; or UL 1815, "Nonducted Heat Recovery Ventilators."

1.4 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

1.5 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: Furnish one set of each type of filter specified.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 FIXED-PLATE HEAT EXCHANGERS

- A. Manufacturers:
 - 1. Innovent Air Handling Equipment.
 - 2. Munters Corporation; Des Champs Products Division.
 - Venmar CES Inc.
- B. Casing: Aluminum with duct collars.
 - 1. Insulation: 1-inch- thick, foil-faced glass fiber.

- 2. Drain Pan: Same material as casing, with drain connections on exhaust and supply side.
- C. Plates: Construct with plates evenly spaced, sealed and arranged for crossflow or counter airflow.
 - 1. Plate Material: Minimum 0.008-inch thick, 99.5 percent pure aluminum.
 - 2. Plate Coating: Air-dried phenolic where required for corrosive airstreams.
- D. Bypass: Construct bypass plenum within casing, with gasketed face-and-bypass dampers having operating rods extended outside casing.
- E. Accessories:
 - 1. Filter: 2 inches thick, disposable.
 - 2. Flexible Duct: UL 181, Class 1 insulated.
 - 3. Humidistat: Wall mounted, adjustable.
 - 4. Weather hoods (wall caps) with 1/4-inch bird screen and insulated flexible duct termination.

2.3 DEHUMIDIFICATION UNITS

- A. Manufacturers:
 - 1. Governaire Corporation.
 - 2. Innovent Air Handling Equipment.
 - 3. Munters Corporation; Des Champs Products Division.
 - Venmar CES Inc.
- B. General: Construct unit as specified. Single wall and 1-inch double wall casing are unacceptable. Fans and coils must be removable without dismantling the structural framing of the unit. Unit shall be suitable for indoor or outdoor installation as detailed on the plan drawings.
- C. Base: Construct base of minimum 10 gage welded structural steel with cross supports integral lifting lugs. Bolted bases are unacceptable. Base shall be insulated and provided with a minimum 22 gage galvanized G90 steel subfloor. Coat base with 2 part epoxy primer and urethane modified enamel top coat.
- D. Flooring: Provide double wall floor construction. Walk on floor material shall be a minimum of 0.072-inch aluminum tread plate. Flooring sheets shall be sealed with a closed-cell neoprene gasket material to minimize sound transmission to spaces located below the unit.
- E. Framing: Frame is constructed of aluminum members designed to support double-wall panels. Framing must have gasketing between support members and panels.
- F. Panels: Unit shall have non-load bearing heavy gauge 2-inch double-wall panels. Interior panels exposed to the pool air shall be constructed of aluminum or steel with a baked corrosion resistant coating.

G. Casing Ratings: Maximum casing panel deflection shall not exceed L/250 at 8 inches w.c. TSP (where L is the longest panel span on the unit). Casing shall meet a SMANCA duct class leakage rating of 5 at 8 inches w.c. TSP. The panel insertion loss, per octave band, shall not be less than the following:

Frequency: 100 125 250 500 1000 2000 4000 8000 Insertion loss, dB: 24 16 30 32 33 34 63 60

- H. Insulation: All interior walls, floor, and roof shall be double wall and insulated. Walls and roof are insulated with 2 lb./cu. ft. polyurethane foam insulation having an average R-value of 6 per inch. Floors shall be insulated with 1.5 lb./cu. ft. fiberglass insulation to achieve minimum R16. No insulation shall be exposed to the air stream.
- I. Coatings: Exterior casing shall be coated with 2 part epoxy primer with urethane modified enamel top coat. Galvanized exterior unacceptable if unit casing or framework is welded. Interior casing shall be aluminum or galvanized with a baked corrosion resistant coating. All steel parts exposed to the pool air shall be coated with air-dried phenolic.
- J. Access Doors: Provide double wall doors insulated with 2 lb./cu. ft. polyurethane foam. Doors shall be full height with stainless steel piano hinges, Allegis corrosion resistant compression latches (tool lockable in fan sections), and minimum 24-inch clear opening width at all walk-in sections. Supply and exhaust air streams shall not be covered by a single door. Provide doors for access to any area requiring routine maintenance. Access panels in lieu of access door are unacceptable.
- K. Door Accessories:
 - 1. Access doors shall be provided with aluminum door tie backs.
- L. Weather hoods (for outdoor units): Provide weather hoods and bird screens over all exposed inlets and outlets. Ship hoods loose for installation in the field.
- M. Roof (for outdoor units): Provide roof with standing seam construction. Pitch roof with sufficient slope to ensure water drainage. Roof overhang to be provided around complete perimeter of the unit.
- N. Heat Recovery Device: Fixed-plate heat exchanger.
- O. Supply and Exhaust Blower: 12 blade aluminum airfoil plenum fan. Plenum fans with less than 12 blades are not acceptable due to increased noise levels. Non-airfoil blades are not acceptable due to decreased efficiency of the fan. Hi-Pro Polyester urethane powder coating or equivalent air-dried Heresite coating for corrosive environments.
- P. Refer to Division 20 Section "Motors" for general requirements.
- Q. Drives: Adjustable for 10 hp motors and smaller, fixed for 15 hp motors and larger. Refer to Division 23 Section "Common Work Results for HVAC" for additional requirements.
- R. Isolation: Refer to Division 20 Section "Mechanical Vibration Controls."
- S. Accessories:
 - 1. Variable Frequency Controllers: Provide variable frequency controller for the exhaust fan. VFC shall be factory provided and installed inside the unit behind an access door.

- a. VFC Options Required: Manual bypass. Exhaust fan VFC shall be provided with building static pressure control (sensor shipped loose for field installation.
- T. Dampers: Motorized dampers shall be low leakage type with aluminum construction, airfoil blades, vinyl edge seals, metal jamb seals, and synthetic bearings. Gravity dampers shall have aluminum frame, aluminum blades, extruded vinyl edge seals, and synthetic bearings. All dampers exposed to the pool air (exhaust damper & recirculation air damper) must be constructed of aluminum.
 - 1. Provide the following dampers:
 - a. Outside air damper.
 - b. Outside air heat exchanger face sequencing dampers, parallel blade type, two-position actuators. A minimum of 5 dampers are provided across the face of the heat exchanger to allow defrost operation without affecting performance.
 - c. Outside air heat exchanger bypass damper, parallel blade type, 2-position actuator.
 - d. Exhaust gravity damper.
 - e. Recirculation Damper.

U. Filters:

- 1. Aluminum Outside Air Filter: Provide 2-inch thick, washable aluminum filter bank in the location shown on unit drawing. Mount in galvanized steel front access rack and size for 500 fpm maximum face velocity.
- 2. Aluminum Return Air Filter: Provide 2-inch thick, washable aluminum filter bank in the location shown on unit drawing. Mount in galvanized steel front access rack and size for 650 fpm maximum face velocity.
- V. Indirect Fired Duct Furnace: Indirect fired duct furnace provided with performance as specified in the schedule. Furnace shall be ETL listed using ANSI Z83.8 standards. Furnace shall have a tubular heat exchanger constructed of Type 409 stainless steel. Tubes shall have integral formed dimples to maximize heat transfer and condensate drainage. Burner assembly shall include inshot type burners, electronic spark ignition system, high temperature safety control, air proving switch, and draft inducer.
 - 1. Allowable Gas Inlet Pressure: 6 inches to 14 inches w.c.
 - 2. Gas Valve: Minimum 4:1 turndown electronic modulating or turndown as scheduled, whichever is greater.
 - 3. Vent Pipe For Indoor Unit: Furnished and installed by the Contractor.
- W. Direct Expansion Refrigerant Coils:
 - 1. Performance Ratings: Tested and rated according to ARI 410 and ASHRAE 33.
 - 2. Minimum Working-Pressure Rating: 300 psig.
 - 3. Source Quality Control: Factory tested to 450 psig.
 - 4. Tubes: ASTM B 743 copper, minimum 0.020 inch wall thickness, and minimum 0.50 inch diameter.
 - 5. Fins: Aluminum, minimum 0.010 inch thick.

- 6. Suction and Distributor Piping: ASTM B 88, Type L copper tube with brazed joints.
- 7. Frames: ASTM A 666, Type 304 stainless steel, minimum 0.0625 inch thick.
- X. Hot Gas Reheat Coil: Provide ARI rated coil with 0.016-inch thick copper tubes, stainless casing, and rippled aluminum plate fin secondary surface with a thickness of 0.0075-inch.
 - 1. Coil: Dehydrated with 140 deg F DB/40 deg F dew point air before shipment.
 - 2. Source Quality Control: Tested with 315-psig air pressure under warm water and guaranteed for 250 psig working pressure.
 - 3. Provide coil with a three-way modulating control valve.
 - 4. Coils need to be epoxy coated for corrosion protection.
- Y. Integral Condensing Unit: Provide integral air cooled condensing system factory piped, wired, charged, and tested. Entire condensing section must be assembled by the unit manufacturer. Skid mounting another manufacturers condensing unit is not acceptable.
 - 1. Provide hermetic scroll type compressors with suction and discharge service valves, reverse rotation protection, sight glass, oil level adjustment, oil filter, rotary dirt trap, non-short cycling control, and high and low pressure limits. Lead compressor shall be digital for capacity control.
 - 2. Provide condenser coils with galvanized casing, seamless copper tubes, and aluminum fins.
 - 3. Condenser fans shall be direct drive with fan guards.
 - 4. Independent circuits shall be provided completely tested, dehydrated, and fully charged with refrigerant and oil.
 - 5. Drains must be provided in the base of each condensing section to eliminate standing water.

Z. Electrical:

- Wire units according to NEC and ETL list the entire unit. ETL listing of electrical panel only is unacceptable. All major electrical components shall be UL listed. Factory wire unit for single point power connection. Enclose all power wiring in liquid tight conduit.
- 2. Provide fused disconnect, fan motor starters/protectors, contactors, control transformer, control circuit fusing, service switch, and terminal block. Units supplied with VFCs shall have individual branch fusing per drive. A motor protector shall be provided if equipment manufacturer's manual bypass is required.
- 3. Provide NEMA 3R electrical/control panel.
- 4. Factory test wiring and controls before shipment.
- 5. A phase/voltage protection relay shall be provided for each unit. Upon sensing a loss of phase or voltage the unit shall be de-energized.

- 6. A door safety kill switch shall be provided on all blower section access doors. The door safety kill switch shall de-energize the blower motor if the access door is opened. The kill switch shall prevent motor startup if the blower section access door is open.
- 7. Lights: Provide vapor proof marine lights in all access sections. Wire lights to a single light switch. Mount light switch near the electrical panel and wire switch to a terminal strip in the electrical panel. Separate 120V power must be provided to the switch. A transformer will be provided to provide power to the lighting circuit.
- 8. Convenience Receptacles: Provide a GFCI duplex receptacle mounted near the electrical panel and wire receptacle to a terminal strip in the electrical panel. Separate 120V power must be provided to the receptacle. A transformer will be provided to provide power to the circuit.
- 9. Dirty filter indicators: Provide differential pressure switches across all filter racks. Wire pressure switches to terminal block in main electrical panel.
- AA. Piping: Fabricate units with space within housing for piping.

BB. DDC System:

- 1. Manufacturer must provide a stand-alone programmable digital control system for complete temperature & humidity control of the delivered air. The manufacturer will provide a standard sequence of operation for the type of equipment provided per this specification. The controller will be programmed to control room temperature and humidity. The sequence of operation will include the following:
 - a. Temperature control for all heating & cooling devices.
 - b. Humidity control for all cooling devices.
 - c. Humidity control using the OA & RA dampers.
 - d. Economizer control for free cooling.
 - e. Defrost control for all energy recovery devices.
 - f. Pressure control for exhaust fan.
 - g. The controller will communicate with the BAS through a Bacnet IP.

CC. Special Construction and Coatings:

- 1. Interior casing exposed to the pool air shall be constructed of aluminum or steel with a baked corrosion resistant coating.
- 2. Blowers shall be completely coated with Hi-Pro Polyester..
- 3. Steel parts exposed to the pool air shall be coated with air-dried phenolic.
- 4. Coils exposed to the pool air shall be coated with baked phenolic.
- Recirculation damper, exhaust damper, and backdraft damper must be constructed of aluminum.
- 6. VFC must be provided for the exhaust fan to control space pressure.
- DD. Source Quality Control:

- 1. Verification of Performance: Factory test and rate dehumidification units according to ARI 910.
- Sound-Power-Level Ratings: Factory test and rate dehumidification units according to ARI 575.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install heat wheels so supply and exhaust airstreams flow in opposite directions and rotation is from exhaust side to purge section to supply side.
 - 1. Install access doors in both supply and exhaust ducts, both upstream and downstream, for access to wheel surfaces, drive motor, and seals.
 - 2. Install removable panels or access doors between supply and exhaust ducts on building side for bypass during startup.
 - 3. Access doors and panels are specified in Division 23 Section "Duct Accessories."
 - 4. For outdoor units: Provide waterproof roof with standing seam construction and positive slope to ensure water drainage.
- B. Install heat-pipe heat exchangers so supply and exhaust airstreams flow in opposite directions. Install flexible connectors on ducts to enable tilt control; make connections airtight and with slack to compensate for full tilt.
 - 1. Install heat exchanger with clearance space for heat-pipe coil removal.
 - Install duct access doors in both supply and exhaust ducts, both upstream and downstream, for access to both sides of heat-pipe coil. Access doors and panels are specified in Division 23 Section "Duct Accessories."
 - 3. Install tilt-control components, including electronic controller, electric actuator and linkage, thermostats, and sensors.
- C. Install fixed-plate heat exchangers so supply and exhaust airstreams flow in opposite directions.
 - Install duct access doors in both supply and exhaust ducts, both upstream and downstream, for access to heat exchanger. Access doors and panels are specified in Division 23 Section "Duct Accessories."
- D. Install floor-mounted units on 4-inch- high concrete base.
- E. Support suspended units from structure; use threaded steel rods.
- F. Install units with clearances for service and maintenance.
- G. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.
- H. Pipe condensate drains from heat exchanger units and drain pans to nearest floor drain or roof drain; use ASTM B 88, Type L, drawn-temper copper water tubing with soldered joints, same size

as condensate drain connection. Provide electrical heat trace for condensate drains for roof mounted equipment.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties. Units shall be provided complete for single point connection to hydronic piping system.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Duct and fan installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts, fittings, and specialties.
- D. Ground equipment according to Division 26 Section "Grounding and Bonding."
- E. Connect wiring according to Division 26 Section "Conductors and Cables."
- F. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including piping and electrical connections. Report results in writing.
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Adjust seals and purge.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 4. Set initial temperature and humidity set points.
 - Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- B. Air-to-air energy recovery equipment will be considered defective if it does not pass tests and inspections.
- C. Remove malfunctioning units, replace with new units, and retest as specified above.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units. Refer to Division 20 Section "Mechanical General Requirements."

END OF SECTION

COMPUTER-ROOM AIR-CONDITIONING UNITS

PART 1	- GENERAL	. 1
1.1	RELATED DOCUMENTS	. 1
1.2	SUBMITTALS	
1.3	QUALITY ASSURANCE	. 1
1.4	COORDINATION	
1.5	EXTRA MATERIALS	. 2
PART 2	- PRODUCTS	2
2.1	MANUFACTURERS	
2.2	FLOOR-MOUNTING UNITS 5 TONS AND SMALLER (SPLIT-SYSTEM DX)	
	ACCESSORIES	
PART 3	- EXECUTION	. 4
3.1	INSTALLATION	. 4
3.2	CONNECTIONS	. 4
3.3	FIELD QUALITY CONTROL	
3.4	STARTUP SERVICE	
3.5	ADJUSTING	. 5
3.6	DEMONSTRATION	. 5

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."

1.2 SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For computer-room air-conditioning units to include in operation and maintenance manuals.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

B. ASHRAE Compliance:

- 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
- 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 "Outdoor Air Quality," Section 5 "Systems and Equipment," Section 6 "Ventilation Rate Procedures," and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.
- D. ASME Compliance: Fabricate and label water-cooled condenser shell to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," Division 1.

1.4 COORDINATION

- A. Coordinate layout and installation of computer-room air-conditioning units and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.
- B. Coordinate installation of computer-room air-conditioning units with computer-room access flooring Installer.
- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

1.5 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fan Belts: One set for each belt-drive fan.
 - 2. Filters: One set of filters for each unit.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 FLOOR-MOUNTING UNITS 5 TONS AND SMALLER (SPLIT-SYSTEM DX)

A. Manufacturers:

- APC Network Air.
- Data Aire Inc.
- Liebert Corporation.

- B. Description: Factory assembled, split-system units with compressor located in remote condensing units; and including cabinet, fan, filters, and controls; for vertical floor mounting in upflow configuration.
- C. Cabinet: Welded tubular-steel frame with removable steel panels with baked-enamel finish, insulated with 1-inch- thick 1-1/2 pcf density duct liner.
 - 1. Floor Stand: Welded tubular steel.
- D. Evaporator Fan: Forward curved, centrifugal, with adjustable V-belt drive.
 - 1. Motor: Comply with requirements in Division 20 Section "Motors."
- E. Evaporator Coil: Direct-expansion cooling coil of seamless copper tubes expanded into aluminum fins, with two circuits, each with solenoid valve.
 - 1. Mount coil assembly over stainless-steel drain pan having a condensate pump unit with integral float switch, pump-motor assembly, and condensate reservoir.
- F. Condensing Unit Cabinet: Steel with baked-enamel finish and containing compressor and condenser.
- G. Air-Cooled Condensing Unit: Copper-tube aluminum-fin coil with direct-drive propeller fan.
 - 1. System shall have suction- and liquid-line compatible fittings and refrigerant piping for field interconnection.
- H. Compressor: Hermetic, with oil strainer, internal motor overload protection, resilient suspension system, and crankcase heater.
 - 1. Refrigeration Circuit: Low-pressure switch, manual-reset high-pressure switch, thermalexpansion valve with external equalizer, sight glass with moisture indicator, service shutoff valves, charging valves, and charge of refrigerant.
 - 2. Refrigerant: R-407C.
 - 3. Capacity Control: Hot gas bypass.
- I. Filter: 2-inch- thick, disposable, glass-fiber media with 30 percent dust-spot efficiency.
- J. Control System: Unit-mounted panel with main fan contactor, compressor contactor, compressor start capacitor, control transformer with circuit breaker, solid-state temperature- and humidity-control modules, humidity contactor, time-delay relay, reheat contactor, and high-temperature thermostat. Provide solid-state, wall-mounting control panel with start-stop switch, adjustable humidity set point, and adjustable temperature set point.
- 2.3 ACCESSORIES
 - A. Unit support curbs:
 - 1. Manufacturers:
 - a. Pate.
 - b. ThyCurb.

- c. Roof Products & Systems.
- 2. Coordinate type and installation with Architectural trades. Top of support shall be level and extend a minimum of 8 inches above the top of the roof insulation.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install computer-room air-conditioning units level and plumb, maintaining manufacturer's recommended clearances.
- B. Curb Support: Install and secure roof-mounting units on curbs and coordinate roof penetrations and flashing with roof construction. Secure units to curb support with anchor bolts.
- C. Install suspended components level. Coordinate wall penetrations and flashing with wall construction.
- D. Install air-cooled condenser on rubber-in-shear vibration isolators.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20, 22 and 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Water and Drainage Connections: Comply with applicable requirements in Division 22 Section "Domestic Water Piping." Provide adequate connections for water-cooled units, condensate drain, and humidifier flushing system.
- D. Refrigerant Piping: Comply with applicable requirements in Division 23 Section "Refrigerant Piping." Provide shutoff valves and piping.
- E. Electrical System Connections: Comply with applicable requirements in Division 26 Sections for power wiring, switches, and motor controls.
- F. Ground equipment according to Division 26 Section "Grounding and Bonding."
- G. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 2. After installing computer-room air-conditioning units and after electrical circuitry has been energized, test for compliance with requirements.

- 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Verify that computer-room air-conditioning units are installed and connected according to manufacturer's written instructions and the Contract Documents.
- C. Verify that electrical wiring installation complies with manufacturer's submittal and installation requirements in Division 26 Sections.
- D. Complete installation and startup checks according to manufacturer's written instructions.
- E. After startup service and performance test, change filters.

3.5 ADJUSTING

- A. Adjust initial temperature set points.
- B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site outside normal occupancy hours for this purpose, without additional cost.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain computer-room air-conditioning units. Refer to Division 20 Section "Mechanical General Requirements."

END OF SECTION

SPLIT-SYSTEM AIR-CONDITIONING UNITS

PART 1.	- GENERAL	1
1.1	RELATED DOCUMENTS	
1.2	SUMMARY	
1.3	SUBMITTALS	
1.4	QUALITY ASSURANCE	
1.5	COORDINATION	
1.6	EXTRA MATERIALS	2
PART 2 -	- PRODUCTS	2
2.1	MANUFACTURERS	
2.2	SINGLE-ZONE DUCTLESS SPLIT SYSTEM AIR CONDITIONER	
2.3	ACCESSORIES	
DVDT 3	- EXECUTION	5
31	INSTALLATION	
3.1	CONNECTIONS	
3.3	FIELD QUALITY CONTROL	
3.4	DEMONSTRATION	
0.4	DEMONOTIVE	J

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."

1.2 SUMMARY

- A. This Section includes ductless split-system air-conditioning and heat pump units consisting of separate evaporator-fan and compressor-condenser components.
- B. Products supplied but not installed under this Section:
 - 1. Roof curbs and equipment rails.

1.3 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For split-system air-conditioning units to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Product Options: Drawings indicate size, profiles, and dimensional requirements of split-system units and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.
- C. ASHRAE Compliance:
 - Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
- D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.
- E. Seasonal Energy-Efficiency Ratio (SEER): Minimum 13.

1.5 COORDINATION

- A. Coordinate size and location of concrete or plastic pads for units.
- B. Coordinate delivery and placement of roof curbs, and equipment supports. Installation of roof curbs, equipment supports, and roof penetrations is specified in Division 07 Section "Roof Accessories." Pipe Roof Penetration Enclosures are specified in Division 20 Section "Basic Mechanical Materials and Methods."

1.6 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set of filters for each unit.
 - 2. Infrared remotes where applicable.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Single-Zone Split-System Air-Conditioning Units:
 - a. Airedale North America, Inc.
 - b. Daikin Applied; a member of Daikin Industries, Ltd.; Daikin AC.
 - c. EMI (Enviromaster International LLC); a subsidiary of ECR International.
 - d. LG Electronics, HVAC Division.
 - e. Mitsubishi Electric & Electronics America, Inc.; HVAC Advanced Products Division.
 - f. Sanyo North America Corporation; a member of the Panasonic Group.
 - 2. Roof Curbs and Equipment Rails:
 - a. Pate Company (The).
 - b. Roof Products and Systems Corp.

c. ThyCurb; a division of THYBAR Corporation.

2.2 SINGLE-ZONE DUCTLESS SPLIT SYSTEM AIR CONDITIONER

- A. Complete packaged air conditioning unit factory fabricated and tested.
- B. Indoor Evaporator Section: Complete with fan section, motor, washable filter, condensate drain pan, condensate pump, and direct expansion evaporator section.
- C. Air Cooled Condensing Section: Completely factory piped for single point connection of refrigerant lines. Condensing unit with propeller fan shall be matched to evaporator section to provide cooling capacity as scheduled on drawings.
- D. Controls: Unit furnished with factory installed microprocessor controls. Provide wireless remote or unit mounted control or wall thermostat, which shall provide selection of all functions and control of room temperature set points. Furnish and install one mounting bracket for each wireless remote control.
- E. Units Serving Areas that Contain Additional Heating and Cooling Equipment: Provide with electromechanical controls to allow a common DDC space sensor to control the unit.
- F. Provide complete refrigerant piping circuit (including all piping specialties) sized in accordance with manufacturer's requirements to interconnect evaporator and condenser sections.
- G. Wall-Mounting, Evaporator-Fan Components:
 - 1. Cabinet: With removable panels for servicing, and discharge drain pans with drain connection.
 - 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.
 - 3. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
 - 4. Fan: Direct drive, centrifugal fan.
 - 5. Fan Motors: Comply with requirements in Division 20 Section "Motors."
 - a. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - 6. Filters: Permanent, cleanable.
- H. Ceiling-Mounting, Evaporator-Fan Components:
 - 1. Cabinet: Enameled steel chassis with removable panels on front and ends, and discharge drain pans with drain connection.
 - 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.

- 3. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
- 4. Fan: Direct drive, centrifugal fan, with outside air intake, and integral factory or field installed condensate pump.
- 5. Fan Motors: Comply with requirements in Division 20 Section "Motors."
 - a. Special Motor Features: Multitapped, multispeed with internal thermal protection and permanent lubrication.
- 6. Filters: Permanent, cleanable.
- I. Air-Cooled, Compressor-Condenser Components:
 - 1. Casing: Steel, finished with baked enamel, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
 - 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - a. Compressor Type: Reciprocating or Scroll.
 - b. Include refrigerant charge.
 - c. Refrigerant: R-410A.
 - 3. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with liquid subcooler.
 - 4. Heat Pump Components: Reversing valve and low-temperature air cut-off thermostat.
 - 5. Fan: Aluminum-propeller type, directly connected to motor.
 - 6. Motor: Permanently lubricated, with integral thermal-overload protection.
 - 7. Low Ambient Kit: Permits operation down to 0 deg F. Include wind manufacturer's wind baffle accessory.
- J. Control equipment is specified in Division 23 Section "Temperature Controls," and sequence of operation is indicated on the Drawings.
- K. Thermostat: Wall-mounted low voltage type to control compressor and evaporator fan.
- L. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 2. Fan-speed selection, including auto setting.

M. Automatic-reset timer to prevent rapid/short cycling of compressor.

2.3 ACCESSORIES

- A. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized with nitrogen, and sealed; factory-insulated suction line with flared fittings at both ends.
- B. Roof Curbs and Equipment Rails:
 - 1. Minimum 18 gage welded galvanized steel construction.
 - 2. Integral base flange or plate.
 - 3. Built-in fully mitered raised cant with step matching insulation thickness.
 - 4. Factory installed insect and decay resistant wood nailer.
 - 5. Top of curb or equipment support shall be level and extend a minimum of 8 inches above the top of the roof insulation.
- C. Automatic Condensate Pump Units (Field Installed)
 - Manufacturers:
 - a. Little Giant Pump Co.; Subsidiary of Tecumseh Products Co.
 - b. Beckett Corporation.
 - c. Hartell Pumps Div.; Milton Roy Co.
 - d. Hydromatic Pump Company; Division of Pentair Pump Group.
 - 2. Description: Packaged units with corrosion-resistant pump, plastic tank with cover, and automatic controls.
- D. Automatic Condensate Pump Units (Field Installed Above Ceiling Applications)
 - 1. Manufacturers:
 - a. Hartell Pumps Div.; Milton Roy Co.; Model A2-X-1965.
 - 2. Description: Packaged units with corrosion-resistant pump, dual-voltage thermally protected motor, cast aluminum tank with cover, and automatic controls. Include auxiliary safety switch; junction box wire connections, with 3/4-inch knock out for conduit; and factory- or field-installed check valve.

PART 3 - EXECUTION

- 3.1 INSTALLATION
 - A. Install units level and plumb.
 - B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
 - C. Install grade-mounting, compressor-condenser components on 2-inch thick reinforced precast concrete, or plastic pad; extending 2 inches beyond unit perimeter.

- D. Deliver roof curbs and equipment support to site for installation under Division 07. Install roof-mounting compressor-condenser components on equipment supports specified. Anchor units to supports with removable, cadmium-plated fasteners. Install wind baffle according to manufacturer's installation instructions.
- E. Install and connect refrigerant tubing to components. Install tubing to allow access to unit. Evacuate and charge with refrigerant in accordance with manufacturers instructions.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to unit to allow service and maintenance.
- C. Electrical Connections: Comply with requirements in Division 26 Sections for power wiring, switches, and motor controls.

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Remove and replace malfunctioning units and retest as specified above.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION

HEATING AND COOLING COILS

	- GENERAL	
1.1	RELATED DOCUMENTS	. 1
	SUMMARY	
	SUBMITTALS	
1.4	QUALITY ASSURANCE	. 1
PART 2	- PRODUCTS	. 2
	WATER COILS	
	REFRIGERANT COILS	
	DRAIN PANS	
PART 3	- EXECUTION	. 3
3.1	EXAMINATION	. 3
3.2	INSTALLATION	. 3
	CONNECTIONS	
	FIELD QUALITY CONTROL	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 23 Sections for coils that are integral to air-handling units.

1.2 SUMMARY

A. This Section includes duct-mounted heating and cooling coils, and heating and cooling coils that are an integral part of air-handling units.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each coil. Include rated capacity and pressure drop for each coil.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which coil location and ceiling-mounted access panels are shown and coordinated with each other.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For air coils to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by an NRTL acceptable to authorities having jurisdiction, and marked for intended use.

B. ASHRAE Compliance:

- 1. Comply with ASHRAE 15 for refrigeration system safety.
- 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.

PART 2 - PRODUCTS

2.1 WATER COILS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aerofin Corporation.
 - 2. Carrier; a United Technologies Company.
 - 3. Daikin Applied; a member of Daikin Industries, Ltd.
 - 4. JCI/York International.
 - 5. Luvata/Heatcraft Commercial/Industrial Products.
 - 6. Precision Coils; a business of Unison Comfort Technologies.
 - 7. Trane Inc.; a Division of Ingersoll Rand.
- B. Performance Ratings: Tested and rated according to AHRI 410 and ASHRAE 33.
- C. Minimum Working-Pressure/Temperature Ratings: 200 psig, 325 deg F.
- D. Source Quality Control: Factory tested to 300 psig.
- E. Tubes: ASTM B 743 copper, minimum 0.024 inch wall thickness, and minimum 0.50 inch diameter.
- F. Fins: Aluminum, minimum 0.010 inch thick.
- G. Headers: Cast iron with cleaning plugs, and drain and air vent tappings or seamless copper tube with brazed joints, prime coated.
- H. Frames, Hot Water Coils: Galvanized-steel channel frame, minimum 0.0625 inch thick for flanged mounting.
- I. Frames, Chilled Water Coils: ASTM A 666, Type 304 stainless steel, minimum 0.0625 inch thick for flanged mounting.
- J. Coating: Heresite P-403 baked phenolic for coils installed in stainless steel ductwork.

2.2 REFRIGERANT COILS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aerofin Corporation.
 - 2. Carrier; a United Technologies Company.
 - 3. Daikin Applied; a member of Daikin Industries, Ltd.

- JCI/York International.
- 5. Luvata/Heatcraft Commercial/Industrial Products.
- 6. Precision Coils; a business of Unison Comfort Technologies.
- 7. Trane Inc.; a Division of Ingersoll Rand.
- B. Performance Ratings: Tested and rated according to AHRI 410 and ASHRAE 33.
- C. Minimum Working-Pressure Rating: 300 psig.
- D. Source Quality Control: Factory tested to 450 psig.
- E. Tubes: ASTM B 743 copper, minimum 0.020 inch wall thickness, and minimum 0.50 inch diameter.
- F. Fins: Aluminum, minimum 0.010 inch thick.
- G. Suction and Distributor Piping: ASTM B 88, Type L copper tube with brazed joints.
- H. Frames: ASTM A 666, Type 304 stainless steel, minimum 0.0625 inch thick for flanged mounting.

2.3 DRAIN PANS

- A. Description: For cooling coils, IAQ compliant formed to slope from all directions to the drain connection as required by ASHRAE 62.
- B. Construction: Minimum 22 gage, Type 304 stainless steel with welded joints, positively sloped a minimum of 1/8 inch per foot, with threaded drain connection at lowest point of pan. Intermediate pans piped to the primary drain pan are required for all stacked cooling coils.
- C. Provide intermediate coils with 3 inch deep pans for each tiered coil bank. Top pan shall extend 6 inches beyond face of coil and bottom pan shall extend not less than 12 inches beyond face of coil. Where more than two panes are used, pan extension shall be proportional.
- D. Supports: Same material as pans.
- E. Pipe pan drain to floor drain. A deep seal trap shall be installed on the drain pipe from the pans.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine ducts, plenums, and casings to receive air coils for compliance with requirements for installation tolerances and other conditions affecting coil performance.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before coil installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install coils level and plumb.
- B. Install coils in metal ducts and casings constructed according to SMACNA's "HVAC Duct Construction Standards, Metal and Flexible."

- C. Laboratory Terminal Unit Hot Water Coils: Caulk and seal frame and all housing tube openings in the field with a non-hardening sealant. Sealant type shall be approved by the coil manufacturer.
- D. Install minimum 22 gage, Type 304 stainless-steel drain pan under each cooling coil.
 - 1. Construct drain pans with connection for drain; insulated.
 - 2. Construct drain pans to extend beyond coil length and width and to connect to condensate trap and drainage.
 - 3. Extend drain pan upstream and downstream from coil face.
 - 4. Extend drain pan under coil headers and exposed supply piping.
- E. Install moisture eliminators for cooling coils. Extend drain pan under moisture eliminator.
- F. Straighten bent fins on air coils.
- G. Clean coils using materials and methods recommended in writing by manufacturers, and clean inside of casings and enclosures to remove dust and debris.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Division 20 and 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to coils to allow service and maintenance.
- C. Connect water piping with unions and shutoff valves to allow coils to be disconnected without draining piping. Control valves are specified in Division 23 Section "Temperature Controls," and other piping specialties are specified in Division 23 Section "Hydronic Piping."
- D. Connect steam piping with gate valve and union and steam condensate piping with union, strainer, trap, and gate valve to allow coils to be disconnected without draining piping. Control valves are specified in Division 23 Section "Temperature Controls," and other piping specialties are specified in Division 23 Section "Steam and Condensate Piping."
- E. Connect refrigerant piping according to Division 23 Section "Refrigerant Piping."
- F. Ground equipment according to Division 26 Section "Grounding and Bonding."
- G. Connect wiring according to Division 26 Section "Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, operate electric coils to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

END OF SECTION

ELECTRICAL GENERAL REQUIREMENTS

- GENERAL
RELATED DOCUMENTS
SUMMARY
REFERENCES
QUALITY ASSURANCE
CODES, PERMITS AND FEES
DRAWINGS
MATERIAL AND EQUIPMENT MANUFACTURERS
INSPECTION OF SITE
ITEMS REQUIRING PRIOR APPROVAL
SHOP DRAWINGS/SUBMITTALS4
COORDINATION DRAWINGS
OPERATION AND MAINTENANCE INSTRUCTIONAL MANUALS
RECORD DRAWINGS
INSTRUCTION OF OWNER PERSONNEL
WARRANTY6
USE OF EQUIPMENT
- PRODUCTS
- EXECUTION6
INSTALLATION OF EQUIPMENT
DEMOLITION WORK
TEMPORARY SERVICES
CHASES AND RECESSES
CUTTING, PATCHING AND DAMAGE TO OTHER WORK
EXCAVATION AND BACKFILLING
EQUIPMENT CONNECTIONS
CLEANING
PROTECTION AND HANDLING OF EQUIPMENT AND MATERIALS
EXTRA WORK
DRAWINGS AND MEASUREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

1.2 SUMMARY

A. This Section includes electrical general administrative and procedural requirements. The following requirements are included in this Section to supplement the requirements specified in Division 1 Specification Sections.

1.3 REFERENCES

A. All materials shall be new. The electrical and physical properties of all materials, and the design, performance characteristics, and methods of construction of all items of equipment, shall be in accordance with the latest issue of the various, applicable Standard Specifications of the following recognized authorities:

- 1. A.N.S.I. American National Standards Institute
- 2. A.S.T.M. American Society for Testing Materials
- 3. I.C.E.A. Insulated Cable Engineers Association
- 4. I.E.E.E. Institute of Electrical and Electronics Engineers
- 5. N.E.C. National Electrical Code
- 6. N.E.C.A National Electrical Contractors Association
- 7. N.E.M.A.National Electrical Manufacturer's Association
- 8. U.L.Underwriters Laboratories, Inc.
- 9. N.E.C.A. 1-2000, "Practices for Good Workmanship in Electrical Contracting (ANSI)."

1.4 QUALITY ASSURANCE

- A. Scope of Work: Furnish all labor, material, equipment, technical supervision, and incidental services required to complete, test and leave ready for operation the electrical systems as specified in the Division 26 Sections and as indicated on Drawings.
- B. Ordinances and Codes: Perform all Work in accordance with applicable Federal, State and local ordinances and regulations, the Rules and Regulations of NFPA, NECA, and UL, unless otherwise indicated.
 - Notify the Architect/Engineer before submitting a proposal should any changes in Drawings or Specifications be required to conform to the above codes, rules or regulations. After entering into Contract, make all changes required to conform to above ordinances, rules and regulations without additional expense to the Owner.
- C. Source Limitations: All equipment of the same or similar systems shall be by the same manufacturer.
- D. Tests and Inspections: Perform all tests required by state, city, county and/or other agencies having jurisdiction. Provide all materials, equipment, etc., and labor required for tests.
- E. Performance Requirements: Perform all work in a first class and workmanlike manner, in accordance with the latest accepted standards and practices for the trades involved.
- F. Sequence and Schedule: Work so as to avoid interference with the work of other trades. Be responsible for removing and relocating any work which in the opinion of the Owner's Representatives causes interference.

1.5 CODES, PERMITS AND FEES

- A. Unless otherwise indicated, all required permits, licenses, inspections, approvals and fees for electrical work shall be secured and paid for by the Contractor. All work shall conform to all applicable codes, rules and regulations.
- B. Rules of local utility companies shall be complied with. Coordinate with the utility company supplying service to the installation and determine all devices including, but not limited to, all

- current and potential transformers, meter boxes, C.T. cabinets and meters which will be required and include the cost of all such items and all utilities costs in proposal.
- C. All work shall be executed in accordance with the rules and regulations set forth in local and state codes. Prepare any detailed Drawings or diagrams which may be required by the governing authorities. Where the Drawings and/or Specifications indicate materials or construction in excess of code requirements, the Drawings and/or Specifications shall govern.

1.6 DRAWINGS

- A. The Drawings show the location and general arrangement of equipment, electrical systems and related items. They shall be followed as closely as elements of the construction will permit.
- B. Examine the Drawings of other trades and verify the conditions governing the work on the job site. Arrange work accordingly, providing such fittings, conduit, junction boxes and accessories as may be required to meet such conditions.
- C. Deviations from the Drawings, with the exception of minor changes in routing and other such incidental changes that do not affect the functioning or serviceability of the systems, shall not be made without the written approval of the Architect/Engineer.
- D. The architectural and structural Drawings take precedence in all matters pertaining to the building structure, mechanical Drawings in all matters pertaining to mechanical trades and electrical Drawings in all matters pertaining to electrical trades. Where there are conflicts or differences between the Drawings for the various trades, report such conflicts or differences to the Architect/Engineer for resolution.
- E. Drawings are not intended to be scaled for rough-in or to serve as shop drawings. Take all field measurements required to complete the Work.

1.7 MATERIAL AND EQUIPMENT MANUFACTURERS

- A. All items of equipment shall be furnished complete with all accessories normally supplied with the catalog items listed and all other accessories necessary for a complete and satisfactory operating system. All equipment and materials shall be new and shall be standard products of manufacturers regularly engaged in the production of electrical equipment and shall be of the manufacturer's latest design.
- B. If an approved manufacturer is other than the manufacturer used as the basis for design, the equipment or product provided shall be equal in size, quality, durability, appearance, capacity, and efficiency through all ranges of operation, shall conform with arrangements and space limitations of the equipment shown on the plans and/or specified, shall be compatible with the other components of the system and shall comply with the requirements for Items Requiring Prior Approval specified in this section of the Specifications. All costs to make these items of equipment comply with these requirements including, but not limited to, electrical work, and building alterations shall be included in the original Bid. Similar equipment shall be by one manufacturer.

1.8 INSPECTION OF SITE

A. Visit the site, examine and verify the conditions under which the Work must be conducted before submitting Proposal. The submitting of a Proposal implies that the Contractor has visited the site and understands the conditions under which the Work must be conducted. No additional charges will be allowed because of failure to make this examination or to include all materials and labor to complete the Work.

1.9 ITEMS REQUIRING PRIOR APPROVAL

- A. Bids shall be based upon manufactured equipment specified. All items that the Contractor proposes to use in the Work that are not specifically named in the Contract Documents must be submitted for review prior to bids. Such items must be submitted in compliance with Division 1 specifications. Requests for prior approval must be accompanied by complete catalog information, including but not limited to, model, size, accessories, complete electrical information and performance data in the form given in the equipment schedule on the drawings at stated design conditions. Where items are referred to by symbolic designations on the drawings, all requests for prior approval shall bear the same designations.
 - 1. Equipment to be considered for prior approval shall be equal in quality, durability, appearance, capacity and efficiency through all ranges of operation, shall fulfill the requirements of equipment arrangement and space limitations of the equipment shown on the plans and/or specified and shall be compatible with the other components of the system.
 - 2. All costs incurred to make equipment comply with other requirements, including providing maintenance, clearance, electrical, replacement of other components, and building alterations shall be included in the original bid.
- B. Voluntary alternates may be submitted for consideration, with listed addition or deduction to the bid.

1.10 SHOP DRAWINGS/SUBMITTALS

- A. Submit project-specific submittals for review in compliance with Division 1.
- B. All shop Drawings shall be submitted in groupings of similar and/or related items (lighting fixtures, switchgear, etc.). Incomplete submittal groupings will be returned unchecked.
- C. Provide detailed layout shop Drawings (on transparent media) of all lighting and power distribution systems, routing of conduits, combining of circuits, circuiting, details and related information necessary of installation and maintenance. After review by the Architect/Engineer, a copy of Drawings will be stamped and returned to the Contractor.
- D. If deviations (not substitutions) from Contract Documents are deemed necessary by the Contractor, details of such deviations, including changes in related portions of the project and the reasons therefore, shall be submitted with the submittal for approval.
- E. Submit for approval shop drawings for all electrical systems or equipment but not limited to the items listed below. Where items are referred to by symbolic designation on the Drawings and Specifications, all submittals shall bear the same designation (light fixtures). Refer to other sections of the electrical Specifications for additional requirements.
 - 1. Unit Substations
 - 2. Panelboards
 - 3. Dry-Type Transformers
 - 4. Enclosed Controllers
 - 5. Disconnect Switches

- 6. Contactors
- 7. Time Controllers
- 8. Wiring Devices
- 9. Lighting Fixtures
- 10. Occupancy Sensors (material and lay-out drawings)
- 11. Fire Alarm Systems

1.11 COORDINATION DRAWINGS

A. Submit project specified coordination drawings for review in compliance with Division 1 Specification Sections.

1.12 OPERATION AND MAINTENANCE INSTRUCTIONAL MANUALS

- A. Submit project specific Operation and Maintenance Instructional Manuals for review in compliance with Division 1 Specification Sections.
- B. Provide complete operation and maintenance instructional manuals covering all electrical equipment herein specified, together with parts lists. Maintenance and operating instructional manuals shall be job specific to this project. Generic manuals are not acceptable. Four (4) copies of all literature shall be furnished for Owner and shall be bound in ring binder form. Maintenance and operating instructional manuals shall be provided when construction is approximately 75% complete.
- C. The operating and maintenance instructions shall include a brief, general description for all mechanical systems including, but not limited to:
 - 1. Routine maintenance procedures.
 - 2. Lubrication chart listing all types of lubricants to be used for each piece of equipment and the recommended frequency of lubrication.
 - 3. Trouble-shooting procedures.
 - 4. Contractor's telephone numbers for warranty repair service.
 - 5. Submittals.
 - 6. Recommended spare parts lists.
 - 7. Names and telephone numbers of major material suppliers and subcontractors.
 - 8. System schematic drawings on 8-1/2" x 11" sheets.

1.13 RECORD DRAWINGS

- A. Submit record drawings in compliance with Division 1.
- B. Contractor shall submit to the Architect/Engineer, record drawings on electronic media or mylar which have been neatly marked to represent as-built conditions for all new electrical work.

C. The Contractor shall keep accurate note of all deviations from the construction documents and discrepancies in the underground concealed conditions and other items of construction on field drawings as they occur. The marked up field documents shall be available for review by the Architect, Engineer and Owner at their request.

1.14 INSTRUCTION OF OWNER PERSONNEL

- A. Before final inspection, instruct Owner's designated personnel in operation, adjustment, and maintenance of electrical equipment and systems at agreed upon times. A minimum of 8 hours of formal instruction to Owner's personnel shall be provided for each building. Additional hours are specified in individual specification sections.
- B. Use operation and maintenance manuals as basis for instruction. Review contents of manual with personnel in detail to explain all aspects of operation and maintenance.
- C. In addition to individual equipment training provide overview of each electrical system. Utilize the as-built documents for this overview.
- D. Prepare and insert additional data in operation and maintenance manual when need for such data becomes apparent during instruction, or as requested by Owner.

1.15 WARRANTY

- A. Warranty: Comply with the requirements in Division 1 Specification Sections. Contractor shall warranty that the electrical installation is free from defects and agrees to replace or repair, to the Owner's satisfaction, any part of this electrical installation which becomes defective within a period of one year (unless specified otherwise in other Division 26 sections) from the date of substantial completion following final acceptance, provided that such failure is due to defects in the equipment, material, workmanship or failure to follow the contract documents.
- B. File with the Owner any and all warranties from the equipment manufacturers including the operating conditions and performance capacities they are based on.

1.16 USE OF EQUIPMENT

- A. The use of any equipment, or any part thereof for purposes other than testing even with the Owner's consent, shall not be construed to be an acceptance of the work on the part of the Owner, nor be construed to obligate the Owner in any way to accept improper work or defective materials.
- B. Do not use Owner's lamps for temporary lighting except as allowed and directed by the Owner. Equip lighting fixtures with new lamps when the project is turned over to the Owner.

PART 2 - PRODUCTS

Not applicable.

PART 3 - EXECUTION

3.1 INSTALLATION OF EQUIPMENT

- A. Install all equipment in strict accordance with all directions and recommendations furnished by the manufacturer. Where such directions are in conflict with the Drawings and Specifications, report such conflicts to the Architect/Engineer for resolution.
- B. Device Location:

1. Allow for relocation prior to installation of wiring devices and other control devices, for example, receptacles, switches, fire alarm devices, and access control devices, within a 10-foot radius of indicated location without additional cost.

3.2 DEMOLITION WORK

- A. All demolition of existing electrical equipment and materials will be done by this Contractor unless otherwise indicated. Include all items such as, but not limited to, electrical equipment, devices, lighting fixtures, conduit, and wiring called out on the Drawings and as necessary whether such items are actually indicated on the Drawings or not in order to accomplish the installation of the specified new work.
- B. In general, demolition work is indicated on the Drawings. However, the Contractor shall visit the job site to determine the full extent and character of this work.
- C. Unless specifically noted to the contrary, removed materials shall not be reused in the work. Salvaged materials that are to be reused shall be stored safe against damage and turned over to the appropriate trade for reuse. Salvaged materials of value that are not to be reused shall remain the property of the Owner unless such ownership is waived. Items on which the Owner waives ownership shall become the property of the Contractor, who shall remove and legally dispose of same, away from the premises.
- D. Where equipment or fixtures are removed, outlets shall be properly blanked off, and conduits capped. After alterations are done, the entire installation shall present a "finished" look, as approved by the Architect/Engineer. The original function of the present electrical work to be modified shall not be changed unless required by the specific revisions to the system as specified or as indicated.
- E. Reroute signal wires, lighting and power wiring as required to maintain service. Where walls and ceilings are to be removed as shown on the Drawings, the conduit is to be cut off by the Electrical Trades so that the abandoned conduit in these walls and ceilings may be removed with the walls and ceilings by the Architectural Trades. All dead-end conduit runs shall be plugged at the remaining line outlet boxes or at the panels.
- F. Where new walls and/or floors are installed which interfere with existing outlets, devices, etc., the Electrical Trades shall adjust, extend and reconnect such items as required to maintain continuity of same.
- G. All electrical work in altered and unaltered areas shall be run concealed wherever possible. Use of surface raceway or exposed conduits will be permitted only where approved by the Architect/Engineer.
- H. Existing lighting shall be reused where indicated on plans. Reused fixtures shall be detergent cleaned, relamped and reconditioned suitable for satisfactory operation and appearance.

3.3 TEMPORARY SERVICES

A. Provide and remove upon completion of the project, in accordance with the general conditions and as described in Division 1, a complete temporary electrical and telephone service during construction.

3.4 CHASES AND RECESSES

A. Provided by the architectural trades, but the Contractor shall be responsible for their accurate location and size.

3.5 CUTTING, PATCHING AND DAMAGE TO OTHER WORK

- A. Refer to General Conditions for requirements.
- B. All cutting, patching and repair work shall be performed by the Contractor through approved, qualified subcontractors. Contractor shall include full cost of same in bid.

3.6 EXCAVATION AND BACKFILLING

- A. Provide all excavation, trenching, tunneling, dewatering and backfilling required for the electrical work. Coordinate the work with other excavating and backfilling in the same area.
- B. Where conduit is installed less than 2'6" below the surface of pavement, provide concrete encasement, 4" minimum coverage, all around or as shown on the electrical Drawings.
- C. Backfill all excavations with well-tamped granular material. Backfill all excavations under wall footings with lean mix concrete up to underside of footings and extend concrete within excavation a minimum of four (4) feet each side of footing. Granular backfill shall be placed in layers not more than 8 inches in thickness, 95 percent compaction throughout with approved compaction equipment. Tamp, roll as required. Excavated material shall not be used.
- D. Backfill outside building with granular material to a height 12 inches over top of pipe compacted to 95 percent compaction as specified above. Backfill remainder of excavation with unfrozen, excavated material in such a way to prevent settling.

3.7 EQUIPMENT CONNECTIONS

A. Make connections to equipment, motors, lighting fixtures, and other items included in the work in accordance with the approved shop Drawings and rough-in measurements furnished by the manufacturers of the particular equipment furnished. All additional connections not shown on the Drawings, but called out by the equipment manufacturer's shop Drawings shall be provided.

3.8 CLEANING

- A. All debris shall be removed daily as required to maintain the work area in a neat, orderly condition.
- B. Final cleanup shall include, but not be limited to, washing of fixture lenses or louvers, switchboards, substations, motor control centers, panels, etc. Fixture reflectors and lenses or louvers shall be left with no water marks or cleaning streaks.

3.9 PROTECTION AND HANDLING OF EQUIPMENT AND MATERIALS

- A. Equipment and materials shall be protected from theft, injury or damage.
- B. Protect conduit openings with temporary plugs or caps.
- C. Provide adequate storage for all equipment and materials delivered to the job site. Location of the space will be designated by the Owner's representative or Architect/Engineer. Equipment set in place in unprotected areas must be provided with temporary protection.

3.10 EXTRA WORK

A. For any extra electrical work which may be proposed, this Contractor shall furnish to the General Contractor, an itemized breakdown of the estimated cost of the materials and labor required to complete this work. The Contractor shall proceed only after receiving a written order from the General Contractor establishing the agreed price and describing the work to be done.

Prior to any extra work which may be proposed, the Electrical Contractor shall submit unit prices (same prices for increase/decrease of work) for the following items: 1/2", 3/4", 1", 1-1/2" conduit; #12, #10, #8, #6, #2 wire; receptacle, I.G. receptacle, data box, fire alarm horn/strobe, fire alarm strobe, P.A. speaker, clock, or other devices which may be required for any proposed extra work.

3.11 DRAWINGS AND MEASUREMENTS

- A. These Specifications and accompanying Drawings are intended to describe and provide for finished work. They are intended to be cooperative, and what is called for by either shall be as binding as if call for by both. The Contractor understands that the work herein described shall be complete in every detail.
- B. The Drawings are not intended to be scaled for rough-in measurements nor to serve as Shop Drawings. Field measurements necessary for ordering materials and fitting the installation to the building construction and arrangement are the Contractor's responsibility. The Contractor shall check latest Architectural Drawings and locate light switches from same where door swings are different from Electrical Drawings.

END OF SECTION

BASIC ELECTRICAL MATERIALS AND METHODS

PART 1 - 1.1 1.2 1.3 1.4 1.5 1.6	RELA SUMI DEFII SUBI QUAL	ERAL ITED DOCUMENTS MARY NITIONS MITTALS LITY ASSURANCE RDINATION	1 1 1 1 2
PART 2 - 2.1 2.2 2.3 2.4	MANU SLEE SLEE	DUCTS	2 2 2
PART 3 - 3.1 3.2 3.3 3.4 3.5	COMI SLEE SLEE FIRES	CUTION	3 3 4 4
PART 1 -	GENE	ERAL	
1.1	RELA	TED DOCUMENTS	
A.	Drawings and general provisions of the Contract, including General and Supplementary Condition and Division 1 Specification Sections, apply to this Section.		
1.2	SUMMARY		
A.	This S	Section includes the following:	
	1.	Electrical equipment coordination and installation.	
	2.	Sleeves for raceways and cables.	
	3.	Sleeve seals.	
	4.	Common electrical and communications installation requirements.	
	5.	Grout.	
1.3	DEFI	NITIONS	
A.	ATS:	Acceptance Testing Specifications.	

- B. EPDM: Ethylene-propylene-diene terpolymer rubber.
- C. NBR: Acrylonitrile-butadiene rubber.
- 1.4 SUBMITTALS
 - A. Product Data: For each type of product indicated.

1.5 QUALITY ASSURANCE

A. Test Equipment Suitability and Calibration: Comply with NETA ATS, "Suitability of Test Equipment" and "Test Instrument Calibration."

1.6 COORDINATION

- A. Coordinate arrangement, mounting, and support of electrical equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location and provide access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 8 Section "Access Doors and Frames."
- D. Coordinate electrical testing of electrical, mechanical, and architectural items, so equipment and systems that are functionally interdependent are tested to demonstrate successful interoperability.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SLEEVES FOR RACEWAYS AND CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 7 Section "Through-Penetration Firestop Systems."

2.3 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers:

- a. Advance Products & Systems, Inc.
- b. Calpico, Inc.
- c. Metraflex Co.
- d. Pipeline Seal and Insulator, Inc.
- 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
- 3. Pressure Plates: Stainless steel. Include two for each sealing element.
- 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.4 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

- 3.1 COMMON REQUIREMENTS FOR ELECTRICAL AND COMMUNICATIONS INSTALLATION
 - A. Comply with NECA 1.
 - B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
 - C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
 - D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
 - E. Right of Way: Give to raceways and piping systems installed at a required slope.
- 3.2 SLEEVE INSTALLATION FOR ELECTRICAL AND COMMUNICATIONS PENETRATIONS
 - A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
 - B. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 7 Section "Through-Penetration Firestop Systems."
 - C. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
 - D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
 - E. Cut sleeves to length for mounting flush with both surfaces of walls.
 - F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.

- G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require a different clearance.
- H. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.
 - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
- I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Refer to Division 7 Section "Joint Sealants" for materials and installation.
- J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with Division 7 Section "Through-Penetration Firestop Systems."
- K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- M. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.
- 3.3 SLEEVE-SEAL INSTALLATION
 - A. Install to seal underground, exterior wall penetrations.
 - B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve.
- 3.4 FIRESTOPPING
 - A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 7 Section "Through-Penetration Firestop Systems."
- 3.5 FIELD QUALITY CONTROL
 - A. Inspect installed sleeve and sleeve-seal installations and associated firestopping for damage and faulty work.

END OF SECTION

CONDUCTORS AND CABLES

	- GENERAL	
1.1	RELATED DOCUMENTS	. 1
1.2	SUMMARY	. 1
1.3	SUBMITTALS	. 1
1.4	QUALITY ASSURANCE	. 1
PART 2 -	- PRODUCTS	. 2
2.1	MANUFACTURERS	2
2.2	CONDUCTORS AND CABLES	2
2.3	CONNECTORS AND SPLICES	3
	- EXECUTION	
3.1	CONDUCTOR AND INSULATION APPLICATIONS	3
3.2	INSTALLATION	4
3.3	CONNECTIONS	5
	FIELD QUALITY CONTROL	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes building wires and cables and associated connectors, splices, and terminations for wiring systems rated 600 V and less.
- B. Related Sections include the following:
 - 1. Division 26 Section "Control/Signal Transmission Media" for transmission media used for control and signal circuits.
 - 2. Division 26 Section "Electrical Identification" for conductor and cable color-coding.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Qualification Data: For testing agency.
- C. Field Quality-Control Test Reports: From a qualified testing and inspecting agency engaged by Contractor.

1.4 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Testing agency as defined by OSHA in 29 CFR 1910.7 or a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 CONDUCTORS AND CABLES

- A. Manufacturers, Copper:
 - 1. Triangle.
 - 2. Royal.
 - 3. Rome.
 - 4. General Cable Corporation.
 - 5. Southwire Company.
 - 6. Draka USA.
- B. Refer to Part 3 "Conductor and Insulation Applications" Article for insulation type, cable construction, and ratings.
- C. Conductor Material: Copper.
- D. Refer to Part 3 "Conductor and Insulation Applications" Article for insulation type, cable construction, and ratings.
- E. Conductor Insulation Types: Type THHN-THWN and XHHW complying with NEMA WC 70.
- F. Multiconductor Cable: Metal-clad cable, Type MC with ground wire.
- G. Power Cable for Variable Frequency Controlled Motors: 600V and 2000V, three conductor, XLPE cable with three symmetrical positioned ground conductors and a continuous impervious corrugated aluminum armor and overall PVC jacket. Cable shield transfer impedance shall be less than 10 ohms per meter up to 30 MHZ when tested in accordance with NEMA WC 61.
 - 1. Approved manufacturers for VFC power cables:
 - a. Southwire Armor-x
 - b. Draka USA

2.3 CONNECTORS AND SPLICES

A. Manufacturers:

- 1. AFC Cable Systems, Inc.
- 2. AMP Incorporated/Tyco International.
- 3. Hubbell/Anderson.
- 4. O-Z/Gedney; EGS Electrical Group LLC.
- 5. 3M Company; Electrical Products Division.
- 6. T&B.
- 7. Burndy.
- 8. ILSCO.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR AND INSULATION APPLICATIONS

- A. Service Entrance: Type XHHW, single conductors in raceway.
- B. Exposed Feeders: Type THHN-THWN, single conductors in raceway.
- C. Exposed Feeders #4/0 and larger: Type XHHW, single conductor in raceway.
- D. Feeders Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway.
- E. Feeders Concealed in Concrete, below Slabs-on-Grade, and in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- F. Exposed Branch Circuits, including in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway and metal-clad cable, Type MC, for branch circuit drops to devices and within partition walls. MC cable shall not be run in ceiling space in lengths greater than 6'-0".
- H. Branch Circuits Concealed in Concrete and below Slabs-on-Grade: Type THHN-THWN, single conductors in raceway.
- I. Underground Feeders and Branch Circuits: XHHW single conductors in conduit.
- J. Cord Drops and Portable Appliance Connections: Type SO, hard service cord.
- K. Fire Alarm Circuits: Type THHN-THWN, in raceway or Power-limited, fire-protective, signaling circuit cable.
- L. Class 1 Control Circuits: Type THHN-THWN, in raceway.

- M. Class 2 Control Circuits: Type THHN-THWN, in raceway.
- N. Critical Fire Control Circuits: Type RHH, single conductor in raceway. UL classified with two hour fire rating when installed in EMT conduit per the NEC and UL electrical circuit protective system (FHIT) #25 of the UL fire resistance directory. Support every 5' on center.
- O. Variable Speed Drives to Motors: Use VFD power cable manufactured by Southwire or Draka. Support every 5' on center.

3.2 INSTALLATION

- A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- E. Support cables according to Division 26 Section "Basic Electrical Materials and Methods."
- F. Seal around cables penetrating fire-rated elements according to Division 7 Section "Through-Penetration Firestop Systems."
- G. Each feeder shall be of the same conductor and insulation material (phase, neutral, and parallel).
- H. Identify and color-code conductors and cables according to Division 26 Section "Electrical Identification."
- I. All wiring shall be installed in conduit or approved raceway. All raceways shall be provided with a ground conductor unless noted otherwise on the Contract Documents.
- J. Use conductor not smaller than 12 AWG for power and lighting circuits. Unless indicated otherwise, all circuits shall be 2#12, 1#12G, 3/4"C. Do not share neutrals.
- K. Use conductor not smaller than 14 AWG for control circuits, provided by Electrical Contractor.
- L. Support communication cables above accessible ceiling, using spring metal clips or plastic cable ties to support cables from structure. Do not rest cable on ceiling panels.
- M. Use suitable cable fittings and connectors.
- N. Neatly train and lace wiring inside boxes, equipment, and panelboards.
- O. Clean conductor surfaces before installing lugs and connectors.
- P. Make splices, taps, and terminations to carry full ampacity of conductors with no perceptible temperature rise.
- Q. Use solderless pressure connectors with insulating covers for copper conductor splices and taps, 8 AWG and larger.
- R. Use insulated spring wire connectors with plastic caps for copper conductor splices and taps, 10 AWG and smaller.

- S. Branch circuits may be combined up to 6 circuits in a homerun conduit. Electrical Contractor shall be responsible for derating of conductors as required by N.E.C. Do not share neutrals.
- T. Use piercing connector with insulating covers for conductor splices and taps, 8 AWG and larger.
- U. Where the armor of type AC cable terminates, a fitting shall be provided to protect the wiring from abrasion. An approved bushing shall be provided between the conductors and the armor.
- V. Type MC cable shall be supported and secured at intervals not exceeding 4'-0".
- W. Fittings used for MC cable shall be identified for such use.
- X. AC/MC cable shall not be used for home runs to receptacle or distribution panels.
- Y. Between support, hangers and termination no more than 3" deflection from the bottom of the cable to a horizontal line between the support/hanger or termination.

3.3 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.4 FIELD QUALITY CONTROL

- A. Testing: Perform the following field quality control tests in accordance with Division 26 section "Electrical Testing"
 - 1. Description: Test all feeders rated 100 A and above.
 - 2. Visual and Mechanical Inspection
 - a. Inspect cables for physical damage and proper connection in accordance with the one line diagram.
 - b. Test cable mechanical connections with an infrared survey.
 - c. Check cable color-coding against project Specifications and N.E.C. requirements.
 - Electrical Tests
 - a. Perform insulation resistance test on each conductor with respect to ground and adjacent conductors. Applied potential to be 1000 volts dc for 1 minute.
 - b. Perform continuity test to insure proper cable connection.
 - 4. Test Values
 - a. Minimum insulation resistance values shall be not less than fifty mega-ohms.
- B. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures used.

- 2. Test results that comply with requirements.
- 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

END OF SECTION

GROUNDING AND BONDING

PART 1 -	- GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	SUMMARY	1
1.3	REFERENCES	
1.4	SUBMITTALS	2
1.5	PROJECT RECORD DOCUMENTS	2
1.6	QUALITY ASSURANCE	2
DADT 2	- PRODUCTS	2
	- FRODUCTS	ວ
2.1	MANUFACTURERS	
2.2	GROUNDING CONDUCTORS	
	CONNECTOR PRODUCTS	
2.4	GROUNDING ELECTRODES	5
PART 3 -	- EXECUTION	5
3.1	EQUIPMENT GROUNDING	5
	CONNECTIONS	
3.3	INSTALLATION	
3.4	UNDERGROUND DISTRIBUTION SYSTEM GROUNDING	
3.5	TELECOMMUNICATIONS GROUNDING	
3.6	FIELD QUALITY CONTROL	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes grounding of electrical systems and equipment. Grounding requirements specified in this Section may be supplemented by special requirements of systems described in other Sections.
- B. Related Sections include the following:
 - 1. Division 26 Section "Electrical General Requirements".
 - 2. Division 26 Section "Conductors and Cables".

1.3 REFERENCES

- A. ASTM B 3: Specification for Soft or Annealed Copper Wire.
- B. ASTM B 8: Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard or Soft.
- C. ASTM B 33: Specification for Tinned Soft or Annealed Copper Wire for Electrical Purposes.
- D. ASTM B 187: Specification for Copper, Bus Bar, Rod, and Shapes and General Purpose Rod, Bar, and Shapes.
- E. IEEE 81: Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System.

- F. IEEE 142: Grounding of Industrial and Commercial Power Systems.
- G. IEEE 1100 1992: Recommended Practice for Powering and Grounding Sensitive Electronic Equipment.
- H. IEEE C2: National Electrical Safety Code.
- I. NETA MTS 2001: Maintenance Testing Specifications.
- J. NFPA 70: National Electrical Code.
- K. NFPA 70B: Recommended Practice for Electrical Equipment Maintenance.
- L. NFPA 780: Lightning Protection Code.
- M. TIA/EIA 607: Commercial Building Grounding and Bonding Requirements Standard.
- N. UL 96: Lightning Protection Components.
- O. UL 467: Grounding and Bonding Equipment.
- P. UL 486 A: Wire Connectors and Soldering Lugs for Use with Copper Conductors.
- Q. UL 486B: Wire Connectors for Use with Aluminum Conductors.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Product Data: For the following:
 - 1. Ground rods.
- C. Qualification Data: For firms and persons specified in "Quality Assurance" Article.
- D. Field Test Reports: Submit written test reports to include the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
 - 4. Indicate overall system resistance to ground.
 - 5. Indicate overall Telecommunications system resistance to ground.

1.5 PROJECT RECORD DOCUMENTS

- A. Submit under provisions of Division 26 "Electrical General Requirements".
- B. Accurately record actual locations of grounding electrodes and connections to building steel.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Refer to specification section "Electrical Testing."

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - 1. Comply with UL 467.
- C. Comply with NFPA 70; for overhead-line construction and medium-voltage underground construction, comply with IEEE C2.
- D. Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system.
- E. Comply with ANSI/TIA/EIA-607 "Standard for Commercial Building Grounding and Bonding Requirements for Telecommunications".
- F. Comply with ANSI/IEEE 1100 -1992 "Powering and Grounding Sensitive Electronic Equipment".

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Grounding Conductors and Cables:
 - a. Refer to Division 26 Section "Conductors and Cables".
 - 2. Grounding Rods:
 - a. American Electric-Blackburn.
 - b. Apache Grounding/Erico Inc.
 - c. Chance/Hubbell.
 - 3. Mechanical Connectors:
 - a. American Electric-Blackburn.
 - b. Burndv.
 - c. Chance/Hubbell.
 - 4. Exothermic Connections:
 - a. Cadweld.

2.2 GROUNDING CONDUCTORS

- A. For insulated conductors, comply with Division 26 Section "Conductors and Cables."
- B. Material: Aluminum, copper-clad aluminum, and copper.
- C. Equipment Grounding Conductors: Insulated with green-colored insulation.
- D. Isolated Ground Conductors: Insulated with green-colored insulation with yellow stripe. On feeders with isolated ground, use colored tape, alternating bands of green and yellow tape to provide a minimum of three bands of green and two bands of yellow.
- E. Grounding Electrode Conductors: Stranded cable.

- F. Underground Conductors: Bare, tinned, stranded, copper unless otherwise indicated.
- G. Bare Copper Conductors: Comply with the following:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Assembly of Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
- H. Copper Bonding Conductors: As follows:
 - 1. Bonding Conductor: Stranded copper conductor; size per the NEC.
 - 2. Bonding Jumper: Bare copper tape, braided bare copper conductors, terminated with copper ferrules; size per the NEC.
 - 3. Tinned Bonding Jumper: Tinned-copper tape, braided copper conductors, terminated with copper ferrules; size per the NEC.
- I. Aluminum Bonding Conductors: As follows:
 - 1. Bonding Conductor: Stranded aluminum conductor; size per the NEC.
 - 2. Bonding Jumper: Aluminum tape, braided bare aluminum conductors, terminated with aluminum ferrules; size per the NEC.
- J. Ground Conductor and Conductor Protector for Wood Poles: As follows:
 - 1. No. 4 AWG minimum, soft-drawn copper conductor.
 - 2. Conductor Protector: Half-round PVC or wood molding. If wood, use pressure-treated fir, or cypress or cedar.
- K. Grounding Bus: Bare, annealed copper bars of rectangular cross section, with insulators.
- L. Telecommunications Main Grounding Busbar (TMGB)
 - 1. 48" (min) x 4" x 1/4" tin plated, copper busbar with three rows of 1/4 x 20 tapped holes 3" on center.
- M. Telecommunications Grounding Busbar (TGB)
 - 1. 12" (min) x 2" x ¼" tin plated, copper busbar with two rows of ¼ x 20 tapped holes 3" on center.
- N. Telecommunications Bonding Backbone (TBB)
 - 1. Minimum No. 2 AWG insulated stranded copper.
- O. Telecommunications Bonding Conductors
 - 1. Minimum No. 6 AWG insulated stranded copper.

2.3 CONNECTOR PRODUCTS

- A. Comply with IEEE 837 and UL 467; listed for use for specific types, sizes, and combinations of conductors and connected items.
- B. Bolted Connectors: Bolted-pressure-type connectors, or compression type.
- C. Welded Connectors: Exothermic-welded type, in kit form, and selected for the specific application per manufacturer's written instructions.
- D. Compression-Type Connectors: Pure, wrought copper, per ASTM B187.

2.4 GROUNDING ELECTRODES

- A. Ground Rods: Copper-clad steel.
 - 1. Size: 5/8 (16 mm) in diameter.
 - 2. Length: 120 inches (3000 mm).
- B. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Provide handholes as specified in Division 2 Section "Underground Ducts and Utility Structures."

PART 3 - EXECUTION

3.1 EQUIPMENT GROUNDING

- A. Comply with NFPA 70, Article 250, for types, sizes, and quantities of equipment grounding conductors, unless specific types, larger sizes, or more conductors than required by NFPA 70 are indicated.
- B. Use only copper conductors for both insulated and bare grounding conductors in direct contact with earth, concrete, masonry, crushed stone, and similar materials.
- C. Underground Grounding Conductors: No. 2/0 AWG minimum. Bury at least 24 inches (600 mm) below grade or bury 12 inches (300 mm) above duct bank when installed as part of the duct bank.
- D. In raceways, use insulated equipment grounding conductors.
- E. Install equipment grounding conductors in all feeders and circuits. Terminate each end on suitable lugs, bus or bushing.
- F. Busway Supply Circuits: Install insulated equipment grounding conductor from the grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
- G. Computer Outlet Circuits: Install insulated equipment grounding conductor in branch-circuit runs from computer-area power panels or power-distribution units.
- H. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate grounding conductor from raceway and from panelboard grounding terminals. Terminate at the isolated equipment ground bus of the source panelboard unless otherwise indicated.
- I. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate equipment grounding conductor. Isolate equipment grounding conductor from raceway and from panelboard

- grounding terminals. Terminate at the isolated ground bus in the circuit's overcurrent device enclosure unless otherwise indicated.
- J. Nonmetallic Raceways: Install an equipment grounding conductor in nonmetallic raceways unless they are designated for telephone or data cables.
- K. Air-Duct Equipment Circuits: Install an equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners and heaters. Bond conductor to each unit and to air duct.
- L. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate equipment grounding conductor to each electric water heater, heat-tracing, and antifrost heating cable. Bond conductor to heater units, piping, connected equipment, and components.
- M. Metal Poles Supporting Outdoor Lighting Fixtures: Provide a grounding electrode in addition to installing a separate equipment grounding conductor with supply branch-circuit conductors.
- N. Verify specific equipment grounding requirements with the manufacturer's recommendations.

3.2 CONNECTIONS

- A. General: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized steel connections with tin-plated copper jumpers and mechanical clamps.
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
- B. Exothermic-Welded Connections: Use for connections to structural steel and for underground connections, except those at test wells. Comply with manufacturer's written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.
- C. Equipment Grounding Conductor Terminations.
- D. Use solderless pressure connectors with insulating covers for copper conductor splices and taps, 8 AWG and larger.
- E. Use insulated spring wire connectors with plastic caps for copper conductor splices and taps, 10 AWG and smaller.
- F. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically noncontinuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.

- G. Connections at Test Wells: Use compression-type connectors on conductors and make bolted- and clamped-type connections between conductors and ground rods.
- H. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A.
- I. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.
- J. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.3 INSTALLATION

- A. Equipotential Ground: Interconnect grounding electrodes to form one, electrically continuous, equipotential grounding electrode system. Grounding electrodes to be interconnected include:
 - 1. Ground rods.
 - 2. Counterpoise ground.
 - 3. Ufer ground.
 - 4. Lightning protection system.
 - 5. Metal water service pipe.
 - 6. Plate electrode.
- B. Ground Rods: Install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes.
 - 1. Verify that final backfill and compaction has been complete before driving ground rods.
 - 2. Drive ground rods until tops are 2 inches (50 mm) below finished floor or final grade, unless otherwise indicated.
 - 3. Interconnect ground rods with grounding electrode conductors. Use exothermic welds, except at test wells and as otherwise indicated. Make connections without exposing steel or damaging copper coating.

C. Counterpoise Ground:

- 1. Ground the steel framework of the building with a driven ground rod at the base of every corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart.
- 2. Provide a grounding conductor (counterpoise), electrically connected to each ground rod and to each steel column, extending around the perimeter of the building. Use conductors not less than No. 2/0 AWG for counterpoise and for tap to building steel. Bury counterpoise not less than 18 inches (450 mm) below grade and 24 inches (600 mm) from building foundation.

- D. Ufer Ground (Concrete-Encased Grounding Electrode): Fabricate according to NFPA 70, Paragraph 250-81(c):
 - 1. Provide a minimum of 20 feet (6 m) of bare copper conductor not smaller than No. 4 AWG. If concrete foundation is less than 20 feet (6 m) long, coil excess conductor within the base of the foundation.
 - 2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts.
 - 3. Extend grounding conductor below grade and connect to building grounding grid or to a grounding electrode external to concrete.
- E. Common Ground Bonding with Lightning Protection System: Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor. Install in conduit where routed above grade.
- F. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage. Install in conduit where routed above grade.
- G. Bonding Straps and Jumpers: Install so vibration by equipment mounted on vibration isolation hangers and supports is not transmitted to rigidly mounted equipment. Use exothermic-welded connectors for outdoor locations, unless a disconnect-type connection is required; then, use a bolted clamp. Bond straps directly to the basic structure taking care not to penetrate any adjacent parts. Install straps only in locations accessible for maintenance.
- H. Metal Water Service Pipe: Provide insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building.
 Connect grounding conductors to main metal water service pipes by grounding clamp connectors.
 Where a dielectric main water fitting is installed, connect grounding conductor to street side of fitting.
 Bond metal grounding conductor conduit or sleeve to conductor at each end.
- I. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with grounding clamp connectors.
- J. Bond each aboveground portion of gas piping system upstream from equipment shutoff valve.
- K. Bond interior metal piping systems and metal air ducts to equipment grounding conductors of associated pumps, fans, blowers, electric heaters, and air cleaners. Use braided-type bonding straps.
- L. Separately Derived AC Power Systems: Ground separately-derived ac power system neutrals including distribution transformers to grounding electrodes per NFPA 70.
- M. Packaged Engine Generator: Solidly ground the packaged engine generator neutral to the normal power source neutral. Do not ground the generator neutral to a separate grounding electrode.
- N. Install one test well for each service at the ground rod electrically closest to the service entrance. Set top of well flush with finished grade or floor.
- O. Grounding Bus:
 - 1. Install grounding bus in the locations listed below and elsewhere as indicated:
 - a. Electrical equipment rooms.

- b. Telephone equipment rooms.
- c. Rooms housing service equipment.
- 2. Use insulated spacer; space 1 inch (25.4 mm) from wall and support from wall 6 inches (150 mm) above finished floor, unless otherwise indicated.
- P. Equipment Grounding: Provide a permanent and continuous bonding of conductor enclosures, equipment frames, power distribution equipment ground busses, cable trays, metallic raceways, and other non-current carrying metallic parts of the electrical system.
- Q. Access Floor Pedestal Ground: Ground access floor pedestals where indicated.
 - 1. Provide access floor pedestal ground plate where indicated.
 - a. Provide ½ inch (12 mm) thick x 4 inches (102 mm) wide x 12 inches (305 mm) long, soft copper bar, bolted construction with minimum six 3/8 inch (10 mm) diameter drilled holes 1 ½ inches (38 mm) on center.
 - b. Provide cadmium plated bolts, nuts and screws.
 - c. Mount plate on 3/4 inch (19 mm) plywood with 2 inch (50 mm) wood spacers.
 - 2. Provide No. 2 AWG insulated ground conductor from pedestal to pedestal ground plate or building steel.
 - 3. Provide No. 2 AWG insulated ground conductor from pedestal ground plate to building steel.
 - 4. Tie wrap ground conductor as close to concrete floor as possible at every other pedestal.
 - 5. Clean all pedestals prior to welding.
- R. Access Floor Ground Grid: Install ground grid under access floors where indicated.
 - 1. Construct grid of No. 2 AWG bare copper wire installed on 24 inch centers both ways.
 - 2. Bond each access floor pedestal to grid.
- S. Bond together each metallic raceway, pipe, duct and other metal object entering space under access floors. Bond to underfloor ground grid. Bond to pedestal ground plate or Bond to building steel. Use No. 2 AWG bare copper conductor.
- T. Provide grounding and bonding in patient care areas to meet requirements of NFPA 99 and ANSI/NFPA 70.
- U. Bond together metal siding not attached to grounded structure; bond to ground.
- V. Pool Structures: Provide a common bonding grid with a solid copper conductor not smaller than No. 8 AWG. Bond together the following:
 - 1. All metallic parts of the pool or fountain structure, including reinforcing steel of the pool or fountain shell, coping stones, and deck.
 - 2. All forming shells and mounting brackets of no-niche luminaries.
 - 3. All metal fittings within or attached to the pool or fountain structure that are greater than 4 inches (100 mm) in any dimension and penetrate the pool or fountain structure more than one inch (25 mm).

- 4. Metal parts of electrical equipment associated with the pool or fountain water circulating system, including pump motors and metal parts of equipment associated with pool covers, including electric motors.
- 5. Metal sheathed cables and raceways, metal piping, and all fixed metal parts including fences, awnings, door and window frames, except those separated from the pool or fountain by a permanent barrier shall be bonded that are within the following distances of the pool:
 - a. Within 5 feet (1.5 m) horizontally of the inside walls of the pool.
 - b. Within 12 feet (3.7 m) measured vertically above the maximum water level of the pool, or any observation stands, towers, or platforms, or any diving structure.
- W. Provide a flexible braid bonding jumper at each set of columns at expansion joints.

3.4 UNDERGROUND DISTRIBUTION SYSTEM GROUNDING

- A. Manholes and Handholes: Install a driven ground rod close to wall, inside manhole, and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide a No. 1/0 AWG conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.
- B. Connections to Manhole Components: Connect all exposed-metal parts, such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields as recommended by manufacturer of splicing and termination kits.
- C. Pad-Mounted Transformers and Switches: Install two ground rods and counterpoise circling pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with transformers/substations by connecting them to underground cable and grounding electrodes. Use not less than a No. 2 AWG conductor for counterpoise and for taps to equipment ground pad. Bury counterpoise not less than 18 inches (450 mm) below grade and 6 inches (150 mm) from the foundation.

3.5 TELECOMMUNICATIONS GROUNDING

- A. Telecommunications Grounding System: The telecommunications grounding system shall consist of:
 - 1. Telecommunications Main Grounding Busbar (TMGB) located in the main telecommunications room near the telecommunications service entrance. Bond to the main building electrical grounding electrode system via a No. 3/0 AWG copper ground conductor.
 - 2. A Telecommunications Grounding Busbar (TGB) in each telecommunications room, cabinets, etc.
 - 3. A Telecommunications Bonding Backbone (TBB) tying together the TMGB and each TGB.
 - 4. Bonding of all equipment racks, raceways, non-current carrying metallic equipment and surge protection devices within the telecommunications room to the TGB's or TMGB using approved bonding conductors. Each piece of equipment shall be bonded individually directly to the ground bus.
- B. All bonding connections shall be installed at an accessible location for inspection and maintenance.

- C. All telecommunications bonding connections shall be of an approved mechanical type connection. Do not use exothermic welds unless specifically indicated on the Drawings.
- D. The physical routing shall, in general, follow the same path as the backbone cable system.
- E. Bond each TGB directly to the building steel with a No. 6 AWG conductor.
- F. Do not use TGB's as a power system ground connection unless specifically noted on the Drawings.
- G. All bonding connectors and conductors shall be UL listed for the purpose intended.
- H. Mount TMGB and TGB bus to backboard or wall using 2" standoff insulators.
- I. Individually bond each piece of non-current carrying metallic equipment in the Telecommunications Room to the TGB.
- J. Install continuous cable from the TMGB to the furthest TGB. Bond all TGB's to TBB with bare No. 6 AWG copper ground conductor and T-tap grounding hardware.

3.6 FIELD QUALITY CONTROL

- A. Testing: Perform the following field quality control tests in accordance with Division 26 section "Electrical Testing"
 - 1. Inspect grounding and bonding system conductors and connections for tightness and proper installation and for compliance with the Drawings and Specifications.
 - 2. After installing grounding system but before permanent electrical circuitry has been energized, test for compliance with requirements.
 - a. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal.
 - b. Measure ground resistance not less than two full days after the last trace of precipitation, and without the soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - c. Perform tests, by the fall-of-potential method according to IEEE 81. Instrumentation utilized shall be as defined in Section 12 of IEEE 81 and shall be specifically designed for ground impedance testing. Provide sufficient spacing so that curves flatten in the 62% area of the distance between the item under test and the current electrode.
 - d. Perform ground-impedance measurements utilizing either the intersecting curves method of the slope method. (Ref. Nos. 40 and 41 in IEEE Std. 81).
 - e. Equipment Grounds: Utilize two-point method of IEEE 81. Measure between equipment ground being testing and known low-impedance grounding electrode or system.
 - 3. Provide drawings locating each ground rod and ground rod assembly and other grounding electrodes, identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
 - a. Equipment Rated 500 kVA and Less: 10 ohms.
 - b. Equipment Rated 500 to 1000 kVA: 5 ohms.
 - c. Equipment Rated More Than 1000 kVA: 3 ohms.
 - d. Substations and Pad-Mounted Switching Equipment: 5 ohms.

- e. Manhole Grounds: 10 ohms.
- f. The telecommunications grounding system shall have a maximum resistance of 1 ohm as measured from the TMGB ground to earth ground.
- 4. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1-	- GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	SUMMARY	
1.3	DEFINITIONS	
1.4	PERFORMANCE REQUIREMENTS	
1.5	SUBMITTALS	
1.6	QUALITY ASSURANCE	
1.7	COORDINATION	2
PART 2 -	PRODUCTS	2
2.1	SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS	
2.2	FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES	4
PART 3 -	- EXECUTION	5
3.1	APPLICATION	
3.2	SUPPORT INSTALLATION	5
	INSTALLATION OF FABRICATED METAL SUPPORTS	
3.4	CONCRETE BASES	6
3.5	PAINTING	7
	CENEDAL	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. IMC: Intermediate metal conduit.
- C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

- C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel slotted support systems.
 - 2. Nonmetallic slotted support systems.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze hangers. Include Product Data for components.
 - 2. Steel slotted channel systems. Include Product Data for components.
 - 3. Nonmetallic slotted channel systems. Include Product Data for components.
 - 4. Equipment supports.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Comply with NFPA 70.

1.7 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 7 Section "Roof Accessories."

PART 2 - PRODUCTS

- 2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS
 - A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Allied Tube & Conduit.
- b. Cooper B-Line, Inc.; a division of Cooper Industries.
- c. ERICO International Corporation.
- d. GS Metals Corp.
- e. Thomas & Betts Corporation.
- f. Unistrut; Tyco International, Ltd.
- g. Wesanco, Inc.
- 3. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
- 4. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
- 5. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
- 6. Channel Dimensions: Selected for applicable load criteria.
- B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch- (14-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c., in at least 1 surface.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - c. Fabco Plastics Wholesale Limited.
 - d. Seasafe, Inc.
 - 3. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.
 - 4. Fitting and Accessory Materials: Same as channels and angles.
 - 5. Rated Strength: Selected to suit applicable load criteria.
- C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- D. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

- G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - Available Manufacturers: Subject to compliance with requirements, manufacturers
 offering products that may be incorporated into the Work include, but are not limited to,
 the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel or stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 - Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 6. Toggle Bolts: All-steel springhead type.
 - 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Division 5 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with single-bolt conduit clamps using spring friction action for retention in support channel.
- D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.
- E. Support all electrical items independently of supports provided by the other trades.
- F. Support conduits and boxes using steel conduit straps or 1/4-inch minimum diameter threaded rod hangers. Suspended ceiling hangers or hanger wire shall not be used (except to support flexible metallic conduit and manufactured wiring systems).
- G. Support cable trays with support brackets or 3/8" diameter minimum threaded rod hangers at intervals not exceeding 8'-0" for straight runs. Additional supports shall be provided at tray fittings.
- H. Hangers shall be of sufficient strength that their deflection at mid span does not exceed 1/240 of the hanger span length after the cables are installed.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.

- 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
- 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
- 7. To Light Steel: Sheet metal screws.
- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.
- D. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.
- E. Do not fasten supports to pipes, ducts, mechanical equipment, and conduit.
- F. Obtain permission from Architect/Engineer before using powder-actuated anchors.
- G. Obtain permission from Architect/Engineer before drilling or cutting structural members.
- H. Fabricate supports from structural steel or steel channel. Rigidly weld members or use hexagon head bolts to present neat appearance with adequate strength and rigidity. Use spring lock washers under all nuts.
- I. Install surface-mounted cabinets and panelboards with minimum of four anchors.
- J. In wet and damp locations use steel channel supports to stand cabinets and panelboards one inch (25 mm) off wall.
- K. Use sheet metal channel to bridge studs above and below cabinets and panelboards recessed in hollow partitions.
- L. The Contractor shall replace all supports and channels that sag, twist, and/or show signs of not providing proper structural support, to the equipment, it is intended for, as determined by the Owner and Architect/Engineer. All costs associated with replacing supports and steel channels shall be incurred by the Contractor.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Division 5 Section "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Provide concrete bases for all floor mounted electrical equipment.
- B. Provide concrete bases for all exterior, grade level electrical equipment, and where indicated.

C. Base/Pad Construction:

- 1. Construct per manufacturer's recommendations for particular equipment, including suggested piers and dowel rods.
- 2. Construct concrete bases for primary and secondary power distribution equipment per requirements of the electrical utility, where submitted for its review.
- D. Anchor equipment to base per both supports and equipment manufacturer's instructions.
- E. Coordinate conduit openings and sleeve locations in base with requirements of equipment to be supported.
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around full perimeter of the base.
 - 2. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION

PACEWAYS AND BOXES

1.1 1.2 1.3 1.4 1.5	GENERAL RELATED DOCUMENTS SUMMARY DEFINITIONS SUBMITTALS QUALITY ASSURANCE COORDINATION	1 1 2 2
PART 2 - 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	PRODUCTS MANUFACTURERS METAL CONDUIT AND TUBING FIRE ALARM EMT NONMETALLIC CONDUIT AND TUBING METAL WIREWAYS NONMETALLIC WIREWAYS SURFACE RACEWAYS BOXES, ENCLOSURES, AND CABINETS FACTORY FINISHES	2 3 3 4 5 5 5
3.1 3.2 3.3	EXECUTION RACEWAY APPLICATION INSTALLATION PROTECTION CLEANING	6 7 10
PART 1 -	GENERAL	
1.1	RELATED DOCUMENTS	

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 **SUMMARY**

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - Division 26 Section, "Basic Electrical Materials and Methods" for exterior ductbanks, 1. manholes, and underground utility construction.
 - 2. Division 7 Section, "Through-Penetration Firestop Systems"
 - 3. Division 26 Section "Wiring Devices" for devices installed in boxes and for floor-box service fittings, and for access floor boxes and service poles.

1.3 **DEFINITIONS**

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. FMC: Flexible metal conduit.
- D. IMC: Intermediate metal conduit.

- E. LFMC: Liquidtight flexible metal conduit.
- F. LFNC: Liquidtight flexible nonmetallic conduit.
- G. RNC: Rigid nonmetallic conduit.
- H. PVC: Polyvinyl Chloride.
- I. HDPE: High Density Polyethylene.

1.4 SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Manufacturer Seismic Qualification Certification: Submit certification that enclosures, cabinets, accessories, and components will withstand seismic forces defined in Division 26 Section "Electrical Supports and Seismic Restraints." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.
- C. All work in natatorium/pool area shall be in accordance with N.E.C. article 680, "Swimming Pools, Fountains, and Similar Installations."

1.6 COORDINATION

A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 METAL CONDUIT AND TUBING

- A. Manufacturers:
 - 1. AFC Cable Systems, Inc.
 - 2. Alflex Inc.
 - 3. Allied Tube Triangle Century.
 - 4. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 5. International Metal Hose.
 - 6. Electri-Flex Co
 - 7. Grinnell Co./Tyco International; Allied Tube and Conduit Div.
 - 8. LTV Steel Tubular Products Company Manhattan/CDT/Cole-Flex.
 - 9. Mayerick.
 - 10. O-Z Gedney; unit of General Signal.
 - 11. Wheatland.
- B. Rigid Steel Conduit: ANSI C80.1.
- C. IMC: ANSI C80.6.
- D. EMT and Fittings: ANSI C80.3.
 - 1. Fittings: Steel set-screw type.
- E. LFMC: Flexible steel conduit with PVC jacket.
- F. Fittings: NEMA FB 1; compatible with conduit and tubing materials.
- 2.3 FIRE ALARM EMT
 - A. Manufacturers:
 - 1. Allied Tube Triangle Century.
 - B. EMT conduit with bright red topcoat; Fire Alarm EMT.
 - C. EMT and Fittings: ANSI C80.3.
- 2.4 NONMETALLIC CONDUIT AND TUBING
 - A. Manufacturers:
 - 1. American International.

- 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
- 3. Arnco Corp.
- 4. Cantex Inc.
- 5. Certainteed Corp.; Pipe and Plastics Group.
- 6. Condux International.
- 7. ElecSys, Inc.
- 8. Electri-Flex Co.
- 9. Integral.
- 10. Kor-Kap.
- 11. Lamson and Sessions: Carlon Electrical Products.
- 12. Manhattan/CDT/Cole-Flex.
- 13. RACO; Division of Hubbell, Inc.
- 14. Scepter.
- 15. Spiralduct, Inc./AFC Cable Systems, Inc.
- 16. Thomas & Betts Corporation.
- B. ENT: NEMA TC 13.
- C. RNC: NEMA TC 2, Schedule 40 and Schedule 80 PVC.
- D. ENT and RNC Fittings: NEMA TC 3; match to conduit or tubing type and material.
- E. LFNC: UL 1660.
- F. HDPE: UL 651, ASTM D 3350, ASTM D 1248 Schedule 40.
- 2.5 METAL WIREWAYS
 - A. Manufacturers:
 - 1. Hoffman.
 - 2. Square D.
 - B. Material and Construction: Sheet metal sized and shaped as indicated, NEMA 1.
 - C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
 - D. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.

- E. Wireway Covers: Hinged type.
- F. Finish: Manufacturer's standard enamel finish.

2.6 NONMETALLIC WIREWAYS

- A. Manufacturers:
 - 1. Hoffman.
 - 2. Lamson & Sessions; Carlon Electrical Products.
- B. Description: Fiberglass polyester, extruded and fabricated to size and shape indicated, with no holes or knockouts. Cover is gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections are flanged, with stainless-steel screws and oil-resistant gaskets.
- C. Description: PVC plastic, extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners.
- D. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- E. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.

2.7 SURFACE RACEWAYS

- A. Surface raceway (Wiremold ivory color) shall be used in finished areas. Do not use EMT conduit in finished areas unless directed by the Architect.
- B. Surface Metal Raceways: Galvanized steel with snap-on covers. Finish with manufacturer's standard prime coating and ivory finish.
 - 1. Manufacturers:
 - a. Airey-Thompson Sentinel Lighting: Wiremold Company (The).
 - b. Walker Systems, Inc.; Wiremold Company (The).
 - c. Wiremold Company (The); Electrical Sales Division.
- C. Types, sizes, and channels as indicated and required for each application, with fittings that match and mate with raceways.
- 2.8 BOXES, ENCLOSURES, AND CABINETS
 - A. Sheet Metal Outlet and Device Boxes: NEMA OS 1. Shall be used within walls or ceiling.
 - B. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover. Shall be used in all exposed, non-recessed, locations.
 - C. Nonmetallic Outlet and Device Boxes: NEMA OS 2. Shall be used in corrosive areas.
 - D. Floor Boxes: Cast metal, fully adjustable, rectangular.
 - E. Floor Boxes: Nonmetallic, nonadjustable, round.

- F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- G. Cast-Metal Pull and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover. Shall be used in areas exposed to water.
- H. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous hinge cover and flush latch.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
- I. Cabinets: NEMA 250, Type 1, galvanized steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel. Hinged door in front cover with flush latch and concealed hinge. Key latch to match panelboards. Include metal barriers to separate wiring of different systems and voltage and include accessory feet where required for freestanding equipment.

2.9 FACTORY FINISHES

- A. Finish: For raceway, enclosure, or cabinet components, provide manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: For raceway, enclosure, or cabinet components, provide manufacturer's standard paint applied to factory-assembled surface raceways, enclosures, and cabinets before shipping.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors Applications:
 - 1. Exposed: Rigid steel or IMC.
 - 2. Concealed: Rigid steel or IMC.
 - 3. Underground, Single Run: RNC.
 - 4. Underground, Grouped: RNC.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 6. Boxes and Enclosures: NEMA 250, Type 3R.

B. Indoor Applications:

- 1. Exposed, Not Subject to Physical Damage in non-finished areas: EMT.
- 2. Exposed, Not Subject to Severe Physical Damage in non-finished areas: EMT.
- 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit up to 10'-0" above finished floor. Includes raceways in the following locations:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
- 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.

- 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
- 6. Damp or Wet Locations: IMC.
- 7. Raceways Embedded in Concrete Above Grade: EMT or Rigid Steel.
- 8. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: EMT.
- 9. Raceways for Optical Fiber or Communications Cable Risers in Vertical Shafts: EMT.
- Raceways for Concealed General Purpose Distribution of Optical Fiber or Communications Cable: EMT.
- 11. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 - 2. Rigid Steel Conduits: Use only fittings approved for use with that material.
 - 3. EMT Conduits: Use steel set-screw fittings.
- E. Do not install aluminum conduits embedded in or in contact with concrete.

3.2 INSTALLATION

- A. Install conduit in accordance with NECA "National Electrical Installation Standards".
- B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."
- E. Install temporary closures to prevent foreign matter from entering raceways.
- F. Protect stub-ups from damage where conduits rise through floor slabs. Arrange so curved portions of bends are not visible above the finished slab.
- G. Make bends and offsets so ID is not reduced. Keep legs of bends in the same plane and keep straight legs of offsets parallel, unless otherwise indicated.
- H. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
 - 1. Install concealed raceways with a minimum of bends in the shortest practical distance, considering type of building construction and obstructions, unless otherwise indicated.

- I. Raceways Embedded in Slabs:
 - 1. Raceways embedded in slabs shall be limited to above grade concrete decks. Embedded conduit shall be limited to servicing floor boxes and equipment located in open spaces away from accessible walls.
 - 2. Install in middle 1/3 of slab thickness where practical and leave at least 2 inches (50 mm) of concrete cover.
 - 3. Secure raceways to reinforcing rods to prevent sagging or shifting during concrete placement.
 - 4. Space raceways laterally to prevent voids in concrete.
 - 5. Run conduit larger than 1-inch trade size (DN 27) parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 - 6. Conduits shall run flat. Do not allow conduits to cross.
- J. Raceways installed under slab on grade: Use Schedule 40 nonmetallic conduit with rigid steel conduit sweeps, route conduits a minimum of 6" below bottom of slab.
- K. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.
 - 1. Run parallel or banked raceways together on common supports.
 - 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.
- L. Join raceways with fittings designed and approved for that purpose and make joints tight.
 - 1. Use insulating bushings to protect conductors.
- M. Tighten set screws of threadless fittings with suitable tools.
- N. Terminations:
 - 1. Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against box. Use two locknuts, one inside and one outside box.
 - 2. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.
- O. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.
- P. Provide pull string and 25% spare capacity in every branch circuit conduit.
- Q. Telephone and Signal System Raceways, 2-Inch Trade Size (DN 53) and Smaller: In addition to above requirements, install raceways in maximum lengths of 150 feet (45 m) and with a maximum of two 90-degree bends or equivalent. Separate lengths with pull or junction boxes where necessary to comply with these requirements.

- 1. Electrical condulet (LB's) are not permitted.
- 2. Conduits shall have no more than two 90 degree bends between pull points or pull boxes.
- 3. Conduits shall contain no continuous sections longer than 100 ft. without a pull point/box.
- 4. The bend radius of conduit must be at least 6 times the internal diameter for a conduit 2 inches or less and a radius of 10 times the diameter for a conduit greater than two inches.
- 5. All conduit ends shall have an insulated bushing.
- R. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with UL-listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.
- S. Stub-up Connections: Extend conduits through concrete floor for connection to freestanding equipment. Install with an adjustable top or coupling threaded inside for plugs set flush with finished floor. Extend conductors to equipment with rigid steel conduit; FMC may be used 6 inches (150 mm) above the floor. Install screwdriver-operated, threaded plugs flush with floor for future equipment connections.
- T. Flexible Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for all motors. Use LFMC in damp or wet locations. Install separate ground conductor across flexible connections.
- U. Surface Raceways: Install a separate, green, ground conductor in raceways from junction box supplying raceways to receptacle or fixture ground terminals.
- V. Set floor boxes level and flush with finished floor surface.
- W. Set floor boxes level. Trim after installation to fit flush with finished floor surface.
- X. Install hinged-cover enclosures and cabinets plumb. Support at each corner.
- Y. Do not route feeders across roof.
- Z. Provide a pull box (a handhole for outdoor applications) for each conduit run that exceeds 250 feet. Provide two pull boxes (handholes for outdoor applications) for runs that exceed 500 feet.
- AA. Conduit run in natatorium/pool area shall be EMT with compression fittings, and painted by the painting contractor (corrosion treatment paint per Architect's requirements).
- BB. Provide bonding of the pool structure/equipment per N.E.C. article 680-22. Coordinate with the pool contractor.
- CC. Route conduits in finished areas with exposed ceilings at underside of structural deck or as high as possible.
- DD. Conduits that route through, to, or from a hazardous classified space (Class I or II) shall have proper seal offs when exiting or entering the hazardous classified space.

- EE. Outlet boxes within hazardous locations shall be of the proper class and division as noted in the N.E.C.
- FF. Offset outlet boxes on opposite sides of common walls to prevent sound transmission between adjoining rooms.
- GG. Firestop raceways passing through rated walls and floors in accordance with Division 07 specifications. See architectural drawings for locations of rated assemblies.

3.3 PROTECTION

- A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.4 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes.

END OF SECTION

ELECTRICAL IDENTIFICATION

PART 1 - 1.1 1.2 1.3 1.4 1.5	GENERAL RELATED DOCUMENTS SUMMARY SUBMITTALS QUALITY ASSURANCE COORDINATION	. 1 . 1 . 1
PART 2 - 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	PRODUCTS RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS CONDUCTOR, COMMUNICATION AND CONTROL CABLE IDENTIFICATION MATERIALS UNDERGROUND-LINE WARNING TAPE WARNING LABELS AND SIGNS INSTRUCTION SIGNS EQUIPMENT IDENTIFICATION LABELS MISCELLANEOUS IDENTIFICATION PRODUCTS. WIRING DEVICE IDENTIFICATION	2 3 3 4 4
3.1 3.2	- EXECUTIONAPPLICATIONINSTALLATION	. 4
	- GENERAL	

1.1 RELATED DOCUMENTS

Drawings and general provisions of the Contract, including General and Supplementary Conditions A. and Division 1 Specification Sections, apply to this Section.

1.2 **SUMMARY**

- A. This Section includes the following:
 - 1. Identification for raceway and metal-clad cable.
 - 2. Identification for conductors and communication and control cable.
 - 3. Underground-line warning tape.
 - 4. Warning labels and signs.
 - 5. Instruction signs.
 - 6. Equipment identification labels.
 - 7. Miscellaneous identification products.

1.3 **SUBMITTALS**

- Product Data: For each electrical identification product indicated. A.
- Identification Schedule: An index of nomenclature of electrical equipment and system components B. used in identification signs and labels.

C. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI A13.1 and ANSI C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.145.

1.5 COORDINATION

- A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual, and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.
- B. Color for Printed Legend:
 - 1. Power Circuits: Black letters on an orange field.
 - 2. Legend: Indicate system or service and voltage, if applicable.
- C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
- D. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- E. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- F. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.
- 2.2 CONDUCTOR, COMMUNICATION AND CONTROL CABLE IDENTIFICATION MATERIALS
 - A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

- B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
- C. Aluminum Wraparound Marker Labels: Cut from 0.014-inch- thick aluminum sheet, with stamped, embossed, or scribed legend, and fitted with tabs and matching slots for permanently securing around wire or cable jacket or around groups of conductors.
- D. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking nylon tie fastener.
- E. Write-On Tags: Polyester tag, 0.010 inch thick, with corrosion-resistant grommet and polyester or nylon tie for attachment to conductor or cable.
 - Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.

2.3 UNDERGROUND-LINE WARNING TAPE

- A. Description: Permanent, bright-colored, continuous-printed, polyethylene tape.
 - 1. Not less than 6 inches wide by 4 mils thick.
 - 2. Compounded for permanent direct-burial service.
 - 3. Embedded continuous metallic strip or core.
 - 4. Printed legend shall indicate type of underground line.

2.4 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Self-Adhesive Warning Labels: Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated.
- C. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch grommets in corners for mounting. Nominal size, 7 by 10 inches.
- D. Metal-Backed, Butyrate Warning Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch grommets in corners for mounting. Nominal size, 10 by 14 inches.
- E. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.5 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. in. and 1/8 inch thick for larger sizes.

- 1. Engraved legend with black letters on white face.
- 2. Punched or drilled for mechanical fasteners.
- 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.6 EQUIPMENT IDENTIFICATION LABELS

- A. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. Black letters on a white background. Minimum letter height shall be 3/8 inch.
- B. Outdoor Equipment Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength: 50 lb, minimum.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- B. Paint: Paint materials and application requirements are specified in Division 9 painting Sections.
- C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

2.8 WIRING DEVICE IDENTIFICATION

A. Description: Self adhesive label with black upper case letters on clear polyester label, font size 7.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Raceways and Duct Banks More Than 600 V Concealed within Buildings: 4-inch- wide black stripes on 10-inch centers over orange background that extends full length of raceway or duct and is 12 inches wide. Stencil legend "DANGER CONCEALED HIGH VOLTAGE WIRING" with 3-inch- high black letters on 20-inch centers. Stop stripes at legends. Apply to the following finished surfaces:
 - 1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
 - 2. Wall surfaces directly external to raceways concealed within wall.
 - 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.
- B. Accessible Raceways and Metal-Clad Cables More Than 600 V: Identify with "DANGER-HIGH VOLTAGE" in black letters at least 2 inches high, with self-adhesive vinyl labels. Repeat legend at 10-foot maximum intervals.

- C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 400 A: Identify with orange self-adhesive vinyl label.
- D. Accessible Raceways and Cables of Auxiliary Systems: Identify the following systems with color-coded, self-adhesive vinyl tape applied in bands:
 - 1. Fire Alarm System: Red.
 - 2. Fire-Suppression Supervisory and Control System: Red and yellow.
 - 3. Combined Fire Alarm and Security System: Red and blue.
 - 4. Security System: Blue and yellow.
 - 5. Mechanical and Electrical Supervisory System: Green and blue.
 - 6. Telecommunication System: Green and yellow.
 - 7. Control Wiring: Green and red.
- E. Power-Circuit Conductor Identification: For primary conductors No. 1/0 AWG and larger in vaults, pull and junction boxes, manholes, and handholes use metal tags. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.
- F. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use color-coding conductor tape. Identify each ungrounded conductor according to source and circuit number as indicated on Drawings. Identify control circuits by control wire number as indicated on shop drawings.
- G. Branch-Circuit Conductor Identification: Mark junction box covers in indelible ink with the panel and breaker numbers of other circuits contained within.
- H. Conductor Identification: Locate at each conductor at panelboard gutters, pull boxes, outlet and junction boxes, and each load connection or termination point.
- I. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, signal, sound, intercommunications, voice, and data connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and Operation and Maintenance Manual.
- J. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable. Install underground-line warning tape for both direct-buried cables and cables in raceway.
- K. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply baked-enamel warning signs. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access.

- 1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following:
 - a. Power transfer switches.
 - b. Controls with external control power connections.
- 2. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.
- L. Provide a 3" by 5" yellow "Warning Arc Flash Hazard" label on the outside of panels in 'occupant areas' Brady Type 99454 or equivalent from another manufacturer. Center the label horizontally and vertically on outside of door.
- M. Provide a 4" by 6"'red "Danger Arc Flash and Shock Hazard" label on the outside of panels in areas open only to 'qualified personnel', and on the inside panel door of panels in 'occupant areas' Brady Type 99459. Center label on gutter areas of distribution panels, centered above or below the directory of panels, and otherwise centered in other applications. In all cases, label will be no lower than 48" or above 84" AFF
- N. Instruction Signs:
 - 1. Operating Instructions: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
 - 2. Emergency Operating Instructions: Install instruction signs with white legend on a red background with minimum 3/8-inch- high letters for emergency instructions at equipment used for power transfer or load shedding.
- O. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Mechanically secured, Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where 2 lines of text are required, use labels 2 inches (50 mm) high. Labels shall be 2 1/2" high x 4 1/2" wide. Provide 3 lines of text. Line one shall have 1/2" letters spaced 1/2" down from top of label. Lines 2 and 3 shall have 1/4" letters. Each line shall be spaced 1/4" apart.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - 2. Equipment to Be Labeled:
 - Panelboards, electrical cabinets, and enclosures.
 - b. Access doors and panels for concealed electrical items.
 - c. Electrical switchgear and switchboards.
 - d. Transformers.

- e. Emergency system boxes and enclosures.
- f. Motor-control centers.
- g. Disconnect switches.
- h. Enclosed circuit breakers.
- i. Motor starters.
- j. Push-button stations.
- k. Power transfer equipment.
- Contactors.
- m. Remote-controlled switches, dimmer modules, and control devices.
- n. Intercommunication and call system master and staff stations.
- o. Fire-alarm control panel and annunciators.
- p. Breakers at distribution panels.
- P. Wiring Device Identification Labels: On each faceplate install circuit designation label that is consistent with panelboard directories, and as-built plan drawings. Apply labels to receptacle faceplates centered below bottom outlet. Apply labels to toggle switch faceplates on backside.

3.2 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location:
 - 1. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
 - 2. Conduit Markers: Provide identification for each power conduit two inches or larger.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.
- E. System Identification Color Banding for Raceways and Cables: Each color band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- F. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 - Color shall be factory applied or, for sizes larger than No. 10 AWG if authorities having jurisdiction permit, field applied.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - d. Neutral: White.
 - e. Ground: Green.
 - 3. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.

- c. Phase C: Yellow.d. Neutral: Gray.
- e. Ground: Green.
- 4. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- G. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- H. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench exceeds 16 inches overall.
- I. Label information arrangement for 3 lines of text.
 - 1. Line one shall describe the panel or equipment. Line one example: "DP-XX," RP-XX," "T-XX," "EF-XX," etc.
 - 2. Line two shall describe the first disconnecting means feeding this panel or equipment. Line two example: "Fed from DP-XX," "Fed from RP-XX," etc.
 - 3. Line three indicates that location of the disconnecting means as identified in line two. Line three example: "First Floor Elect. Rm #XXX."
 - 4. Line four shall include "Via T-XX" when panel or equipment is fed from a transformer.
- J. Examples:

Ī	RP-1A	EF-1	LP-1A
	FED FROM	FED FROM	FED from
	PP-2	PP-1	MDP
	ELECTRICAL	MECHANICAL	ELECTRICAL
	ROOM A100	ROOM F101	ROOM A100
	VIA T-1A		

- K. Painted Identification: Prepare surface and apply paint according to Division 9 painting Sections.
- L. Degrease and clean surface to receive nameplates.
- M. Install nameplate and labels parallel to equipment lines.
- N. Secure nameplate to equipment front using screws.
- O. Secure nameplate to inside surface of door on panelboard that is recessed in finished locations.
- P. Identify conduit using field painting where required.
- Q. Paint red colored band on each fire alarm conduit and junction box.
- R. Paint bands 10 feet on center, and 4 inches minimum in width.
- S. Labels shall be neatly centered. Place labels in like positions on similar equipment.

END OF SECTION

OVERCURRENT PROTECTIVE DEVICE COORDINATION AND ARC FLASH STUDY

PART 1-	- GENERAL	
1.1	RELATED DOCUMENTS	
1.2	SCOPE	. 1
1.3	REFERENCES	
1.4	SUBMITTALS FOR REVIEW/APPROVAL	
1.5	SUBMITTALS FOR CONSTRUCTION	
1.6	QUALIFICATIONS	
1.7	COMPUTER SOFTWARE PROGRAMS	. 3
PART 2	- PRODUCTS	. 4
2.1	STUDIES	
2.2	DATA COLLECTION	
2.3	SHORT-CIRCUIT AND PROTECTIVE DEVICE EVALUATION STUDY	. 4
2.4	PROTECTIVE DEVICE COORDINATION STUDY	. 5
2.5	ARC FLASH HAZARD ANALYSIS	6
2.6	REPORT SECTIONS	. 7
PART 3	- EXECUTION	. 9
3.1	FIELD ADJUSTMENT	. 9
3.2	ARC FLASH WARNING LABELS	10

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

1.2 SCOPE

- A. The contractor shall furnish short-circuit and protective device coordination studies as prepared by the electrical equipment manufacturer.
- B. The contractor shall furnish an Arc Flash Hazard Analysis Study per the requirements set forth in NFPA 70E -Standard for Electrical Safety in the Workplace. The arc flash hazard analysis shall be performed according to the IEEE 1584 equations that are presented in NFPA70E-2004, Annex D prepared by the electrical equipment manufacturer.
- C. The scope of the studies shall include all new distribution equipment supplied by the equipment manufacturer under this contract as well as all directly affected existing distribution equipment at the customer facility.

1.3 REFERENCES

A. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

SECTION 260573 OVERCURRENT PROTECTIVE DEVICE COORDINATION AND ARC FLASH STUDY

- 1. IEEE 141 Recommended Practice for Electric Power Distribution and Coordination of Industrial and Commercial Power Systems
- 2. IEEE 242 Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
- 3. IEEE 399 Recommended Practice for Industrial and Commercial Power System Analysis
- 4. IEEE 241 Recommended Practice for Electric Power Systems in Commercial Buildings
- 5. IEEE 1015 Recommended Practice for Applying Low-Voltage Circuit Breakers Used in Industrial and Commercial Power Systems.
- 6. IEEE 1584 -Guide for Performing Arc-Flash Hazard Calculations
- B. American National Standards Institute (ANSI):
 - 1. ANSI C57.12.00 Standard General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers
 - 2. ANSI C37.13 Standard for Low Voltage AC Power Circuit Breakers Used in Enclosures
 - ANSI C37.010 Standard Application Guide for AC High Voltage Circuit Breakers Rated on a Symmetrical Current Basis
 - 4. ANSI C 37.41 Standard Design Tests for High Voltage Fuses, Distribution Enclosed Single-Pole Air Switches, Fuse Disconnecting Switches and Accessories.
- C. The National Fire Protection Association (NFPA)
 - 1. NFPA 70 -National Electrical Code, latest edition
 - 2. NFPA 70E Standard for Electrical Safety in the Workplace

1.4 SUBMITTALS FOR REVIEW/APPROVAL

A. The short-circuit and protective device coordination studies shall be submitted to the design engineer prior to receiving final approval of the distribution equipment shop drawings and/or prior to release of equipment drawings for manufacturing. If formal completion of the studies may cause delay in equipment manufacturing, approval from the engineer may be obtained for preliminary submittal of sufficient study data to ensure that the selection of device and characteristics will be satisfactory.

1.5 SUBMITTALS FOR CONSTRUCTION

A. The results of the short-circuit, protective device coordination and arc flash hazard analysis studies shall be summarized in a final report. Five (5) bound copies of the complete final report shall be

submitted. Additional copies of the short-circuit input and output data, where required, shall be provided on CD in PDF format.

- B. The report shall include the following sections:
 - 1. Executive Summary.
 - 2. Descriptions, purpose, basis and scope of the study.
 - 3. Tabulations of circuit breaker, fuse and other protective device ratings versus calculated short circuit duties.
 - 4. Protective device time versus current coordination curves, tabulations of relay and circuit breaker trip unit settings, fuse selection.
 - 5. Fault current calculations including a definition of terms and guide for interpretation of the computer printout.
 - 6. Details of the incident energy and flash protection boundary calculations.
 - 7. Recommendations for system improvements, where needed.
 - 8. One-line diagram.
- C. Arc flash labels shall be provided in hard copy and a copy of the computer analysis software viewer program is required to provide arc flash labels in electronic format.

1.6 QUALIFICATIONS

- A. The short-circuit, protective device coordination and arc flash hazard analysis studies shall be conducted under the supervision and approval of a Registered Professional Electrical Engineer skilled in performing and interpreting the power system studies.
- B. The Registered Professional Electrical Engineer shall be a full-time employee of the equipment manufacturer.
- C. The Registered Professional Electrical Engineer shall have a minimum of five (5) years of experience in performing power system studies.
- D. The equipment manufacturer shall demonstrate experience with Arc Flash Hazard Analysis by submitting names of at least ten actual arc flash hazard analysis it has performed in the past year.

1.7 COMPUTER SOFTWARE PROGRAMS

- A. Computer Software Programs: Subject to compliance with requirements, provide products by one of the following:
 - 1. EDSA Micro Corporation.

- 2. SKM Systems Analysis, Inc.
- 3. ESA Inc.
- 4. CGI CYME.
- 5. Operation Technology, Inc.

PART 2 - PRODUCTS

2.1 STUDIES

- A. Contractor to furnish short-circuit and protective device coordination studies as prepared by equipment manufacturer.
- B. The contractor shall furnish an Arc Flash Hazard Analysis Study per NFPA 70E -Standard for Electrical Safety in the Workplace, reference Article 130.3 and Annex D prepared by the equipment manufacturer.

2.2 DATA COLLECTION

- A. Contractor shall furnish all data as required by the power system studies. The Engineer performing the short-circuit, protective device coordination and arc flash hazard analysis studies shall furnish the Contractor with a listing of required data immediately after award of the contract. The Contractor shall expedite collection of the data to assure completion of the studies as required for final approval of the distribution equipment shop drawings and/or prior to the release of the equipment for manufacturing.
- B. Source combination may include present and future motors and generators.
- C. Load data utilized may include existing and proposed loads obtained from Contract Documents provided by Owner.
- D. If applicable, include fault contribution of existing motors in the study. The Contractor shall obtain required existing equipment data to satisfy the study requirements.

2.3 SHORT-CIRCUIT AND PROTECTIVE DEVICE EVALUATION STUDY

- Use actual conductor impedances if known. If unknown, use typical conductor impedances based on IEEE Standard 141-1993.
- B. Transformer design impedances shall be used when test impedances are not available.
- C. Provide the following:
 - 1. Calculation methods and assumptions

- 2. Selected base per unit quantities
- 3. One-line diagram of the system being evaluated
- 4. Source impedance data, including electric utility system and motor fault contribution characteristics
- 5. Tabulations of calculated quantities
- 6. Results, conclusions, and recommendations.
- D. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault at each:
 - 1. Electric utility's supply termination point
 - 2. Incoming switchgear
 - 3. Unit substation primary and secondary terminals
 - 4. Low voltage switchgear
 - 5. Motor control centers
 - 6. Standby generators and automatic transfer switches
 - 7. Branch circuit panelboards
 - 8. Other significant locations throughout the system.
- E. For grounded systems, provide a bolted line-to-ground fault current study for areas as defined for the three-phase bolted fault short-circuit study.
- F. Protective Device Evaluation:
 - 1. Evaluate equipment and protective devices and compare to short circuit ratings
 - 2. Adequacy of switchgear, motor control centers, and panelboard bus bars to withstand short-circuit stresses
 - 3. Notify design engineer in writing, of existing, circuit protective devices improperly rated for the calculated available fault current.

2.4 PROTECTIVE DEVICE COORDINATION STUDY

- A. Proposed protective device coordination time-current curves (TCC) shall be displayed on log-log scale graphs.
- B. Include on each TCC graph, a complete title and one-line diagram with legend identifying the specific portion of the system covered.

- C. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
- D. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
- E. Plot the following characteristics on the TCC graphs, where applicable:
 - 1. Electric utility's overcurrent protective device
 - 2. Medium voltage equipment overcurrent relays
 - 3. Medium and low voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands
 - 4. Low voltage equipment circuit breaker trip devices, including manufacturer's tolerance bands
 - Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves
 - 6. Conductor damage curves
 - 7. Ground fault protective devices, as applicable
 - 8. Pertinent motor starting characteristics and motor damage points, where applicable
 - 9. Pertinent generator short-circuit decrement curve and generator damage point
 - 10. The largest feeder circuit breaker in each motor control center and applicable panelboard.
- F. Provide adequate time margins between device characteristics such that selective operation is provided, while providing proper protection.

2.5 ARC FLASH HAZARD ANALYSIS

- A. The arc flash hazard analysis shall be performed according to the IEEE 1584 equations that are presented in NFPA70E-2004, Annex D.
- B. The flash protection boundary and the incident energy shall be calculated at all significant locations in the electrical distribution system (switchboards, switchgear, motor-control centers, panelboards, busway and splitters) where work could be performed on energized parts.
- C. The Arc-Flash Hazard Analysis shall include all significant locations in 240 volt and 208 volt systems fed from transformers equal to or greater than 125 kVA where work could be performed on energized parts.
- D. Safe working distances shall be based upon the calculated arc flash boundary considering an incident energy of 1.2 cal/cm2.

- E. When appropriate, the short circuit calculations and the clearing times of the phase overcurrent devices will be retrieved from the short-circuit and coordination study model. Ground overcurrent relays should not be taken into consideration when determining the clearing time when performing incident energy calculations
- F. The short-circuit calculations and the corresponding incident energy calculations for multiple system scenarios must be compared and the greatest incident energy must be uniquely reported for each equipment location. Calculations must be performed to represent the maximum and minimum contributions of fault current magnitude for all normal and emergency operating conditions. The minimum calculation will assume that the utility contribution is at a minimum and will assume a minimum motor contribution (all motors off). Conversely, the maximum calculation will assume a maximum contribution from the utility and will assume the maximum amount of motors to be operating. Calculations shall take into consideration the parallel operation of synchronous generators with the electric utility, where applicable.
- G. The incident energy calculations must consider the accumulation of energy over time when performing arc flash calculations on buses with multiple sources. Iterative calculations must take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators should be decremented as follows:
 - 1. Fault contribution from induction motors should not be considered beyond 3-5 cycles.
 - 2. Fault contribution from synchronous motors and generators should be decayed to match the actual decrement of each as closely as possible (e.g. contributions from permanent magnet generators will typically decay from 10 per unit to 3 per unit after 10 cycles).
- H. For each equipment location with a separately enclosed main device (where there is adequate separation between the line side terminals of the main protective device and the work location), calculations for incident energy and flash protection boundary shall include both the line and load side of the main breaker.
- I. When performing incident energy calculations on the line side of a main breaker (as required per above), the line side and load side contributions must be included in the fault calculation.
- J. Mis-coordination should be checked amongst all devices within the branch containing the immediate protective device upstream of the calculation location and the calculation should utilize the fastest device to compute the incident energy for the corresponding location.
- K. Arc Flash calculations shall be based on actual overcurrent protective device clearing time. Maximum clearing time will be capped at 2 seconds based on IEEE 1584-2002 section B.1.2. Where it is not physically possible to move outside of the flash protection boundary in less than 2 seconds during an arc flash event, a maximum clearing time based on the specific location shall be utilized.

2.6 REPORT SECTIONS

A. Input data shall include, but not be limited to the following:

- 1. Feeder input data including feeder type (cable or bus), size, length, number per phase, conduit type (magnetic or non-magnetic) and conductor material (copper or aluminum).
- 2. Transformer input data, including winding connections, secondary neutral-ground connection, primary and secondary voltage ratings, kVA rating, impedance, % taps and phase shift.
- 3. Generation contribution data, (synchronous generators and Utility), including short-circuit reactance (X"d), rated MVA, rated voltage, three-phase and single line-ground contribution (for Utility sources) and X/R ratio.
- 4. Motor contribution data (induction motors and synchronous motors), including short-circuit reactance, rated horsepower or kVA, rated voltage, and X/R ratio.
- B. Short-Circuit Output Data shall include, but not be limited to the following reports:
 - 1. Low Voltage Fault Report shall include a section for three-phase and unbalanced fault calculations and shall show the following information for each applicable location:
 - a. Voltage
 - b. Calculated fault current magnitude and angle
 - c. Fault point X/R ratio
 - d. Equivalent impedance
 - 2. Momentary Duty Report shall include a section for three-phase and unbalanced fault calculations and shall show the following information for each applicable location:
 - a. Voltage
 - b. Calculated symmetrical fault current magnitude and angle
 - c. Fault point X/R ratio
 - d. Calculated asymmetrical fault currents
 - 1) Based on fault point X/R ratio
 - 2) Based on calculated symmetrical value multiplied by 1.6
 - 3) Based on calculated symmetrical value multiplied by 2.7
 - e. Equivalent impedance
 - 3. Interrupting Duty Report shall include a section for three-phase and unbalanced fault calculations and shall show the following information for each applicable location:
 - a. Voltage
 - b. Calculated symmetrical fault current magnitude and angle
 - c. Fault point X/R ratio
 - d. No AC Decrement (NACD) Ratio
 - e. Equivalent impedance
 - f. Multiplying factors for 2, 3, 5 and 8 cycle circuit breakers rated on a symmetrical basis
 - g. Multiplying factors for 2, 3, 5 and 8 cycle circuit breakers rated on a total basis
- C. Recommended Protective Device Settings:

- 1. Phase and Ground Relays:
 - Current transformer ratio
 - b. Current setting
 - c. Time setting
 - d. Instantaneous setting
 - e. Recommendations on improved relaying systems, if applicable.
- 2. Circuit Breakers:
 - a. Adjustable pickups and time delays (long time, short time, ground)
 - b. Adjustable time-current characteristic
 - c. Adjustable instantaneous pickup
 - d. Recommendations on improved trip systems, if applicable.
- D. Incident energy and flash protection boundary calculations
 - 1. Arcing fault magnitude
 - 2. Protective device clearing time
 - 3. Duration of arc
 - 4. Arc flash boundary
 - 5. Working distance
 - Incident energy
 - 7. Hazard Risk Category
 - 8. Recommendations for arc flash energy reduction

PART 3 - EXECUTION

3.1 FIELD ADJUSTMENT

- A. The contractor shall adjust relay and protective device settings according to the recommended settings table provided by the coordination study.
- B. Make minor modifications to equipment as required to accomplish conformance with short circuit and protective device coordination studies.
- C. Notify design engineer in writing of any required major equipment modifications.

3.2 ARC FLASH WARNING LABELS

- A. The contractor shall provide a 3.5 in. x 5 in. thermal transfer type label of high adhesion polyester for each work location analyzed.
- B. All labels will be based on recommended overcurrent device settings and will be provided after the results of the analysis have been presented to the owner and after any system changes, upgrades or modifications have been incorporated in the system.
- C. The label shall include the following information, at a minimum:
 - 1. Location designation
 - 2. Nominal voltage
 - 3. Flash protection boundary
 - 4. Hazard risk category
 - 5. Incident energy
 - 6. Working distance
 - 7. Engineering report number, revision number and issue date.
- D. Labels shall be machine printed, with no field markings.
- E. Arc flash labels shall be provided in the following manner and all labels shall be based on recommended overcurrent device settings.
 - 1. For each 480 and applicable 208 volt panelboard, one arc flash label shall be provided.
 - 2. For each motor control center, one arc flash label shall be provided.
 - 3. For each low voltage switchboard, one arc flash label shall be provided.
 - 4. For each switchgear, one flash label shall be provided.
 - 5. For medium voltage switches one arc flash label shall be provided
- F. Labels shall be field installed by the contractor.

END OF SECTION

LIGHTING CONTROL DEVICES

PART 1 -	- GENERAL	1
1.1	RELATED DOCUMENTS	1
1.2	SUMMARY	1
1.3	REFERENCES	2
1.4	DEFINITIONS	2
1.5	SUBMITTALS	2
1.6	QUALITY ASSURANCE	
1.7	COORDINATION	3
1.8	DELIVERY, STORAGE, AND HANDLING	3
PART 2 -	- PRODUCTS	3
2.1	MANUFACTURERS	
2.2	GENERAL LIGHTING CONTROL DEVICE REQUIREMENTS	
2.3	OCCUPANCY SENSORS	
2.4	LIGHTING CONTACTORS	7
PART 3 -	- EXECUTION	7
3.1	LIGHTING CONTACTOR INSTALLATION	
3.2	OUTDOOR PHOTOELECTRIC CONTROL INSTALLATION	8
3.3	TIME CONTROLLER INSTALLATION	
3.4	OCCUPANCY SENSOR INSTALLATION	8
3.5	WIRING INSTALLATION	
3.6	IDENTIFICATION	9
3.7	FIELD QUALITY CONTROL	9
3.8	ADJUSTING	9

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following lighting control devices:
 - 1. Occupancy sensors.
 - 2. Lighting contactors.
- B. Related Sections include the following:
 - 1. Division 26 Section "Electrical General Requirements".
 - 2. Division 26 Section "Wiring Devices" for wall-box dimmers and manual light switches.

1.3 REFERENCES

- A. IEEE C62.41: Guide for Surge Voltages in Low-Voltage AC Power Circuits.
- B. IEEE C136.10: Standard for Roadway Lighting Equipment Locking-Type Photocontrol Devices and Mating Receptacle Physical and Electrical Interchangeability and Testing.
- C. NEMA ICS 2: Industrial Control and Systems Controllers, Contactors, and Overload Relays, Rated Not More Than 2000 Volts AC or 750 Volts DC Part 8: Disconnect Devices for Use in Industrial Control Equipment.
- D. NFPA 70: National Electrical Code.
- E. UL 486A: Wire Connectors and Soldering Lugs for Use with Copper Conductors.
- F. UL 486B: Wire Connectors for Use with Aluminum Conductors.
- G. UL 773: Plug-in, Locking Photocontrols for Use with Area Lighting.
- H. UL 773A: Nonindustrial Photoelectric Switches for Lighting Control.
- I. UL 917: Clock Operated Switches.
- J. UL 1449: Transient Voltage Surge Suppressors.
- K. UL 1598: Luminaires.
- L. NECA 130-2010: Installing and Maintaining Wiring Devices.

1.4 DEFINITIONS

- A. LED: Light-emitting diode.
- B. PIR: Passive infrared.
- C. ULTRASONIC: Active emission of at least 35 kHz sound waves, using Doppler reflectance to detect motion.
- D. MICROPHONIC: Passive reception to listen for continued occupancy, with circuitry to filter out white noise.
- E. MULTI-Tech: Using PIR and ultrasonic or microphonic technologies in one sensor.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated including physical data and electrical performance.
- B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 - 1. Lighting plan showing location, orientation, and coverage area of each sensor.

- 2. Interconnection diagrams showing field-installed wiring.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. Include the following:
 - 1. Description of operation and servicing procedures.
 - 2. List of major components.
 - 3. Recommended spare parts.
 - 4. Programming instructions and system operation procedures.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.7 COORDINATION

A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver products to the site under provisions of Division 26 Section "Electrical General Requirements".
- B. Store and protect products under provisions of Division 26 Section "Electrical General Requirements".

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2.2 GENERAL LIGHTING CONTROL DEVICE REQUIREMENTS

A. Line-Voltage Surge Protection: An integral part of the devices for 120- and 277-V solid-state equipment. For devices without integral line-voltage surge protection, field-mounting surge protection shall comply with IEEE C62.41 and with UL 1449.

2.3 OCCUPANCY SENSORS

A. General

- Coordinate occupancy sensor locations, coverages and required quantities with manufacturer's recommendations. Coverage areas indicated on the Drawings are for minor motion (6 to 8 inches of hand movement). Provide additional occupancy sensors and control units as required to achieve complete minor motion coverage of the space indicated.
- 2. Adjust occupancy sensors and test that complete minor motion coverage is obtained in accordance with Part 3. Provide written confirmation of testing to owner, architect and engineer.
- 3. Provide occupancy sensors with a bypass switch to override the "ON" function in the event of sensor failure.
- 4. Provide occupancy sensors with an LED indicator indicating when motion is being detected during testing and normal operation of the sensor.
- 5. Provide occupancy sensors and occupancy sensor control units from single manufacturer.
- B. Wall Switch Passive Infrared Occupancy Sensor
- C. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- D. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Leviton ODS15-IDW
 - 2. Description: Wall mounted, 180° coverage, passive infrared sensing occupancy sensor.
 - a. Electrical Characteristics: Capable of switching up to 800W fluorescent or incandescent lighting loads at 120V and 1200 watts fluorescent loads at 277V.
 - b. Functions: Automatic ON/Automatic OFF, or Manual ON/Automatic OFF operation, field selectable. Integral manual override pushbutton switch.
 - c. Adjustments: User adjustable sensitivity and time delay. Time delay shall be adjustable from 30 seconds to 30 minutes.
 - d. Device Body: White, plastic with momentary on/off override pushbutton designed to mount in a standard switch box with "decora" style switch plate.
 - 3. Dual Level Switching: Provide occupancy sensor capable of controlling two switch legs independently where dual level switching is indicated.

- a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Leviton ODS0D-IDW
- E. 360° Ceiling Mounted Dual Technology Occupancy Sensor
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Leviton OSC20-M0W
 - 3. Description: Ceiling mounted, 360° coverage, multi-tech sensing occupancy sensor.
 - a. Housing: White, thermoplastic, tamper resistant ceiling mount.
 - b. Functions: Automatic ON must sense motion from both ultrasonic and infrared sensing elements. Either technology shall maintain ON, with adjustable time delays.
 - c. Adjustments: User adjustable sensitivity adjustment shall be provided for each sensing technology. Time delay shall be adjustable from 15 seconds to 30 minutes.
 - d. Sensor shall operate on 24V DC power through control unit which supplies DC power to the sensor and provides relay contacts to control the lighting load and auxiliary contacts.
 - e. Manual override function.
- F. 110° Wall Mounted Dual Technology Occupancy Sensor
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Leviton OSW12-M0W
 - 3. Description: Wall mounted, 110° coverage, multi-tech occupancy sensor.
 - a. Housing: White, thermoplastic, tamper resistant with swivel bracket for wall or ceiling mounting.
 - b. Functions: Automatic ON must sense motion from both sensing elements. Either technology shall maintain ON, with adjustable time delays.
 - c. Adjustments: User adjustable sensitivity adjustment shall be provided for each sensing technology. Time delay shall be adjustable from 15 seconds to 15 minutes.
 - d. Sensor Orientation: Orient sensor in room such that sensor will not detect motion through open door which could cause false activation.
 - e. Sensor shall operate on 24V DC power through control unit which supplies DC power to the sensor and provides relay contacts to control the lighting load and auxiliary contacts.

- f. Manual override function.
- G. 360° Ceiling Mounted Ultrasonic Occupancy Sensors
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Leviton OSC20-U0W
 - 3. Description: Ceiling mounted, 360° coverage, ultrasonic or microphonics sensing occupancy sensor.
 - a. Housing: White, thermoplastic, tamper resistant.
 - b. Adjustments: Adjustments: User adjustable sensitivity and time delay. Time delay shall be adjustable from 15 seconds to 15 minutes.
 - c. Sensor shall operate on 24V DC power through control unit which supplies DC power to the sensor and provides relay contacts to control the lighting load and auxiliary contacts.
 - d. Manual override function.
- H. 360° Ceiling Mounted Passive Infrared Occupancy Sensor.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Leviton OSC15-I0W
 - 3. Description: Ceiling mounted, 360° coverage, infrared sensing occupancy sensor.
 - a. Housing: White, thermoplastic, tamper resistant ceiling mount.
 - b. Adjustments: User adjustable sensitivity adjustment shall be provided for each sensing technology. Time delay shall be adjustable from 30 seconds to 30 minutes.
 - c. Sensor shall operate on 24V DC power through control unit which supplies DC power to the sensor and provides relay contacts to control the lighting load and auxiliary contacts.
 - d. Manual override function.
- I. Occupancy Sensor Control Units: OPP20-OD1
 - 1. Description: Transformer and relay combined in single unit to provide 24DC power to sensors and provide 20A contact(s) for control of lighting loads at 120 or 277V. Control unit input power shall be from unswitched leg of lighting circuit it is controlling.
 - a. Control units shall be provided as required to power ceiling mounted occupancy sensors, control lighting loads and provide a minimum of one auxiliary contact.
 - b. Occupancy sensor control units shall mount external to 4" sq junction box in the ceiling space. Wiring between control unit and occupancy sensor shall be plenum rated.

- Locate control unit in accessible location in gyp-board ceilings, adjacent to return air grilles, or provide access panel.
- d. Additional auxiliary relay modules shall be provided as required to provide control of all lighting circuits and additional auxiliary contacts as required.
- e. It is acceptable to provide controls and auxiliary contacts as required integral to the ceiling sensor, provided all required contacts are provided.
- f. Maximum of 3 sensors per power pack. Verify exact quantities required with manufacturer.

2.4 LIGHTING CONTACTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Square D.

B. Contactor

- 1. Electrically-operated electrically-held unless otherwise indicated 600 volt, 30 ampere three pole with number of poles indicated.
- 2. Provide contacts to be 100 percent, continuously rated for all types of ballast and tungsten lighting and resistance loads without the need for in-rush current derating.
- 3. Provide NEMA type 1 enclosure unless otherwise indicated.
- 4. Provide NEMA type 1 hinged cover cabinet enclosure sized as required for contactors as indicated on drawings. Mount switches and indicating lights required on front of enclosure. Install terminal strips for connection of all external control wiring connections.
- 5. Provide solderless pressure wire terminals.
- 6. Provide corrosion-resistant primer treatment with light gray baked acrylic enamel finish.
- 7. Provide the following control and indicating devices:
 - a. Auxiliary contacts: One field convertible.
 - b. Auxiliary relay to convert maintained-contact type control circuit to momentary-contact type control circuit necessary for contactor control.
 - c. Green pilot light to indicate "power on" condition. Mount on front cover with legend plate.

PART 3 - EXECUTION

3.1 LIGHTING CONTACTOR INSTALLATION

- A. Install lighting contactors as indicated on plan. Install at accessible locations. Switch controls where provided shall be no higher than 54" or lower than 48".
- B. Demonstrate proper operation of all lighting control functions to the Owner and Engineer.

3.2 OUTDOOR PHOTOELECTRIC CONTROL INSTALLATION

- A. Mount photocell on roof or parapet to ½" GRS conduit, supported to building structure below. Coordinate roof penetration with roofing contractor.
- B. Install photoelectric control oriented in the northeast direction and not within any potential shadows.
- C. Adjust photocell sensitivity and delay to meet owner's requirements. Multiple adjustments may be required, as needed.

3.3 TIME CONTROLLER INSTALLATION

- A. Install time controller, near contactor control equipment or as indicated on plan. Install at accessible location.
- B. Program time controller as directed by the owner. Train owner in time clock programming.

3.4 OCCUPANCY SENSOR INSTALLATION

- A. Install wall mounted occupancy sensors as noted on plan. Arrange occupancy sensors with adjacent switch devices so that device plates line-up and are equally spaced.
- B. Install ceiling mounted sensors at approximate locations as indicated on plan. Sensor manufacturer shall provide quantity of sensors as required to provide complete coverage for rooms.
- C. Locate sensors such that motion through open doors will not falsely activate sensors.
- D. Do not locate ultrasonic sensors within six feet of supply air diffusers.
- E. Locate infrared sensors to avoid obstructions.
- F. Provide the services of a manufacturer's representative for commissioning of occupancy sensor installation. This shall include consultation on layout and location prior to installing sensors, testing of each sensor for compliance with Contract Documents and field adjustment and fine tuning after installation is complete. Provide written confirmation of testing to the Owner, Architect and Engineer.
- G. Field adjustments shall take place in the presence of the owner and the engineer. This shall include owner training on adjustment techniques for the occupancy sensors. The owner shall dictate the setting of the time delay in all sensors.

3.5 WIRING INSTALLATION

- A. Wiring Method: Comply with Division 26 Section "Conductors and Cables".
- B. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- C. Size conductors according to lighting control device manufacturer's written instructions, unless otherwise indicated.

- D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
- E. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.6 IDENTIFICATION

- A. Identify components and power and control wiring according to Division 26 Section "Electrical Identification."
- B. Label time switches and contactors with a unique designation.

3.7 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. After installing time switches and sensors, and after electrical circuitry has been energized, adjust and test for compliance with requirements.
 - 2. Operational Test: Verify actuation of each sensor and adjust time delays.
- B. Remove and replace lighting control devices where test results indicate that they do not comply with specified requirements.
- C. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.8 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to two visits to site outside normal occupancy hours for this purpose.

END OF SECTION

ELECTRICAL TESTING

	- GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	SECTION INCLUDES	1
1.3	REFERENCES	2
1.4	QUALIFICATIONS	2
1.5	PERFORMANCE REQUIREMENTS	3
1.6	TEST INSTRUMENT CALIBRATION	3
1.7	TEST REPORTS	4
PART 2	- PRODUCTS	Ę
PART 3 -	- EXECUTION	Ę
	THERMOGRAPHIC SURVEY	
PART 1	- GENERAL	

1.1

- A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.
- B. Related Sections include the following:

RELATED DOCUMENTS

- 1. Division 26 Section "Electrical General Requirements."
- Division 26 Section "Conductors and Cables."
- 3. Division 26 Section "Grounding and Bonding."
- 4. Division 26 Section "Enclosed Switches."
- Division 26 Section "Enclosed Controllers."
- 6. Division 26 Section "Dry-Type Transformers"
- 7. Division 26 Section "Panelboards."
- 8. Division 26 Section "Switchboards."
- 9. Division 26 Section "Unit Substations."

1.2 SECTION INCLUDES

- A. The Electrical Contractor shall engage the services of a recognized corporately independent N.E.T.A. certified testing firm for the purpose of performing inspections and tests as herein specified
- B. The testing firm shall provide all material, equipment, labor, and technical supervision to perform such tests and inspections.
- C. It is the intent of these tests to assure that all tested electrical equipment is operational and within industry and manufacturer's tolerances and is installed in accordance with design Specifications.
- D. The test and inspections shall determine suitability for energization.

E. Equipment to be tested and inspected shall be the new equipment shown on the one line diagram and schedules as required by part three of each individual Specification Section. In addition, all equipment that is part of an emergency distribution system shall be tested.

1.3 REFERENCES

- A. All inspections and tests shall be in accordance with the latest version of the following codes and standards except as provided otherwise herein.
 - 1. National Electrical Manufacturer's Association NEMA
 - 2. American Society for Testing and Materials ASTM
 - 3. Institute of Electrical and Electronic Engineers IEEE
 - InterNational Electrical Testing Association NETA Acceptance Testing Specifications -ATS-1996
 - InterNational Electrical Testing Association NETA Maintenance Testing Specifications-MTS-1997
 - 6. American National Standards Institute ANSI C2: National Electrical Safety Code
 - 7. State and Local Codes and Ordinances
 - 8. Insulated Cable Engineers Association ICEA
 - 9. Association of Edison Illuminating Companies AEIC
 - 10. Occupational Safety and Health Administration
 - 11. National Fire Protection Association NFPA
 - a. ANSI/NFPA 70: National Electrical Code
 - b. ANSI/NFPA 70B: Electrical Equipment Maintenance
 - c. NFPA 70E: Electrical Safety Requirements for Employee Workplaces
 - d. ANSI/NFPA 101: Life Safety Code

1.4 QUALIFICATIONS

- A. The testing firm shall be a corporately independent testing organization, which can function as an unbiased testing authority, professionally independent of the manufacturers, suppliers, and installers of equipment or systems evaluated by the testing firm.
- B. The testing firm shall be regularly engaged in the testing of electrical equipment devices, installations, and systems.
- C. The lead, on site, technical person and at least 50% of the on site crew shall be currently certified by the InterNational Electrical Testing Association (NETA).
- D. The testing firm shall only utilize technicians who are regularly employed by the firm on a full-time basis for testing services.
- E. The Contractor shall submit proof of the above qualifications with bid proposal.

- F. The terms used herewithin such as Test Agency, Test Contractor, Testing Laboratory, or Contractor Test Company, shall be construed to mean the testing organization.
- G. Acceptable Testing Firms:
 - 1. Northern Electrical Testing; Phone (248) 689-8980.
 - 2. Utilities Instrumentation Services; Phone (734) 482-1450.
 - 3. Emerson/High Voltage Maintenance Corporation; Phone (734) 524-0409.
 - 4. Power Plus Engineering; Phone (248) 344-0200.
 - 5. Magna; Phone (248) 486-7370.

1.5 PERFORMANCE REQUIREMENTS

- A. The Electrical Contractor shall supply a suitable and stable source of electrical power to each test site. The testing firm shall specify the power requirements.
- B. The Electrical Contractor shall notify the testing firm when equipment becomes available for acceptance tests. Work shall be coordinated to expedite project scheduling.
- C. The testing firm shall notify the Owner's Representative prior to commencement of any testing.
- D. Any system, material or workmanship, which is found defective on the basis of acceptance tests, shall be reported to the Engineer. The Electrical Contractor shall correct all defects.
- E. The testing organization shall maintain a written record of all tests and shall assemble and certify a final test report.
- F. Safety and Precautions
 - 1. Safety practices shall include, but are not limited to, the following requirements:
 - a. Occupational Safety and Health Act.
 - b. Accident Prevention Manual for Industrial Operations, National Safety Council.
 - c. Applicable state and local safety operating procedures.
 - d. NETA Safety/Accident Prevention Program.
 - e. Owner's safety practices.
 - f. National Fire Protection Association NFPA 70E.
 - g. American National Standards for Personnel Protection.
 - 2. All tests shall be performed with apparatus de-energized except where otherwise specifically required.
 - 3. The testing organization shall have a designated safety representative on the project to supervise operations with respect to safety.

1.6 TEST INSTRUMENT CALIBRATION

- A. Test Instrument Calibration
 - 1. The testing firm shall have a calibration program, which assures that all applicable test instruments are maintained within rated accuracy.

- 2. The accuracy shall be directly traceable to the National Institute of Standards and Technology.
- 3. Instruments shall be calibrated in accordance with the following frequency schedule:
 - a. Field instruments: Analog 6 months maximum Digital 12 months maximum
 - b. Laboratory instruments: 12 months
 - c. Leased specialty equipment: 12 months (Where accuracy is guaranteed by Lessor)
- 4. Dated calibration labels shall be visible on all test equipment.
- Records must be kept up-to-date which show date and results of instruments calibrated or tested.
- 6. An up-to-date instrument calibration instruction and procedures shall be maintained for each test instrument.
- 7. Calibrating standard shall be of higher accuracy than that of the instrument tested.
- B. Field Test Instrument Standards
 - All equipment used for testing and calibration procedures shall exhibit the following characteristics:
 - a. Maintained in good visual and mechanical condition.
 - b. Maintained in safe, operating condition.
- C. Suitability of Test Equipment
 - 1. All test equipment shall be in good mechanical and electrical condition.
 - 2. Selection of metering equipment should be based on knowledge of the waveform of the variable being measured. Digital multi-meters may be average of RMS sensing and may include or exclude the dc component. When the variable contains harmonics of dc offset and, in general, any deviation from a pure sine wave, average sensing, average measuring RMS scaled meters may be misleading. Use of RMS measuring meters is recommended.
 - 3. Field test metering used to check power system meter calibration must have any accuracy higher than that of the instrument being checked.
 - 4. Accuracy of metering in test equipment shall be appropriate for the test being performed.
 - 5. Waveshape and frequency of test equipment output waveforms shall be appropriate for the test and tested equipment.

1.7 TEST REPORTS

- A. A test report shall be generated for each piece of major equipment or groups of equipment and shall include the following:
 - A list of visual and mechanical inspections required by Division 26 Specification Sections in a checklist or similar format.
 - 2. Test reports, including test values where applicable, for all required electrical tests. Clearly indicate where test values fall outside of the limits of recommended values.

- 3. Summary and interpretation of test results detailing problems located and recommended corrective measures.
- 4. Record of infrared scan and photos showing potential problem locations.
- 5. Signed and dated by the testing firm field superintendent stating that all required tests have been completed.
- B. Test reports shall be furnished to the Architect/Engineer within 14 days of the completion each test on an ongoing basis. Original copies of the reports shall be furnished directly to the Architect/Engineer by the testing company prior to formal submittal via the Contractors.

PART 2 - PRODUCTS

Not Applicable

PART 3 - EXECUTION

3.1 THERMOGRAPHIC SURVEY

- A. Visual and Mechanical Inspection
 - 1. Remove all necessary covers prior to scanning.
 - 2. Inspect for physical, electrical, and mechanical condition.
- B. Equipment to be Scanned
 - 1. All components of the distribution system down to and including branch circuit panelboards and motor control centers. Return 3 months after equipment has been energized and loaded to do a final scan of all equipment.
- C. Provide report indicating the following:
 - 1. Problem area (location of "hot spot").
 - 2. Temperature rise between "hot spot" and normal or reference area.
 - 3. Cause of heat rise.
 - 4. Phase unbalance, if present.
 - 5. Areas scanned.

D. Test Parameters

- 1. Scanning distribution system with ability to detect 1°C between subject area and reference at 30°C.
- 2. Equipment shall detect emitted radiation and convert detected radiation to visual signal.
- 3. Infrared surveys should be performed during periods of maximum possible loading but not less than twenty percent (20%) of rated load of the electrical equipment being inspected.
- E. Test Results

- 1. Interpretation of temperature gradients requires an experienced technician. Some general guidelines are:
 - a. Temperature gradients of 3°C to 7°C indicate possible deficiency and warrant investigation.
 - b. Temperature gradients of 7°C to 15°C indicate deficiency; repair as time permits.
 - c. Temperature gradients of 16°C and above indicate major deficiency; repair immediately.

END OF SECTION

SECONDARY UNIT SUBSTATIONS

PART 1 -	- GENERAL	
1.1	RELATED DOCUMENTS	
1.2	SUMMARY	1
1.3	DEFINITIONS	2
1.4	SUBMITTALS	
1.5	QUALITY ASSURANCE	
1.6	DELIVERY, STORAGE, AND HANDLING	
1.7	PROJECT CONDITIONS	
1.8	COORDINATION	
1.9	EXTRA MATERIALS	4
PART 2 -	- PRODUCTS	F
2.1	MANUFACTURERS	
2.2	MANUFACTURED UNITS	
2.3	INCOMING SECTION	
2.4	DRY-TYPE TRANSFORMER SECTION	
2.5	SECONDARY DISTRIBUTION SECTION - LOW VOLTAGE SWITCHBOARD	
2.6	SOURCE QUALITY CONTROL	
DADT 2	- EXECUTION	10
3.1	MANUFACTURER (SQUARE D) SHALL COORDINATE AND PROVIDE SERVICES LISTED	
3.1	BELOW TO THE ELECTRICAL CONTRACTOR THAT WILL BE ASSIGNED TO RECEIVE.	
	HANDLE, STORE AND INSTALL THE SECONDARY UNIT SUBSTATIONS	
3.2	EXAMINATION	
3.3	INSTALLATION	
3.4	IDENTIFICATION	
3.5	CONNECTIONS	
3.6	CLEANING	
3.7	FIELD QUALITY CONTROL	
3.8	FOLLOW-UP SERVICE	
3.9	DEMONSTRATION	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes indoor secondary unit substations, each consisting of the following:
 - 1. Primary incoming section (Existing primary switch to remain for re-use).
 - 2. Transformer.
 - 3. Secondary distribution section.
- B. Related Sections include the following:

- 1. Division 26 Section "Overcurrent Protective Device Coordination" for short-circuit rating of devices and for setting of overcurrent protective devices.
- 2. Division 26 Section "Medium-Voltage Cables" for requirements of terminating cables in incoming section of substation.
- 3. Division 26 Section "Electrical Power Monitoring and Control" for communication features of power distribution system devices.
- 4. Division 26 Section "Surge Protective Devices" for surge protectors for low-voltage power, control, and communication equipment that may be located in secondary section.
- 5. Division 26 Section "Medium-Voltage Switchgear" for metering and instrument transformers.

1.3 DEFINITIONS

A. NETA ATS: Acceptance Testing Specification.

1.4 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories: Include dimensions, manufacturer's anchorage and base recommendations.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
 - 2. Dimensioned plans and elevations showing major components and features.
 - 3. One-line diagram.
 - 4. List of materials.
 - 5. Nameplate legends.
 - 6. Size and number of bus bars and current rating for each bus, including mains and branches of phase, neutral, and ground buses.
 - 7. Short-time and short-circuit current ratings of secondary unit substations and components.
 - 8. Ratings of individual protective devices.
- C. Primary Fuses: Submit recommendations and size calculations.
- D. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - Dimensioned concrete base, outline of secondary unit substation, conduit entries, and ground rod locations.
 - 2. Location of structural supports for structure-supported raceways.

- E. Manufacturer Seismic Qualification Certification: Submit certification that transformer assembly and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- F. Product Certificates: For secondary unit substations, signed by product manufacturer.
- G. Qualification Data: For testing agency.
- H. Factory test reports.
- I. Field quality-control test reports.
- J. Operation and Maintenance Data: For secondary unit substations and accessories to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.
- B. Source Limitations: Obtain secondary unit substation through one source from a single manufacturer.
- C. Product Options: Drawings indicate size, profiles, and dimensional requirements of secondary unit substations and are based on the specific system indicated. Refer to Division 1 Section "Product Requirements."
- D. Electrical Components, Devices and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with IEEE C2.

- F. Comply with IEEE C37.121.
- G. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver in shipping splits in sizes that can be moved past obstructions in delivery path.
- B. Coordinate delivery of secondary unit substations to allow movement into designated space.
- C. Store secondary unit substation components protected from weather and so condensation will not form on or in units. Provide temporary heating according to manufacturer's written instructions.
- D. Handle secondary unit substation components according to manufacturer's written instructions. Use factory-installed lifting provisions.

1.7 PROJECT CONDITIONS

- A. Field Measurements: Indicate measurements on Shop Drawings.
- B. Interruption of Existing electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Do not proceed with interruption of electric service without Owner's written permission.
- C. Service Conditions: IEEE C37.121, usual service conditions.

1.8 COORDINATION

- A. Coordinate layout and installation of secondary unit substations with other construction that penetrates floors and ceilings, or is supported by them, including light fixtures, HVAC equipment, and fire-suppression-system components.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork shall meet load requirements. Requirements for concrete bases for electrical equipment are specified in Division 26 "Hangers and Supports for Electrical Systems."

1.9 EXTRA MATERIALS

- A. Furnish extra materials described below, before installation begins, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Spare fuses: Six of each type and rating of fuse used, except for medium-voltage fuses. Include spares for the following:

- a. Potential transformer fuses.
- b. Control power fuses.
- c. Fuses and fusible devices for fused circuit breakers.
- d. Fuses for secondary fusible devices.
- 2. Touchup Paint: Two half-pint containers of paint matching enclosure's exterior finish.
- 3. Primary Switch Contact Lubricant: One container.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Note: Secondary Unit Substations have been pre-purchased. Electrical Contractor shall coordinate with manufacturer (Square D) and with Barton Malow for work scope assignment.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Square D; Schneider Electric.

2.2 MANUFACTURED UNITS

- A. Indoor Unit Arrangement: Single assembly.
- B. Enclosure Finish: Factory-applied finish in manufacturer's standard gray over a rust-inhibiting primer on treated metal surface.

2.3 INCOMING SECTION

- A. Primary Incoming Section: Existing primary switch to remain for re-use.
- B. Primary Incoming Section: Enclosed, air-interrupter, primary switch (one at each substation). Existing primary switches to remain. Field verify requirements for new transformer sections to match-up with existing primary switches. Manufacturer shall field coordinate requirements for Kirk Key Interlocks.
 - 1. Three pole, single throw, dead front, metal enclosed, with manual stored energy operator, without fuses, complying with IEEE C37.20.3.
 - 2. Key interlocking system to prevent fuse access door from being opened unless switch is open. Additionally, interlock primary switches with transformer secondary main circuit breakers, preventing switches from being opened or closed unless secondary main circuit breakers are open. Electrical contractor shall install Key interlocks on existing air-interrupter switches (one at substation 1 and one at substation 2). Key switches shall be furnished by Square D.
 - 3. Phase Barriers: Located between blades and fuses of each phase, designed for easy removal, allows visual inspection of switch components when barrier is in place.
 - 4. Window: Permits viewing switch-blade positions when door is closed.

- 5. Accessory Set: Tools and miscellaneous items required for interrupter switchgear test, inspection, maintenance, and operation. Include fuse-handling tool as recommended by switchgear manufacturer.
- 6. Continuous-Current Rating: 600 A.
- 7. Short-Circuit Rating:
 - a. Short-time momentary asymmetrical fault rating of 40 kA.
 - b. 3-second symmetrical rating of 25-kA RMS.
 - c. Fault close asymmetrical rating of 40 kA.
- C. Surge Arresters: Comply with IEEE C62.11, Distribution class; metal-oxide-varistor type, with ratings as indicated, connected in each phase of incoming circuit and ahead of any disconnecting device.
- D. Insulators: Shall be porcelain or cyclo-aliphatic insulators.

2.4 DRY-TYPE TRANSFORMER SECTION

- A. Description: IEEE C57.12.01, IEEE C57.12.50, IEEE C57.12.51 NEMA ST 20, and dry-type, 2-winding, secondary unit substation transformer.
- B. Enclosure: Indoor, ventilated, vacuum-pressure, impregnated type and with insulation system rated at 220 deg C with an 80 deg C average winding temperature rise above a maximum ambient temperature of 40 deg C.
- C. Cooling System: Class AA, air cooled complying with IEEE C57.12.01.
- D. Insulation Materials: IEEE C57.12.01, rated 220 deg C.
- E. Insulation Temperature Rise: **80** deg C, maximum rise above 40 deg C.
- F. Basic Impulse Level: 95 kV.
- G. Full-Capacity Voltage Taps: 4 nominal 2.5 percent taps, 2 above and 2 below rated primary voltage.
- H. High-Temperature Alarm: Sensor at transformer with local audible and visual alarm and contacts for remote alarm.

2.5 SECONDARY DISTRIBUTION SECTION – LOW VOLTAGE SWITCHBOARD

A. MANUFACTURED UNITS

- 1. Front-Connected, Front-Accessible Switchboard: Individually-mounted drawout main device, panel-mounted branches, and sections rear aligned.
- 2. Nominal System Voltage: As noted on Drawings.
- 3. Main-Bus Continuous: As noted on Drawings.

- 4. Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- 5. Enclosure: Steel, NEMA 250, Type 1 not over 102 in height.
- 6. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
- 7. Enclosure Finish for Outdoor Units: Factory-applied finish in manufacturer's standard color, undersurfaces treated with corrosion-resistant undercoating.
- 8. Insulation and isolation for main and vertical buses of feeder sections.
- 9. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
- 10. Bolted Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.
- 11. Buses and Connections: Three phase, four wire, unless otherwise indicated.
 - a. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity with feeder circuit-breaker line connections.
 - 1) Use copper for feeder circuit-breaker line connections.
 - Ground Bus: 1/4-by-2-inch minimum-size, hard-drawn copper of 98 percent conductivity, equipped with pressure connectors for feeder and branch-circuit ground conductors.
 - c. Contact Surfaces of Buses: Silver plated.
 - d. Main Phase Buses, Neutral Buses, and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 - e. Isolation Barrier Access Provisions: Permit checking of bus-bolt tightness.
 - f. Neutral Buses: 100 percent of the ampacity of phase buses, unless otherwise indicated, equipped with pressure connectors for outgoing circuit neutral cables.
- 12. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

B. SURGE SUPPRESSIVE DEVICES

- 1. IEEE C62.41, panel mounted, plug-in-style, solid-state, parallel-connected, sine-wave tracking suppression and filtering modules.
- 2. Minimum single-impulse current rating shall be as follows:

a. Line to Neutral: 100,000 A.

b. Line to Ground: 100,000 A.

- c. Neutral to Ground: 50,000 A.
- 3. Protection modes shall be as follows:
 - a. Line to neutral.
 - b. Line to ground.

- c. Neutral to ground.
- 4. EMI/RFI Noise Attenuation Using 50-ohm Insertion Loss Test: 55 dB at 100 kHz.
- 5. Maximum Category C combination wave clamping voltage shall not exceed 1000 V, line to neutral and line to ground on 277/480 V systems.
- 6. Maximum UL 1449 clamping levels shall not exceed 800 V, line to neutral and line to ground on 480Y/277 V systems.
- 7. Withstand Capabilities: 3000 Category C surges with less than 5 percent change in clamping voltage.
- 8. Accessories:
 - a. Audible alarm activated on failure of any surge diversion module.
 - b. Six-digit transient-counter set to total transient surges that deviate from the sine-wave envelope by more than 125 V.

C. OVERCURRENT PROTECTIVE DEVICES

- Molded-Case Circuit Breaker: NEMA AB 3, with interrupting capacity to meet available fault currents.
 - a. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - b. Main breaker shall have electronic trip-unit circuit breakers shall have RMS sensing, field-replaceable rating plug, and the following field-adjustable settings:
 - 1) Instantaneous trip.
 - 2) Long- and short-time pickup levels.
 - 3) Long- and short-time time adjustments.
 - 4) Ground-fault pickup level, time delay, and I²t response.
 - c. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - d. GFCI Circuit Breakers: Single- and two-pole configurations with 5-mA trip sensitivity.
- 2. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 - a. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 - b. Application Listing: Appropriate for application; Type HACR for heating, airconditioning, and refrigerating equipment.
 - c. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - d. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

D. INSTRUMENTATION

1. Instrument Transformers: NEMA EI 21.1, IEEE C57.13, and the following:

- a. Current Transformers: Ratios shall be as indicated with accuracy class and burden suitable for connected relays, meters, and instruments.
- b. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kV.
- 2. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:
 - a. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 - 1) Phase Currents, Each Phase: Plus or minus 1 percent.
 - 2) Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 - 3) Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 - 4) Megawatts: Plus or minus 2 percent.
 - 5) Megavars: Plus or minus 2 percent.
 - 6) Power Factor: Plus or minus 2 percent.
 - 7) Frequency: Plus or minus 0.5 percent.
 - 8) Megawatt Demand: Plus or minus 2 percent; demand interval programmable from 5 to 60 minutes.
 - 9) Accumulated Energy, Megawatt Hours: Plus or minus 2 percent. Accumulated values unaffected by power outages up to 72 hours.
 - b. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

E. ACCESSORY COMPONENTS AND FEATURES

- 1. Furnish accessory set including tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
- 2. Furnish portable test set to test functions of solid-state trip devices without removal from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.

2.6 SOURCE QUALITY CONTROL

- A. Factory Tests: Perform design and routine tests according to standards specified for components. Conduct transformer tests according to IEEE C57.12.90. Conduct switchgear and switchboard tests according to ANSI C37.51.
- B. Factory Tests: Perform the following factory-certified tests on each secondary unit substation:
 - 1. Resistance measurements of all windings on the rated voltage connection and on tap extreme connections.
 - 2. Ratios on the rated voltage connection and on tap extreme connections.
 - 3. Polarity and phase relation on the rated voltage connection.
 - 4. No-load loss at rated voltage on the rated voltage connection.
 - 5. Exciting current at rated voltage on the rated voltage connection.

- 6. Impedance and load loss at rated current on the rated voltage connection and on tap extreme connections.
- 7. Applied potential.
- 8. Induced potential.

PART 3 - EXECUTION

3.1 MANUFACTURER (SQUARE D) SHALL COORDINATE AND PROVIDE SERVICES LISTED BELOW TO THE ELECTRICAL CONTRACTOR THAT WILL BE ASSIGNED TO RECEIVE, HANDLE, STORE AND INSTALL THE SECONDARY UNIT SUBSTATIONS.

3.2 EXAMINATION

- A. Examine areas and space conditions for compliance with requirements for secondary unit substations and other conditions affecting performance of work.
- B. Examine roughing-in of conduits and grounding systems to verify the following:
 - 1. Wiring entries comply with layout requirements.
 - 2. Entries are within conduit-entry tolerances specified by manufacturer and no feeders will have to cross section barriers to reach load or line lugs.
- C. Examine walls, floors, roofs, and concrete bases for suitable conditions for secondary unit substation installation.
- D. Verify that ground connections are in place and that requirements in Division 26 Section "Grounding and Bonding" have been met. Maximum ground resistance shall be 5 ohms at secondary unit substation location.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 INSTALLATION

- A. Install and anchor secondary unit substations on concrete bases, according to manufacturer's recommendations, seismic codes at Project, and requirements in Division 26 "Hangers and Supports for Electrical Systems."
- B. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.

3.4 IDENTIFICATION

- A. Identify field-installed wiring and components and provide warning signs.
- B. Operating Instructions: Frame printed operating instructions for secondary unit substations, including key interlocking, control sequences, elementary single-line diagram, and emergency

procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of secondary unit substation.

3.5 CONNECTIONS

- A. Ground equipment according to Division 26 Section "Grounding and Bonding."
- B. Connect wiring according to Division 26 Section "Conductors and Cables."

3.6 CLEANING

A. After completing equipment installation and before energizing, inspect unit components. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish. Vacuum interiors of secondary unit substation sections.

3.7 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections. Report results in writing.
- B. Testing: Perform the following field quality control tests in accordance with Division 26 section "Electrical Testing."
 - 1. Perform each visual and mechanical inspection and electrical test for each component of substation according to NETA ATS, including secondary injection testing. Certify compliance with test parameters.
 - a. Verify all trip functions by means of primary/secondary injection, as required.
 - 2. After installing secondary unit substation but before primary is energized, verify that grounding system at the substation tested at the specified value or less.
 - 3. After installing secondary unit substation and after electrical circuitry has been energized, test for compliance with requirements.
 - 4. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
 - a. Remove and replace malfunctioning units and retest as specified above.

3.8 FOLLOW-UP SERVICE

- A. Voltage Monitoring and Adjusting: After Substantial Completion, if requested by Owner, but not more than six months after Final Acceptance, perform the following voltage monitoring:
 - 1. During a period of normal load cycles as evaluated by Owner, perform seven days of threephase voltage recording at the outgoing section of each secondary unit substation. Use voltmeters calibrated to an accuracy of 1% of the nominal voltage measured. Voltage unbalance greater than 1 percent between phases, or deviation of any phase voltage from

the nominal value by more than plus or minus 5 percent during the test period, is unacceptable.

- 2. Corrective Action: If test results are unacceptable, perform the following corrective action, as appropriate:
 - a. Adjust transformer taps.
 - b. Rebalance loads.
 - c. Prepare written request for voltage adjustment by electric utility.
- 3. Retests: Repeat monitoring, after corrective action has been performed, until satisfactory results are obtained.
- 4. Report: Prepare a written report covering monitoring performed and corrective action taken.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain systems. Refer to Division 1 Section "Demonstration and Training."

END OF SECTION

DRY-TYPE TRANSFORMERS (600 V AND LESS)

PART 1 -	- GENERAL	1
1.1	RELATED DOCUMENTS	1
1.2	SUMMARY	
1.3	REFERENCES	2
1.4	SUBMITTALS	2
1.5	QUALITY ASSURANCE	3
1.6	DELIVERY, STORAGE, AND HANDLING	3
1.7	COORDINATION	3
DADT 2	- PRODUCTS	1
21	MANUFACTURERS	
2.1	MATERIALS	
2.2	DISTRIBUTION TRANSFORMERS	7
2.4	ISOLATION TRANSFORMERS	5
2.5	CONTROL AND SIGNAL TRANSFORMERS	5
2.6	SOURCE QUALITY CONTROL	
	- EXECUTION	
3.1	EXAMINATION	
3.2	INSTALLATION	
3.3	CONNECTIONS	
3.4	FIELD QUALITY CONTROL	7
3.5	ADJUSTING	8

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 750 kVA:
 - 1. Distribution transformers.
 - 2. Buck-boost transformers.
 - 3. Isolation transformers.
 - 4. Control and signal transformers.
- B. Related Section includes the following:
 - 1. Division 26 Section "Electrical General Requirements."
 - 2. Division 26 Section "Grounding and Bonding."
 - 3. Division 26 Section "Conductors and Cables."
 - 4. Division 26 Section "Raceways and Boxes."

1.3 REFERENCES

- A. ANSI/IEEE C57.12.9: Test Code for Dry-Type Distribution and Power Transformers
- B. NEMA 250: Enclosures for Electrical Equipment (1000 Volts Maximum)
- C. NEMA ST 1: Specialty Transformers
- D. NEMA ST 20: Dry Type Transformers for General Applications
- E. NEMA TP 1: Guide for Determining Energy Efficiency for Distribution Transformers
- F. NEMA TP 2: Standard Test Method for Measuring the Energy Consumption of Distribution Transformers
- G. NETA ATS: Acceptable Testing Specifications for Electrical Power Distribution Equipment and Systems
- H. NFPA 70: National Electrical Code
- I. UL 486A: Wire Connectors and Soldering Lugs for Use with Copper Conductors
- J. UL 486B: Wire Connectors for Use with Aluminum Conductors
- K. UL 506: Specialty Transformers
- L. UL 1561: Dry-Type General Purpose and Power Transformers

1.4 SUBMITTALS

- A. Product Data Include rated nameplate data, capacities, weights, dimensions, utility or manufacturer's anchorage and base recommendations, minimum clearances, installed devices and features, and performance for each type and size of transformer indicated.
- B. Shop Drawings: Wiring and connection diagrams.
- C. Manufacturer Seismic Qualification Certification: Submit certification that transformer assembly and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Work." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- D. Qualification Data: Testing agency.

- E. Source quality-control test reports. Include loss data, efficiency at 25, 50, 75 and 100 percent rated load, and sound level.
- F. Output Settings Reports: Record of tap adjustments specified in Part 3.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined in OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise onsite testing specified in Part 3.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with IEEE C 57.12.91.
- D. Comply with NFPA 70.
- E. Energy-Efficient Transformers Rated 15 kVA and Larger: Certified as meeting NEMA TP 1, Class 1 efficiency levels when tested according to NEMA TP 2.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.
- B. Store, protect, and handle products to site under provisions of Division 26 section "Electrical General Requirements."
- C. Deliver transformers individually wrapped for protection and mounted on shipping skids.
- D. Accept transformers on site. Inspect for damage.
- E. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.
- F. Handle in accordance with manufacturer's written instructions. Lift only with lugs provided for the purpose. Handle carefully to avoid damage to transformer internal components, enclosure, and finish.

1.7 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork shall meet load requirements. Requirements for concrete bases for electrical equipment are specified in Division 26 "Hangers and Supports for Electrical Systems."
- B. Coordinate installation of wall-mounting and structure-hanging supports.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Square D (base bid bid price shall include Square D equipment).
 - 2. Siemens.
 - 3. Cutler-Hammer.

2.2 MATERIALS

- A. Cores: Grain-oriented, non-aging silicon steel.
- B. Coils: Continuous windings without splices, except for taps.
 - 1. Internal Coil Connections: Brazed or pressure type.
 - 2. Coil Material: Copper.
- C. Vibration Isolation: Isolate core and coil from enclosure using vibration-absorbing mounts.
- D. Grounding: Ground core and coil assembly to enclosure by means of a visible flexible copper grounding strap.

2.3 DISTRIBUTION TRANSFORMERS

- A. Description: Factory-assembled and tested, air cooled, dry-type transformer rated for 60 Hz operation. Comply with NEMA ST 20, and list and label as complying with UL 1561.
- B. Provide transformers with base KVA as indicated without the use of internal cooling fans.
- C. Provide transformers that are internally braced to withstand seismic forces specified in Division 26 Section "Seismic Controls for Electrical Work."
- D. Cores: One leg per phase.
- E. Indoor Enclosure: Ventilated, NEMA 250, Type 2. Provide lifting eyes or brackets.
- F. Indoor Transformer Enclosure Finish: Comply with NEMA 250 for "Indoor Corrosion Protection."
 - 1. Finish Color: Gray.
- G. Outdoor Enclosure: Ventilated, raintight, NEMA 250, Type 3R. Provide lifting eyes or brackets.
- H. Outdoor Transformer Enclosure Finish: Comply with NEMA 250 for "Outdoor Corrosion Protection."
 - 1. Finish Color: Gray.
- I. Insulation Class (15 kVA and larger): 220 deg C, UL-component-recognized insulation system with a maximum of 80 deg C rise above 40 deg C ambient temperature TP-1 compliant.

- J. Insulation Class (less than 15 kVA): 185 deg C, UL-component-recognized insulation system with a maximum of 80 deg C rise above 40 deg C ambient temperature.
- K. Basic Impulse Level: 10 kV.
- L. Taps for Transformers Smaller than 3 kVA: None.
- M. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.
- N. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.
- O. Case Temperature: Do not exceed 35 degrees C rise above ambient at warmest point.
- P. Mounting: Suitable for mounting as indicated.
- Q. Wall Brackets: Manufacturer's standard brackets.
- R. Nameplate: Include transformer connection data and overload capacity based on rated allowable temperature rise.
- S. Sound Rating: Transformers shall have a sound rating 3dB below NEMA Standard (42dB for 10-50 kVA, 47 dB for 51-150 kVA, 52 db for 151-300 kVA, and 57 dB for 301-500 kVA rated transformers.

2.4 ISOLATION TRANSFORMERS

- A. Description: Factory-assembled and –tested, air cooled, dry-type, shielded isolation transformer rated for 60 Hz operation. Comply with NEMA ST 20, and list and label as complying with UL 1561.
- B. General: Comply with the requirements specified for Distribution Transformers.
- C. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 - 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 - 2. Include special terminal for grounding the shield.
 - 3. Shield Effectiveness:
 - a. Capacitance between Primary and Secondary Windings: Not to exceed 33 picofarads over a frequency range of 20 Hz to 1 MHz.
 - b. Common-Mode Noise Attenuation: Minus 120 dBA minimum at 0.5 to 1.5 kHz; minus 65 dBA minimum at 1.5 to 100 kHz.
 - c. Normal-Mode Noise Attenuation: Minus 52 dBA minimum at 1.5 to 10 kHz.

2.5 CONTROL AND SIGNAL TRANSFORMERS

A. Description: Factory-assembled and tested, self-cooled, two-winding dry type, rated for continuous duty, and 60 Hz operation, complying with NEMA ST 1, and listed and labeled as complying with UL 506.

B. Ratings: Continuous duty. If rating is not indicated, provide at least 50 percent spare capacity above connected peak load.

2.6 SOURCE QUALITY CONTROL

- A. Test and inspect transformers according to IEEE C57.12.91.
- B. Provide the following factory tests on each unit provided in accordance with NEMA ST 20:
 - 1. Voltage ratio.
 - 2. Polarity and phase relation.
 - 3. No load losses.
 - 4. Impedance (501 kVA and larger).
 - 5. Applied and induced potential.
- C. Provide the factory tests on the actual transformers provided or on similar units identical to those provided in accordance with NEMA ST 20:
 - 1. Impedance (less than 501 kVA).
 - 2. Temperature rise.
 - 3. Audible sound level.
 - 4. Full load losses.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls and floors for suitable mounting conditions where transformers will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install Products in accordance with manufacturer's instructions.
- B. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 - 1. Brace wall-mounting transformers as specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

- C. Install floor mounted transformers on and anchor to concrete bases according to manufacturer's recommendations, seismic codes at Project, and requirements in Division 26 section "Vibration and Seismic Controls for Electrical Systems."
 - 1. Mount transformers on vibration isolating pads suitable for isolating the transformer noise from the building structure.
- D. Identification: Engraved metal or laminated-plastic nameplate mounted with corrosion resistant screws. Provide nameplate according to Division 26 Section "Electrical Identification" indicating the following:
 - 1. Transformer designation (e.g. "T-1").
 - 2. Primary power characteristics (e.g. "480V, 3PH, 3W").
 - 3. Secondary power characteristics (e.g. "208Y/120V, 3PH, 4W").
 - 4. Power rating (e.g. "75 kVA").
 - 5. Power source (e.g. "Fed from DP-1).

3.3 CONNECTIONS

- A. Ground equipment according to Division 26 Section "Grounding and Bonding."
- B. Connect wiring according to Division 26 Section "Conductors and Cables."
- C. Provide conduit according to Division 26 Section "Raceways and Boxes" for connections to transformer case. Make conduit connections to side panel of enclosure.
- D. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- E. Check for damage and tighten connections prior to energizing transformer.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including connections and to assist in field testing. Report results in writing.
 - 1. Verify that electrical wiring installation complies with manufacturer's written installation requirements.
- B. Testing: Perform the following field quality control tests in accordance with Division 26 section "Electrical Testing" for transformers 75KVA and above:
 - 1. Visual and Mechanical Inspection
 - a. Inspect for physical damage, cracked insulators, tightness of connections, defective wiring and general mechanical and electrical conditions.
 - b. Verify proper core grounding.
 - c. Verify proper equipment grounding.
 - d. Compare equipment nameplate with single line diagram and report discrepancies.

2. Electrical Tests

- a. Perform insulation resistance tests, winding-to-winding and windings-to-ground, utilizing a meg-ohmmeter with test voltage output in accordance with N.E.T.A.
 Acceptance Testing Specifications, Table 10.5. Test duration shall be for 10 minutes with resistance values tabulated at 30 seconds, 1 minute, and 10 minutes. Calculate Polarization index.
- b. Perform a turns ratio test between windings at every tap position. The final tap setting is to be set at the secondary system rated voltage at full load or as directed by the Architect/Engineer.
- c. Verify proper secondary voltage phase-to-phase and phase-to-neutral after energization and prior to loading.
- d. Test mounting and anchorage devices according to requirements in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

Test Values

- Perform insulation resistance tests in accordance with N.E.T.A. Acceptance Testing Specifications, Table 10.5. Results to be temperature corrected in accordance with Table 10.14.
- b. The polarization index should be above 1.2 unless an extremely high value is obtained initially, such that when doubled will not yield a meaningful value.
- c. Turns ratio test results shall not deviate more than one half percent (0.5%) from either the adjacent coils or the calculated ratio.

3.5 ADJUSTING

- A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 5 percent. Submit recording and tap settings as test results.
- B. Adjust buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.
- C. Output Settings Report: Prepare a written report recording output voltages and tap settings.

END OF SECTION

SWITCHBOARDS

PART 1 -	- GENERAL	
1.1 1.2	RELATED DOCUMENTSSUMMARY	
1.3	DEFINITIONS	
1.4	SUBMITTALS	
1.5	QUALITY ASSURANCE	
1.6	DELIVERY, STORAGE, AND HANDLINGPROJECT CONDITIONS	
1.7 1.8	COORDINATION	
1.9	EXTRA MATERIALS	
PART 2 -	- PRODUCTS	4
2.1	MANUFACTURERS	
2.2	MANUFACTURED UNITS	
2.3	OVERCURRENT PROTECTIVE DEVICES	
2.4 2.5	INSTRUMENTATION	
2.6	ACCESSORY COMPONENTS AND FEATURES	
DART 3.	- EXECUTION	7
3.1	PROTECTION	
3.2	EXAMINATION	
3.3	INSTALLATION	
3.4 3.5	ADJUSTINGIDENTIFICATION	
3.6	FIELD QUALITY CONTROL	
3.7	CLEANING	
3.8	DEMONSTRATION	9
PART 1 -	- GENERAL	
1.1	RELATED DOCUMENTS	
A.	Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.	
1.2	SUMMARY	
A.	This Section includes service and distribution switchboards rated 600 V and less.	
1.3	DEFINITIONS	
A.	EMI: Electromagnetic interference.	
B.	GFCI: Ground-fault circuit interrupter.	
C.	RFI: Radio-frequency interference.	
D.	RMS: Root mean square.	
E.	SPDT: Single pole, double throw.	
1.4	SUBMITTALS	

Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include

A.

dimensions, utility or manufacturer's anchorage and base recommendations, and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

- B. Shop Drawings: For each switchboard and related equipment.
 - Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Bus configuration, current, and voltage ratings.
 - c. Short-circuit current rating of switchboards and overcurrent protective devices.
 - d. Descriptive documentation of optional barriers specified for electrical insulation and isolation if specified.
 - e. Utility company's metering provisions with indication of approval by utility company if called out.
 - f. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
- C. Manufacturer Seismic Qualification Certification: Submit certification that switchboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Electrical Supports and Seismic Restraints." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- D. Field quality-control test reports including the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- E. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section Operation and Maintenance Data include the following:
 - 1. Routine maintenance requirements for switchboards and all installed components.

- Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
- 3. Time-current curves, including selectable ranges for each type of overcurrent protective device.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.
- B. Source Limitations: Obtain switchboards through one source from a single manufacturer.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with NEMA PB 2, "Deadfront Distribution Switchboards."
- F. Comply with NFPA 70.
- 1.6 DELIVERY, STORAGE, AND HANDLING
 - A. Deliver in sections or lengths that can be moved past obstructions in delivery path.
 - B. Store indoors in clean dry space with uniform temperature to prevent condensation. Protect from exposure to dirt, fumes, water, corrosive substances, and physical damage.
 - C. Handle switchboards according to NEMA PB 2.1 and NECA 400.

1.7 PROJECT CONDITIONS

- A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.
- B. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:
 - 1. Ambient Temperature: Not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.
- C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Construction Manager no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.

3. Do not proceed with interruption of electric service without Construction Manager's written permission.

1.8 COORDINATION

- A. Coordinate layout and installation of switchboards and components with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork shall meet load requirements. Requirements for concrete bases for electrical equipment are specified in Division 26 "Hangers and Supports for Electrical Systems."

1.9 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Potential Transformer Fuses: 2 of each size and type.
 - 2. Control-Power Fuses: 2 of each size and type.
 - 3. Fuses for Fused Switches: Equal to 10 percent of amount installed for each size and type, but no fewer than 3 of each size and type.
 - 4. Indicating Lights: 3 of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 MANUFACTURED UNITS

- A. Switchboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 - 1. Square D (base bid bid price shall include Square D equipment).
 - 2. Siemens.
 - 3. Cutler-Hammer.
- B. Front-Connected, Front-Accessible Switchboard: Fixed, individually mounted main device, panel-mounted branches, and sections rear aligned.
- C. Nominal System Voltage: As noted on Drawings.
- D. Main-Bus Continuous: As noted on Drawings.
- E. Bus Short Circuit Rating: 65KA or as indicated on the drawings.

- F. Ground Bus: Extend length of switchboard.
- G. Fabricate and test switchboards according to IEEE 344 to withstand seismic forces as required.
- H. Enclosure: Steel, NEMA 250, Type 1, not over 96 in height.
- I. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
- J. Enclosure Finish for Outdoor Units: Factory-applied finish in manufacturer's standard color, undersurfaces treated with corrosion-resistant undercoating.
- K. Insulation and isolation for main and vertical buses of feeder sections.
- L. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
- M. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.
- N. No cabling between sections.
- O. Buses and Connections: Three phase, four wire, unless otherwise indicated.
 - 1. Phase- and Neutral-Bus Material: Tin-plated, high-strength, electrical-grade aluminum alloy with copper- or tin-plated, aluminum circuit-breaker line connections.
 - a. If bus is aluminum, use copper- or tin-plated aluminum for circuit-breaker line connections.
 - 2. Ground Bus: 1/4-by-2-inch- minimum-size, hard-drawn copper of 98 percent conductivity, equipped with pressure connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.
 - 3. Contact Surfaces of Buses: Silver plated.
 - Main Phase Buses, Neutral Buses, and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 - 5. Isolation Barrier Access Provisions: Permit checking of bus-bolt tightness.
 - 6. Neutral Buses: 100 percent of the ampacity of phase buses, unless otherwise indicated, equipped with pressure connectors for outgoing circuit neutral cables. Bus extensions for busway feeder neutral bus are braced.
- P. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.
- Q. Provide infrared scan windows, to allow thermal scanning at each cable termination location. This shall permit thermal scanning to be done without taking off covers.
- 2.3 OVERCURRENT PROTECTIVE DEVICES
 - A. Molded-Case Circuit Breaker: NEMA AB 3, with interrupting capacity to meet available fault currents.

- 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 400 A and larger with restricted access cover.
- 2. All settings to be adjusted by manufacturer at the factory and verified by the electrical testing agency, based upon information determined by Overcurrent Protective Device Study per section 260573.
- B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 - 1. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 - 2. Application Listing: Appropriate for application; Type HACR for heating, air-conditioning, and refrigerating equipment.
 - 3. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - 4. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.
 - 5. All settings to be adjusted by manufacturer at the factory and verified by the electrical testing agency, based upon information determined by Overcurrent Protective Device Study per section 260573.
- C. Service Rated Breakers: Labeled for use as service equipment.
- D. Open-Fuse Trip Device: Arranged to trip switch open if a phase fuse opens.
- E. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
- F. Fuses are specified in Division 26 Section "Fuses."

2.4 INSTRUMENTATION

- A. Instrument Transformers: NEMA EI 21.1, IEEE C57.13, and the following:
 - 1. Potential Transformers: Secondary voltage rating of 120 V and NEMA accuracy class of 0.3 with burdens of W, X, and Y.
 - 2. Current Transformers: Ratios shall be as indicated with accuracy class and burden suitable for connected relays, meters, and instruments.
 - 3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kV.
- B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:
 - Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 - a. Phase Currents, Each Phase: Plus or minus 1 percent.
 - b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 - c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.

- d. Megawatts: Plus or minus 2 percent.
- e. Megavars: Plus or minus 2 percent.
- f. Power Factor: Plus or minus 2 percent.
- g. Frequency: Plus or minus 0.5 percent.
- h. Megawatt Demand: Plus or minus 2 percent; demand interval programmable from 5 to 60 minutes.
- i. Accumulated Energy, Megawatt Hours: Plus or minus 2 percent. Accumulated values unaffected by power outages up to 72 hours.
- 2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door, approximately 60 inches above finished floor.

2.5 CONTROL POWER

- A. Control Circuits: 120 V, supplied through secondary disconnecting devices from control-power transformer.
- B. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.
- C. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

2.6 ACCESSORY COMPONENTS AND FEATURES

- A. Furnish accessory set including tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
- B. Furnish portable test set to test functions of solid-state trip devices without removal from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

3.2 EXAMINATION

- A. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 INSTALLATION

- A. Install switchboards and accessories according to NEMA PB 2.1 and NECA 40.
- B. Install switchboards and anchor to concrete bases according to utility or manufacturer's recommendations, seismic codes at Project, and requirements in Division 26 Section "Hangers and Supports for Electrical Systems."
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.

- D. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.
- E. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.
 - 1. Set field-adjustable switches and circuit-breaker trip ranges.

3.4 ADJUSTING

A. Adjust circuit breaker trip and time delay settings to values as determined by the manufacturer, per section 260573.

3.5 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Electrical Identification."
- B. Switchboard Nameplates: Label each switchboard compartment with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws. Each breaker or switch shall identify the load being served.

3.6 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- B. Testing: Perform the following field quality control tests in accordance with Division 26 section "Electrical Testing."
 - 1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Sections 7.1, 7.5, 7.6, 7.9, 7.10, 7.11, and 7.14 as appropriate. Certify compliance with test parameters.
 - a. Do not perform any tests that require the circuit breaker to be removed from switchboard including primary injection testing for breakers 800A and larger.
 - b. For circuit breakers 800A and larger, verify all functions of trip unit by means of secondary injection in lieu of primary injection.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Instruments, Equipment, and Reports:

- Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 2) Prepare a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.7 CLEANING

A. On completion of installation, inspect interior and exterior of switchboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION

DANEL DOADDO

	PANELBOARDS	
PART 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	GENERAL RELATED DOCUMENTS SUMMARY DEFINITIONS SUBMITTALS QUALITY ASSURANCE PROJECT CONDITIONS COORDINATION EXTRA MATERIALS	. 1 . 1 . 2 . 3
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	PRODUCTS MANUFACTURERS MANUFACTURED UNITS PANELBOARD SHORT-CIRCUIT RATING DISTRIBUTION PANELBOARDS LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS SURGE PROTECTIVE DEVICE PANELBOARDS OVERCURRENT PROTECTIVE DEVICES ACCESSORY COMPONENTS AND FEATURES	. 4 . 5 . 5 . 6
3.1 3.2 3.3 3.4	- EXECUTION INSTALLATION IDENTIFICATION CONNECTIONS FIELD QUALITY CONTROL CLEANING	. 9
PART 1	- GENERAL	
1.1	RELATED DOCUMENTS	
	Description and according to the Contract including Contract of Contract Contract	٠

Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. Α.

1.2 **SUMMARY**

- A. This Section includes the following:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.
 - Surge Protective Device panelboards.

DEFINITIONS 1.3

- EMI: Electromagnetic interference. A.
- B. GFCI: Ground-fault circuit interrupter.
- C. RFI: Radio-frequency interference.
- D. RMS: Root mean square.
- E. SPDT: Single pole, double throw.

1.4 SUBMITTALS

- A. Product Data: For each type of panelboard, overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Bus configuration, current, and voltage ratings.
 - c. Short-circuit current rating of panelboards and overcurrent protective devices.
 - d. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
- C. Manufacturer Seismic Qualification Certification: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Electrical Supports and Seismic Restraints." Include the following:
 - 1. Basis of Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- D. Field quality-control test reports including the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- E. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.
- F. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section "Operation and Maintenance Data" include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.

 Time-current curves, including selectable ranges for each type of overcurrent protective device.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.
- B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories through one source from a single manufacturer.
- C. Product Options: Drawings indicate size, profiles, and dimensional requirements of panelboards and are based on the specific system indicated. Refer to Division 1 Section "Product Requirements."
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with NEMA PB 1.
- F. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:
 - 1. Ambient Temperature: Not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet.
- C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Construction Manager no fewer than seven days in advance of proposed interruption of electrical service.
 - 2. Do not proceed with interruption of electrical service without Construction Manager's written permission.

1.7 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, and encumbrances to workspace clearance requirements.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Six spares for each type of panelboard cabinet lock.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 - a. Square D (base bid bid price shall include Square D equipment).
 - b. Siemens.
 - c. Cutler-Hammer.
 - 2. Surge Protective Device Panelboards:
 - a. Square D (base bid bid price shall include Square D equipment).
 - b. Siemens.
 - c. Cutler-Hammer.

2.2 MANUFACTURED UNITS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Electrical Supports and Seismic Restraints."
- B. Enclosures: Mounting as noted on panel schedules. NEMA PB 1, Type 1.
 - 1. Rated for environmental conditions at installed location.
 - a. Outdoor Locations: NEMA 250, Type 3R.
 - b. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - c. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.
 - 2. Cabinet Front: Flush or surface cabinet as noted on the Drawings, with front concealed trim clamps, piano type hinged dead front cover, hinged door, and flush lock all keyed alike.
 - 3. Finish: Manufacturer's standard enamel finish over corrosion-resistant treatment or primer coat.
 - 4. Directory Card: With transparent protective cover, mounted in metal frame, inside panelboard door.
- C. Phase and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment ground conductors; bonded to box.

- 3. Isolated Equipment Ground Bus: Adequate for branch-circuit equipment ground conductors; insulated from box as called out on panel schedules.
- D. Conductor Connectors: Suitable for use with conductor material.
 - 1. Main and Neutral Lugs: Mechanical type.
 - 2. Ground Lugs and Bus Configured Terminators: Compression type.
 - 3. Feed-Through Lugs: Mechanical type suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 4. Double Lugs: Mechanical type mounted at location of main incoming lugs.
- E. Service Equipment Label: UL labeled for use as service equipment for panelboards with main service disconnect switches.
- F. Future Devices: Mounting brackets, bus connections, and necessary appurtenances required for future installation of devices.

2.3 PANELBOARD SHORT-CIRCUIT RATING

A. Fully rated to interrupt symmetrical short-circuit current available at terminals.

2.4 DISTRIBUTION PANELBOARDS

- A. Main bus bars, neutral and ground, shall be copper and sized in accordance with U.L. Standards to limit temperature rise on any current carrying part to the maximums as indicated in UL67.
- B. Doors: Secured with vault-type latch with tumbler lock; keyed alike. Omit for fused-switch panelboards.
- C. Main Overcurrent Protective Devices: Circuit breaker.
- D. Branch Overcurrent Protective Devices:
 - 1. For Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
 - 2. For Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.
 - 3. Fused switches.
- E. Short Circuit Rating: 50,000 AIC min. for panelboard, unless indicated otherwise on the drawings.
- F. Enclosure Size: Enclosure shall be sized to provide adequate conduit knockout space and gutter wire-bending space for all future conduits and cables. Enclosures that are too small to accommodate future conduits and cables shall be replaced at the Contractor's expense.

2.5 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Main bus bars, neutral and ground, shall be copper and sized in accordance with U.L. Standards to limit temperature rise on any current carrying part to the maximums as indicated in UL67.
- B. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

- C. Short circuit rating: 25,000 AIC min. for panelboard. 22,000 AIC min for 240 Vac or 25,000 AIC min. at 480 Vac for circuit breakers.
- D. Circuit breakers used for switching fluorescent lighting or for protecting air conditioning compressors shall be so listed.
- E. Circuit breakers used for feeding electrical heat tracing shall include ground fault equipment protection rated to trip at 30 ma.

2.6 SURGE PROTECTIVE DEVICE PANELBOARDS

- A. Surge Protection Device Description: Sine-wave tracking type with the following features and accessories:
 - 1. MOV technology for each suppression mode.
 - 2. Fuses, rated at 200-kA interrupting capacity. Provide fusing for each suppression path.
 - 3. Fabrication using bolted compression lugs for internal wiring. No plug-in component modules, quick disconnect terminals or printed circuit boards shall be used in current-carrying paths.
 - 4. Direct bus bar mounting arrangement with copper bus bars for bolted connections to phase buses, neutral bus, and ground bus.
 - 5. LED indicator lights for power and protection status for each phase mounted in panelboard front cover:
 - a. Green indicates fully operational circuit.
 - b. Red indicates loss of protection.
 - 6. EMI-RFI Noise Rejection: based on MIL-STD-E220A, 50-ohm standard Insertion Loss Test:
 - a. 34dB at 100 kHz.
 - b. 51dB at 1 MHz.
 - c. 54dB at 10 MHz.
 - d. 48dB at 100 MHz.
 - 7. Redundant suppression circuits.
 - 8. Redundant replaceable modules.
- B. Peak Single-Impulse Surge Current Rating: 80 kA per phase; 40 kA per mode based on a single pulse, IEEE C62.41 standard 8 x 20 microsecond waveform. Device shall not suffer more than 10% deviation in clamping voltage at specified surge current..
- C. Minimum Repetitive Surge Current Capability: 5,000 impulse per mode in accordance with ANSI/IEEE C62.41 and ANSI/IEEE C62.45-1992 utilizing a Category C3 bi-wave at one minute intervals without suffering either performance degradation or more than 10% deviation of specified UL 1449 Suppression Voltage Ratings at specified surge current.
- D. Connection Means: Bus mounted, parallel connection.
- E. Protection modes and UL 1449 Third Edition Listed and Recognized Component SVR for grounded wye circuits with voltages of 208Y/120, 3-phase, 4-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 700 V for 208Y/120.

- 2. Line to Ground: 700 V for 208Y/120.
- Neutral to Ground: 700 V for 208Y/120.
- 4. Line to Line: 1500 V for 208Y/120.
- F. Protection modes and UL 1449 Second Edition Listed and Recognized Component SVR for 240/120-V, single-phase, 3-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 700 V.
 - 2. Line to Ground: 700 V.
 - 3. Neutral to Ground: 700 V.
 - 4. Line to Line: 1500 V
- G. Protection modes and UL 1449 SVR for 240/120-V, 3-phase, 4-wire circuits with high leg shall be as follows:
 - 1. Line to Neutral: 700 V, 1500 V from high leg.
 - 2. Line to Ground: 700 V.
 - 3. Neutral to Ground: 700 V.
 - 4. Line to Line: 1500 V, 1500 V from high leg
- H. Protection modes and UL 1449 Second Edition Listed and Recognized Component SVR for voltages of 240, or 480, 3-phase, 3-wire, delta circuits shall not exceed the following:
 - 1. Line to Line: 2000 V for 240 V.
 - Line to Ground: 2000 V for 240 V.

2.7 OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker: UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger with restricted access cover.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting with restricted access cover.
 - 3. Electronic trip-unit circuit breakers shall have RMS sensing; field-replaceable rating plug; and with the following field-adjustable settings with restricted access cover:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and l²t response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

- 5. GFCI Circuit Breakers: Single- and two-pole configurations with 5-mA trip sensitivity.
- 6. All settings to be determined and adjusted by the electrical testing agency. Coordinate settings with manufacturer's circuit breaker curves.
- B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 - 1. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - 2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
 - 3. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - 4. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system specified in Division 26 Section "Electrical Power Monitoring and Control."
 - 5. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 - 6. Do not use tandem circuit breakers.
 - 7. Provide circuit breakers U.L. listed as type GFEPCI for all self regulating heating (snow melting and heat trace) cables branch circuits.
 - 8. Provide lock on devices for circuit breakers when called out on panel schedules with "LOD" designation.
 - 9. Provide ground fault interrupt 5ma circuit breaker when called out on panel schedules with "GFI" designation.
 - 10. Provide shunt trip breakers when called out on panel schedules with "STB" designation.
 - 11. Provide smart controllable circuit breakers when called out on panel schedules with "SMT" designation.
- C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
- D. Fuses are specified in Division 26 Section "Fuses."

2.8 ACCESSORY COMPONENTS AND FEATURES

A. Furnish accessory set including tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install panelboards and accessories according to NEMA PB 1.1.
- B. Comply with mounting and anchoring requirements specified in Division 26 Section "Hangers and Supports for Electrical Systems."

- C. Mount top of trim 74 inches above finished floor, unless otherwise indicated.
- D. Mount plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish.
- E. Install overcurrent protective devices and controllers.
 - 1. Set field-adjustable switches and circuit-breaker trip ranges.
- F. Install filler plates in unused spaces.
- G. Stub four 1-inch empty conduits from recessed panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.
- H. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- I. Color code circuit breakers and disconnect switches of fire alarm systems and emergency circuits with red paint. Provide lock-on clips on the circuit breaker handles.

3.2 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Electrical Identification."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads or created by retrofitting. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable. Coordinate final directory room names and numbers with (owner) (facility engineer).
- C. Panelboard Nameplates: Label each panelboard with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.

3.3 CONNECTIONS

- A. Ground equipment according to Division 26 Section "Grounding and Bonding."
- B. Connect wiring according to Division 26 Section "Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- B. Testing: Perform the following field quality control tests in accordance with Division 26 section "Electrical Testing"
 - Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters. Perform electrical tests on all breakers and switches 200A and above or that constitute a component of an emergency distribution system. Main circuit breakers in branch circuit panelboards 225A and below are not required to be tested.

- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 - 1. Measure as directed during period of normal system loading.
 - 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 - 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.
- D. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scanning of each panelboard. Remove panel fronts so joints and connections are accessible to portable scanner.
 - 1. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 2. Record of Infrared Scanning: Prepare a certified report that identifies panelboards checked and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 CLEANING

A. On completion of installation, inspect interior and exterior of panelboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

END OF SECTION

WIRING DEVICES

PART 1 -	· GENERAL	1
1.1	RELATED DOCUMENTS	1
1.2	SUMMARY	1
1.3	DEFINITIONS	1
1.4	REFERENCES	2
1.5	SUBMITTALS	
1.6	QUALITY ASSURANCE	2
1.7	COORDINATION	3
PART 2 -	PRODUCTS	3
21	MANUFACTURERS	
2.2	RECEPTACLES	
2.3	WALL SWITCHES	
2.4	DIGITAL TIME SWITCHES	
2.5	DIMMER SWITCHES	4
2.6	WALL PLATES	5
2.7	FLOOR SERVICE FITTINGS	6
2.8	FINISHES	6
DADT 2	EXECUTION	6
3.1	INSTALLATION	
3.1	IDENTIFICATION	
3.2	CONNECTIONS	
3.4	FIELD QUALITY CONTROL	
3.4	FIELD QUALITY CONTROL	1

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Single and duplex receptacles, ground-fault circuit interrupters, integral surge suppression units, and isolated-ground receptacles.
 - 2. Single- and double-pole snap switches and dimmer switches.
 - 3. Device wall plates.
 - 4. Pin and sleeve connectors and receptacles.
 - 5. Floor service fittings, poke-through assemblies, access floor boxes, and service poles.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. PVC: Polyvinyl chloride.

- D. RFI: Radio-frequency interference.
- E. TVSS: Transient voltage surge suppressor.
- F. UTP: Unshielded twisted pair.

1.4 REFERENCES

- A. DSCC W-C-596G: Federal Specification Connector, Electrical, Power, General Specification.
- B. DSCC W-C-896F: Federal Specification Switches, Toggle (Toggle and Lock), Flush Mounted (General Specification).
- C. IEC 309-1, Part 1: General Requirements: Plugs, Socket-Outlets and Couplers for Industrial Purposes
- D. NEMA FB 11: Plugs, Receptacles, and Connectors of the Pin and Sleeve Type for Hazardous Locations.
- E. NEMA WD 1: General Requirements for Wiring Devices.
- F. NEMA WD 6: Wiring Device Dimensional Requirements.
- G. UL 20: General-Use Snap Switches.
- H. UL 486A: Wire Connectors and Soldering Lugs for Use with Copper Conductors.
- I. UL 486B: Wire Connectors for Use with Aluminum Conductors.
- J. UL 498: Electrical Attachment Plugs and Receptacles.
- K. UL 943: Ground Fault Circuit Interrupters.

1.5 SUBMITTALS

- A. Product Data: Provide manufacturer's catalog information showing dimensions, colors, and configurations for each type of product indicated.
- B. Qualification Data: For testing agency.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Testing agency as defined by OSHA in 29 CFR 1910.7 or a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.
- B. Source Limitations: Obtain each type of wiring device through one source from a single manufacturer.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. Comply with NFPA 70.

1.7 COORDINATION

- A. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 1. Cord and Plug Sets: Match equipment requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 RECEPTACLES

- A. All receptacles shall be tamper resistant (adjust model numbers listed below as required).
- B. Straight-Blade and Locking Receptacles: Heavy-Duty grade.
- C. Straight-Blade-Type Receptacles: Comply with NEMA WD 1, NEMA WD 6, DSCC W-C-596G, and UL 498. Configuration 5-20R duplex receptacle.
 - Manufacturers:
 - a. Hubbell Incorporated; Wiring Device-Kellems HBL 5362.
- D. Self-Test GFCl's: Duplex GFCl Convenience Receptacles, 125 V, 20 A. Comply with NEMA WD1, NEMA WD6 configuration 5-20R, UL 498, Federal Specification W-C-596 and UL 943, Class A, and include indicator light that is lighted when device is tripped. Must have self-test feature and SafeLock protection™: conducts an automatic test every second, ensuring its always ready to protect. If the device fails the self-test, the indicator light flashes to signal that the GFCl should be replaced. With SafeLock Protection™, if critical components are damaged and ground fault protection is lost, power to receptacle must be discontinued.
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work, include, but are not limited to the following:
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. Pass & Seymour/Legrand; Wiring Devices Division: 2096.
 - b. Hubbell equal.
- E. Industrial Heavy-Duty Pin and Sleeve Devices: Comply with IEC 309-1.
- F. Hazardous (Classified) Location Receptacles: Comply with NEMA FB 11.

2.3 WALL SWITCHES

- A. Manufacturers:
 - 1. Hubbell Incorporated; Wiring Device-Kellems 1220 Series.
- B. Device body: Plastic toggle handle.

- C. Single- and Double-Pole Switches: Comply with DSCC W-C-896F and UL 20.
- D. Provide single-pole, two-pole, three-way and four-way switches as indicated.
- E. Provide pilot light where indicated.
- F. Provide key type where indicated. Furnish a minimum of six keys to Owner.
 - 1. Switch shall be Hubbell 1220 series (or equal as specified above) with locking coverplate.
 - Coverplate shall be Hubbell HBL96062, straight keyed cylinder type lock, with stainless steel finish.
- G. Combination Switch and Receptacle: Both devices in a single gang unit with plaster ears and removable tab connector that permit separate or common feed connection.
 - 1. Switch: 20 A, 120/277-V ac.
 - 2. Receptacle: NEMA WD 6, Configuration 5-20R.

2.4 DIGITAL TIME SWITCHES

A. General:

- 1. Watt Stopper TS-400 or equal. Operation on 100 to 300 volts.
- 2. Digital time switch turns lights off automatically after pre-set time. Pushbutton operation with time setting from 5 minutes to 12 hours.
- 3. Back-lit LCD shows timer countdown.

2.5 DIMMER SWITCHES

A. General:

- 1. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on/off switches and audible frequency and EMI/RFI filters.
- 2. Dimmer switches shall provide full-range, variable control of light intensity utilizing a continuous Square Law dimming curve.
- 3. Provide protected memory during temporary power failures that restores lights to same level of intensity set prior to power interruption.
- 4. Provide dimmer switches UL listed for the type of load being served (incandescent, fluorescent, magnetic low voltage transformer, electronic low voltage transformer). Universal load-type dimmer switches shall not be acceptable.
- 5. Provide dimmers that provide no adverse effects on other components of the electrical system being served (low voltage transformers, ballasts, lamps, etc.).

B. Incandescent Lamp Dimmers:

- 1. Manufacturers:
 - a. Lutron Model N-2000-W.

- b. Leviton Model 82000-W.
- c. Hubbell equal.
- 2. Modular, 120 V, 60 Hz with continuously adjustable control; single pole with soft tap or other quiet switch; and 5-inch wire connecting leads.
- 3. Dimmer switches serving magnetic low voltage transformers shall be designed to control and provide a symmetrical ac waveform to the input of the magnetic low voltage transformer and not cause the transformer to operate above its rated operating current or temperature.
- 4. Dimmer switches serving solid-state low-voltage transformers shall not affect the sound rating of the transformer and not cause lamp flicker at any point in the dimming range.
- 5. Control: Continuously adjustable slider with slide-to-off; with single-pole or three-way switching to suit connections.
- 6. Power Rating: 2000 W.
- C. Fluorescent Lamp Dimmer Switches:
 - 1. Manufacturers:
 - a. Hubbell Incorporated; Wiring Device-Kellems
 - b. Lutron.
 - c. Leviton.
 - 2. Modular; single-pole, compatible with electronic dimming ballast provided with fluorescent light fixtures and rated for the specified load and voltage; trim potentiometer to adjust lowend dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.
 - 3. Control: Continuously adjustable slider with pre-set; single-pole or three-way switching to suit connections.
 - 4. Power rating: 1200 W.

2.6 WALL PLATES

- A. Manufacturers:
 - Provide wall plates and corresponding wiring devices from same manufacturer.
- B. Single and combination types to match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: 0.035-inch- thick, satin-finished stainless steel.
 - 3. Material for Unfinished Spaces: Galvanized steel.
 - 4. Material for Wet Locations: Gasketed Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations."
 - a. Manufacturers:
 - 1) Red Dot Model CKSGV (cast aluminum), Thomas & Betts.

2.7 FLOOR SERVICE FITTINGS

A. Manufacturers:

- Wiremold.
- B. Type: Modular, fully adjustable recessed-type, with services indicated suitable for wiring method used.
- C. Compartments: Provide barrier separating power from telecommunications cabling. Provide recessed-type floor service fittings with independent compartments and feed through wiring capability.
- D. Service Plate: Provide service plate type as indicated. Provide protective ring for flush service plates.
- E. Power Receptacle(s): NEMA WD 6, Configuration 5-20R Heavy-duty grade duplex receptacle, black finish, unless otherwise indicated.
- F. Telecommunications Outlet: Blank cover with bushed cable opening.

2.8 FINISHES

A. Color:

- 1. Wiring Devices Connected to Normal Power System: White at each school, unless otherwise indicated or required by NFPA 70.
- 2. Wiring Devices Connected to Emergency Power System: Red.
- 3. Wall Switches: White, unless otherwise indicated.
- 4. Dimmer Switches: White, unless otherwise indicated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install products in accordance with manufacturer's instructions.
- B. Prior to installation of devices, verify wall openings are neatly cut and will be completely covered by wall plates, clean debris from outlet boxes and provide extension rings to bring outlet boxes flush with finished surface.
- C. Install devices and assemblies level, plumb, and square with building lines.
- D. Install wall dimmers to achieve full rating specified and indicated after derating for ganging according to manufacturer's written instructions.
- E. Arrangement of Devices:
 - 1. Coordinate locations of outlet boxes provided under Division 26 Section "Raceways and Boxes" to obtain mounting heights indicated on Drawings.
 - 2. Unless otherwise indicated, mount flush, with long dimension vertical, and with grounding terminal of receptacles on top.

- 3. Where multiple switches, dimmers, and/or occupancy sensors are adjacent to each other, provide a single cover plate. Custom fabricate, if required, for all combinations. Provide separate boxes or barriers as required for the application.
- 4. Install horizontally mounted receptacles with grounding pole on the left.
- 5. Install GFCI receptacles so that the "Push To Test" and "Reset" designations can be read correctly. If printed in both directions, install with ground pole on top.
- 6. Install switches with OFF position down.
- F. Install cover plates on switch, receptacle, and blank outlets in finished areas.
- G. Use oversized plates for outlets installed in masonry walls.
- H. Install galvanized steel plates on outlet boxes and junction boxes in unfinished areas, above accessible ceilings, and on surface mounted outlets.
- I. Remove wall plates and protect devices and assemblies during painting.
- J. Coordinate installation of access floor boxes with access floor system provided by Architectural trades.
- K. Install properly oriented access floor boxes into cutouts in access floor tiles and secure to tiles per Manufacturer's instructions.
- L. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.
- M. Adjust devices and wall plates to be flush and level. Three corners of wall plates must be in contact with wall surfaces. Devices shall be solidly mounted against the box.

3.2 IDENTIFICATION

- A. Comply with Division 26 Section "Electrical Identification."
 - 1. Receptacles: Identify panelboard and circuit number from which served. Use adhesive label as specified in Division 26 Section "Electrical Identification" with black-filled lettering on back side of wall plate, and durable wire markers or tags inside outlet boxes.

3.3 CONNECTIONS

- A. Ground equipment according to Division 26 Section "Grounding and Bonding." Connect wiring device grounding terminal to outlet box with bonding jumper. Use of quick ground strap or screw is not acceptable.
- B. Connect wiring according to Division 26 Section "Conductors and Cables." Connect wiring devices by wrapping conductor around screw terminal or by using back wiring and tightening the screw securely.
- C. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

- 1. Inspect each wiring device for defects.
- 2. Operate each wall switch with circuit energized and verify proper operation.
- 3. After installing wiring devices and after electrical circuitry has been energized, test each receptacle for proper polarity, ground continuity, and compliance with requirements.
- 4. Test each GFCI receptacle for proper operation with both local and remote fault simulations according to manufacturer's written instructions.
- B. Remove malfunctioning units, replace with new units, and retest as specified above.

END OF SECTION

FUSES

	- GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	SUMMARY	1
	SUBMITTALS	
	QUALITY ASSURANCE	
	PROJECT CONDITIONS	
	COORDINATION	
1.7	EXTRA MATERIALS	2
PART 2 -	- PRODUCTS	2
2.1	MANUFACTURERS	
2.2	CARTRIDGE FUSES	3
	FLUORESCENT AND H.I.D. LIGHTING BALLAST FUSES	
PART 3 -	- EXECUTION	3
3.1	EXAMINATION	
3.2	INSTALLATION	3
3.3	IDENTIFICATION	

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Cartridge fuses rated 600 V and less for use in switches, switchboards, and controllers.

1.3 SUBMITTALS

- A. Product Data: Include the following for each fuse type indicated:
 - 1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 2. Let-through current curves for fuses with current-limiting characteristics.
 - 3. Time-current curves, coordination charts and tables, and related data.
 - 4. Fuse size for elevator feeders and elevator disconnect switches.
- B. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 - 1. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 - 2. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

- C. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Division 1 Section "Operation and Maintenance Data," include the following:
 - a. Let-through current curves for fuses with current-limiting characteristics.
 - b. Time-current curves, coordination charts and tables, and related data.
 - c. Ambient temperature adjustment information.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with:
 - 1. NEMA FU 1 Low Voltage Cartridge Fuses.
 - 2. NFPA 70 National Electrical Code.
 - 3. UL 198C High-Interrupting-Capacity Fuses, Current-Limiting Types.
 - 4. UL 198E Class R Fuses.
 - 5. UL 512 Fuseholders.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Quantity equal to 10% percent of each fuse type and size, but no fewer than 3 of each type and size.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Bussman, Inc.
 - 2. Eagle Electric Mfg. Co., Inc.; Cooper Industries, Inc.
 - 3. Ferraz Shawmut, Inc.

4. Tracor, Inc.; Littelfuse, Inc. Subsidiary.

2.2 CARTRIDGE FUSES

- A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.
 - 1. Service Entrance: Class L, time delay.
 - 2. Feeders: Class J, time delay.
 - 3. Motor Branch Circuits: Class RK5, time delay.
 - 4. Other Branch Circuits: Class J, time delay.

2.3 FLUORESCENT AND H.I.D. LIGHTING BALLAST FUSES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Bussman, Inc. GLR fuses with HLR holder.
 - 2. Tracor, Inc.; Littelfuse, Inc. Subsidiary LGR fuses with LHR-000 holder.
 - 3. Ferraz Shawmut, Inc. SLR fuses.
- B. Provide each fluorescent and HID lighting ballast with individual protection on the line side.
- C. Provide fuse and holder mounted within or as part of the fixture.
- D. Provide fuse size and type recommended by the fixture manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- B. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Fuses shall be shipped separately. Any fuses shipped installed in equipment, shall be replaced by the Electrical Contractor with new fuses as specified above prior to energization at no additional expense to Owner. All fuses shall be stored in moisture free packaging at job site and shall be installed immediately prior to energization of the circuit in which it is applied.
- B. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuses.

3.3 IDENTIFICATION

A. Install labels indicating fuse replacement information on inside door of each fused switch.

END OF SECTION

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

- GENERAL	1
RELATED DOCUMENTS	1
SUMMARY	1
DEFINITIONS	2
REFERENCES	2
SUBMITTALS	2
EXTRA MATERIALS	4
DDODLICTS	1
CLEANING	9
	GENERAL RELATED DOCUMENTS SUMMARY DEFINITIONS REFERENCES SUBMITTALS QUALITY ASSURANCE PROJECT CONDITIONS COORDINATION EXTRA MATERIALS PRODUCTS MANUFACTURERS FUSIBLE AND NONFUSIBLE SWITCHES TOGGLE DISCONNECT SWITCH MOLDED-CASE CIRCUIT BREAKERS ENCLOSURES EXECUTION EXAMINATION CONCRETE BASES INSTALLATION IDENTIFICATION FIELD QUALITY CONTROL ADJUSTING CLEANING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 26 Section "Fuses".

1.2 SUMMARY

- A. This Section includes the following individually mounted, enclosed switches and circuit breakers:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Molded-case circuit breakers.
 - 4. Molded-case switches.
 - 5. Enclosures.

1.3 DEFINITIONS

- A. GD: General duty.
- B. GFCI: Ground-fault circuit interrupter.
- C. HD: Heavy duty.
- D. RMS: Root mean square.
- E. SPDT: Single pole, double throw.

1.4 REFERENCES

- A. NECA 1: Practices for Good Workmanship in Electrical Contracting.
- B. NETA ATS: Acceptance Testing Specifications for Electrical Power Distribution Equipment and Systems.
- C. NEMA 250: Enclosures for Electrical Equipment (1000 Volts Maximum).
- D. NEMA AB 1: Molded Case Circuit Breakers and Molded Case Switches.
- E. NEMA FU 1: Low Voltage Cartridge Fuses.
- F. NEMA KS 1: Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum).
- G. NEMA PB1.1: General Instructions for Proper Installation, Operation, and Maintenance of Panelboards Rated 600 Volts or Less.
- H. NEMA PB2.1: General Instructions for Proper Installation, Operation, and Maintenance of Deadfront Switchboards Rated 600 Volts or Less.
- NFPA 70: National Electrical Code.

1.5 SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current rating.
 - 4. UL listing for series rating of installed devices.
 - 5. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- B. Shop Drawings: Diagram power, signal, and control wiring.

- C. Manufacturer Seismic Qualification Certification: Submit certification that enclosed switches and circuit breakers, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis of Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- D. Qualification Data: For testing agency.
- E. Field quality-control test reports including the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- F. Manufacturer's field service report.
- G. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section "Closeout Procedures," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 - 2. Time-current curves, including selectable ranges for each type of circuit breaker.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.
- D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.7 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.

1.8 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.9 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Spares: For the following:
 - a. Potential Transformer Fuses: 2 of each size and type.
 - b. Control-Power Fuses: 2 of each size and type
 - c. Fuses for Fusible Switches: Equal to 10 percent of amount installed for each size and type, but no fewer than 3 of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 FUSIBLE AND NONFUSIBLE SWITCHES

- A. Manufacturers:
 - 1. Square D (base bid bid price shall include Square D equipment)
 - 2. Siemens.

- 3. Culter-Hammer.
- B. Fusible Switch: NEMA KS 1, quick make, quick-break load interrupter enclosed knife switch Type HD, with clips or bolt pads to accommodate specified fuses, externally operable lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- C. Nonfusible Switch: NEMA KS 1, quick make, quick-break load interrupter enclosed knife switch Type HD, externally operable lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- D. Double Throw Safety Switch (Manual Transfer Switch): U. L. listed and suitable for use in accordance with Article 702 of the National Electrical Code. Designed for manual transfer of loads from one supply to another. Three pole with solid neutral. Externally operable handle padlockable in either position. Provide pad lock and two sets of keys.

E. Accessories:

- 1. Provide early break auxiliary contacts in motor disconnect switches for motors that are fed from variable frequency controllers.
- 2. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 3. Neutral Kit: Internally mounted; insulated, capable of being grounded, and bonded; and labeled for copper and aluminum neutral conductors.
- 4. Auxiliary Contact Kit: Auxiliary set of contacts arranged to open before switch blades open.
- 5. Switch shall be Service Entrance rated.

2.3 TOGGLE DISCONNECT SWITCH

- A. Manufacturers:
 - 1. Double Pole:
 - a. Hubbell 1372.
 - b. Leviton 6808G-DAC.
 - c. Pass & Seymour 7812.
 - d. Bryant 30102.
 - 2. Three Pole:
 - a. Hubbell 1379.
 - b. Leviton 7810GD.
 - c. Pass & Seymour 7813.
 - d. Bryant 30103.
- B. Description: Heavy duty, 30A, 600 volt, double or three pole as required, single throw, motor rated switch without overload protection. Provide NEMA 1 enclosure and padlock attachment.
- 2.4 MOLDED-CASE CIRCUIT BREAKERS
 - A. Manufacturers:

- 1. Square D/Group Schneider (base bid bid price shall include Square D equipment).
- B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 - 1. Lugs: Mechanical style suitable for number, size, trip ratings, and conductor material.
 - 2. Application Listing: Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
 - 3. Enclosure: Provide handle capable of being locked in the open position with padlock.

2.5 ENCLOSURES

- A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.
 - 1. Indoor Dry Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Kitchen Areas: NEMA 250, Type 4X, stainless steel.
 - 4. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONCRETE BASES

- A. Coordinate size and location of concrete bases. Verify structural requirements with structural engineer.
- B. Concrete base is specified in Division 26 Section "Hangers and Supports for Electrical Systems," and concrete materials and installation requirements are specified in Division 3.

3.3 INSTALLATION

- A. Comply with applicable portions of NECA 1, NEMA PB 1.1, and NEMA PB 2.1 for installation of enclosed switches and circuit breakers.
- B. Mount individual wall-mounting switches and circuit breakers with tops at uniform height, unless otherwise indicated. Anchor floor-mounting switches to concrete base.
- C. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
- D. Install switches with off position down.

- E. Install NEMA KS 1 enclosed switch where indicated for motor loads $\frac{1}{2}$ HP and larger and equipment loads greater than 30A.
- F. Install toggle disconnect switch, surface mounted, where indicated for motor loads less than ½ HP and equipment loads 30A. and less.
- G. Install fuses in fusible disconnect switches.
- H. Install flexible liquid tight conduit from toggle disconnect switch to portable equipment. Leave a 6'-0" (1830 mm) whip.
- I. Install flexible liquid tight conduit from toggle disconnect switch to stationary equipment.
- J. Install control wiring from early break contacts in motor disconnect switch to variable frequency controllers to shut down controller when switch is open.
- K. Install equipment on exterior foundation walls at least one inch (25 mm) from wall to permit vertical flow of air behind breaker and switch enclosures.
- L. Support enclosures independent of connecting conduit or raceway system.
- M. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

3.4 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Electrical Identification."
- B. Enclosure Nameplates: Label each enclosure with engraved metal or laminated-plastic nameplate as specified in Division 26 Section "Electrical Identification."
- C. Provide adhesive label as specified in Division 26 Section "Electrical Identification" on inside door of each switch indicating UL fuse class and size for replacement.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Prepare for acceptance testing as follows:
 - 1. Inspect mechanical and electrical connections.
 - 2. Verify switch and relay type and labeling verification.
 - 3. Verify rating of installed fuses.
 - 4. Inspect proper installation of type, size, quantity, and arrangement of mounting or anchorage devices complying with manufacturer's certification.
- C. Testing Agency: Engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

- D. Perform the following field tests and inspections and prepare test reports:
 - Test mounting and anchorage devices according to requirements in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
 - 2. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.5 for switches. Certify compliance with test parameters.
 - 3. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.6 for molded-case circuit breakers. Test all NEMA AB1, molded case circuit breakers with thermal magnetic trip or auxiliary, solid-state trip units 100A and larger. Certify compliance with test parameters.
 - a. Visual and Mechanical Inspection
 - 1) Circuit breaker shall be checked for proper mounting and compare nameplate data to Drawings and Specifications.
 - 2) Operate circuit breaker to ensure smooth operation.
 - 3) Inspect case for cracks or other defects.
 - 4) Check internals on unsealed units.

b. Electrical Tests

- 1) Perform a contact resistance test.
- 2) Perform an insulation resistance test at 1000 volts dc from pole-to-pole and from each pole-to-ground with breaker closed and across open contacts of each phase.
- 3) Perform long time delay time-current characteristic tests by passing three hundred percent (300%) rated current through each pole separately. Record trip time. Make external adjustments as required to meet time current curves.
- 4) Determine short time pickup and delay by primary current injection.
- 5) Determine ground fault pickup and time delay by primary current injection.
- 6) Determine instantaneous pickup current by primary injection using run-up or pulse method.
- 7) Perform adjustments for final settings in accordance with coordination study.
- 8) For circuit breakers 800A and larger, verify all functions of trip unit by means of secondary injection in lieu of primary injection.

c. Test Values

- Compare contact resistance or millivolt drop values to adjacent poles and similar breakers. Investigate deviations of more than fifty percent (50%). Investigate any value exceeding manufacturer's recommendations.
- 2) Insulation resistance shall not be less than 100 megohms.
- 3) Trip characteristic of breakers shall fall within manufacturer's published time-current characteristic tolerance band, including adjustment factors.
- 4) All trip times shall fall within N.E.T.A. Acceptance Testing Specifications, Table 10.7 Circuit breakers exceeding specified trip time at three hundred percent (300%) of pickup shall be tagged defective.
- 5) Instantaneous pickup values shall be within values shown on N.E.T.A. Acceptance Testing Specifications, Table 10.8 or manufacturer's recommendations.

4. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.6 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip and time delay settings to values as instructed by the Engineer.

3.7 CLEANING

- A. On completion of installation, vacuum dirt and debris from interiors; do not use compressed air to assist in cleaning.
- B. Inspect exposed surfaces and repair damaged finishes.

END OF SECTION

ENCLOSED CONTROLLERS

PART 1 -	- GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	SUMMARY	
1.3	SUBMITTALS	2
1.4	REFERENCES	_
1.5	QUALITY ASSURANCE	
1.6	DELIVERY, STORAGE, AND HANDLING	
1.7	PROJECT RECORD DOCUMENTS	4
1.8	PROJECT CONDITIONS	4
1.9	COORDINATION	
1.10	EXTRA MATERIALS	5
DADT 2	- PRODUCTS	5
2.1	MANUFACTURERS	
2.2	ACROSS-THE-LINE ENCLOSED CONTROLLERS	
2.2	ENCLOSURES.	
2.4	ACCESSORIES	
2.5	FACTORY FINISHES	
PART 3 -	- EXECUTION	
3.1	EXAMINATION	
3.2	APPLICATIONS	
3.3	INSTALLATION	
3.4	CONCRETE BASES	
3.5	IDENTIFICATION	
3.6	CONTROL WIRING INSTALLATION	
3.7	CONNECTIONS	7
3.8	FIELD QUALITY CONTROL	
3.9	ADJUSTING	8
3.10	DEMONSTRATION	8

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes ac, enclosed controllers rated 600 V and less, of the following types:
 - 1. Across-the-line, manual and magnetic controllers.
 - 2. Reduced-voltage controllers.
 - 3. Multispeed controllers.
- B. Related Sections include the following:
 - 1. Division 26 Section "Electrical Power Monitoring and Control" for interfacing communication and metering requirements.

2. Division 23 Section "Variable Frequency Controllers" for general-purpose, ac, adjustable-frequency, pulse-width-modulated controllers for use on constant torque loads in ranges up to 200 hp.

1.3 SUBMITTALS

- A. Product Data: For each type of enclosed controller. Include dimensions and manufacturer's technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each enclosed controller.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Nameplate legends.
 - c. Short-circuit current rating of integrated unit.
 - d. UL listing for series rating of overcurrent protective devices in combination controllers.
 - e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices in combination controllers.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
- C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around enclosed controllers where pipe and ducts are prohibited. Show enclosed controller layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.
- D. Manufacturer Seismic Qualification Certification: Submit certification that enclosed controllers, accessories, and components will withstand seismic forces defined in Division 26 Section "Electrical Supports and Seismic Restraints." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- E. Qualification Data: For manufacturer and testing agency.
- F. Field quality-control test reports.
- G. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section "Closeout Procedures," include the following:

- 1. Routine maintenance requirements for enclosed controllers and all installed components.
- 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
- H. Load-Current and Overload-Relay Heater List: Compile after motors have been installed and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
- I. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

1.4 REFERENCES

- A. ANSI/NEMA ICS 6 Enclosures for Industrial Controls and Systems.
- B. ANSI/UL 198C High-Intensity Capacity Fuses; Current-Limiting Types.
- C. FS W-C-375 Circuit Breakers, Molded Case; Branch Circuit and Service.
- D. FS W-F-870 Fuseholders (For Plug and Enclosed Cartridge Fuses).
- E. FS W-S-865 Switch, Box, (Enclosed), Surface-Mounted.
- F. NECA 402-2000 Recommended Practice for Installing and Maintaining Motor Control Centers.
- G. NEMA AB 1 Molded Case Circuit Breakers.
- H. NEMA ICS 2 Industrial Control Devices, Controllers, and Assemblies.
- I. NEMA KS 1 Enclosed Switches.
- J. ANSI/NFPA 70 National Electrical Code.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 100 miles of Project site, a service center capable of providing training, parts, and emergency maintenance and repairs.
- B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
 - 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.
- C. Source Limitations: Obtain enclosed controllers of a single type through one source from a single manufacturer.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with NFPA 70.
- F. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed controllers, minimum clearances between enclosed controllers, and for adjacent surfaces and other items. Comply with indicated maximum dimensions and clearances.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prior to beginning work on any system, verify all existing conditions that affect the work and coordinate with all other trade Contractors. Determine that the work can be installed as indicated or immediately report to the Architect/Engineer errors, inconsistencies or ambiguities.
- B. Deliver products to site under provisions of Section 26 0100. Store and protect products under provisions of Section 26 0100.
- C. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.
- D. Handle in accordance with manufacturer's written instructions. Lift large equipment only with lugs provided for the purpose. Handle carefully to avoid damage to motor control center components, enclosure, and finish.
- E. If stored in areas subject to weather, cover enclosed controllers to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install electric heating of sufficient wattage to prevent condensation.

1.7 PROJECT RECORD DOCUMENTS

A. Accurately record actual locations of each contactor and indicate circuits controlled. Submit under provisions of 26 0100.

1.8 PROJECT CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - Notify Construction Manager no fewer than three days in advance of proposed interruption of electrical service.
 - 2. Indicate method of providing temporary utilities.
 - 3. Do not proceed with interruption of electrical service without Construction Manager's written permission.

1.9 COORDINATION

- A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3 Section "Cast-in-Place Concrete."
- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 7 Section "Roof Accessories."
- D. Coordinate features of enclosed controllers and accessory devices with pilot devices and control circuits to which they connect.
- E. Coordinate features, accessories, and functions of each enclosed controller with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.

1.10 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Spare Fuses: Furnish one spare for every five installed, but no fewer than one set of three of each type and rating.
 - 2. Indicating Lights: Two of each type installed.
 - 3. Keys: Furnish 2 of each to Owner.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Square D (base bid bid price shall include Square D equipment).
 - 2. Siemens.
 - 3. Cutler-Hammer.

2.2 ACROSS-THE-LINE ENCLOSED CONTROLLERS

- A. Manual Controller: NEMA ICS 2, general purpose, Class A, with "quick-make, quick-break" toggle or pushbutton action, and marked to show whether unit is "OFF," "ON," or "TRIPPED." Provide manual controller for 120 volt or 208 volt operation, as indicated on the drawings.
 - Overload Relay: Ambient-compensated type with inverse-time-current characteristics and NEMA ICS 2, Class 10 tripping characteristics. Relays shall have heaters and sensors in each phase, matched to nameplate, full-load current of specific motor to which they connect and shall have appropriate adjustment for duty cycle.
- B. Magnetic Controller: NEMA ICS 2, Class A, full voltage, nonreversing, across the line, unless otherwise indicated. Provide magnetic controller for 120 volt or 208 volt operation, as indicated on the drawings.
 - 1. Control Circuit: 120 V; obtained from integral control power transformer with sufficient capacity to operate connected pilot, indicating and control devices, plus 100 percent spare capacity.
 - 2. Adjustable Overload Relay: Dip switch selectable for motor running overload protection with NEMA ICS 2, Class 20 tripping characteristic, and selected to protect motor against voltage and current unbalance and single phasing. Provide relay with Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
- C. Combination Magnetic Controller: Factory-assembled combination controller and disconnect switch.
 - 1. Fusible Disconnecting Means: NEMA KS 1, heavy-duty, fusible switch with rejection-type fuse clips rated for fuses. Select and size fuses to provide Type 2 protection according to IEC 947-4-1, as certified by an NRTL.

2.3 ENCLOSURES

- A. Description: Flush- or surface-mounting cabinets as indicated. NEMA 250, Type 1, unless otherwise indicated to comply with environmental conditions at installed location.
 - 1. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Kitchen Areas: NEMA 250, Type 4X, stainless steel.
 - 3. Other Wet or Damp Indoor Locations: NEMA 250, Type 3R.
 - 4. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.

2.4 ACCESSORIES

- A. Devices shall be factory installed in controller enclosure, unless otherwise indicated.
- B. Push-Button Stations, Pilot Lights: NEMA ICS 2, heavy-duty type.
- C. Indicating Lights: Run (Red), off or ready (Green).
- D. Auxiliary Contacts: Provide two normally open (N.O.) and two normally closed (N.C.) contacts.
- E. Selector Switch: NEMA ISC 2, mounted in front cover to read "hand/off/auto," provide auxiliary contact for auto position monitoring.
- F. Control Relays: Auxiliary and adjustable time-delay relays.
- G. Phase-Failure and Undervoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connection. Provide adjustable undervoltage setting.

2.5 FACTORY FINISHES

A. Finish: Manufacturer's standard gray paint applied to factory-assembled and -tested enclosed controllers before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and surfaces to receive enclosed controllers for compliance with requirements, installation tolerances, and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Select features of each enclosed controller to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; duty cycle of motor, controller, and load; and configuration of pilot device and control circuit affecting controller functions.
- B. Select horsepower rating of controllers to suit motor controlled.

3.3 INSTALLATION

A. See Division 26 Section "Basic Electrical Materials and Methods" for general installation requirements.

- B. For control equipment at walls, bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Division 26 Section "Basic Electrical Materials and Methods."
- C. Install freestanding equipment on concrete bases.
- D. Comply with mounting and anchoring requirements specified in Division 26 Section "Electrical Supports and Seismic Restraints."
- E. Enclosed Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Division 26 Section "Fuses."
- F. Install motor control equipment and contactors in accordance with manufacturer's instructions.
- G. Select and install heater elements in motor starters to match installed motor characteristics.
- H. Motor Data: Provide neatly typed label inside each motor starter enclosure door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor, and voltage/phase rating.

3.4 CONCRETE BASES

- A. Coordinate size and location of concrete bases. Verify structural requirements with structural engineer.
- B. Concrete base is specified in Division 26 Section "Basic Electrical Materials and Methods," and concrete materials and installation requirements are specified in Division 3.

3.5 IDENTIFICATION

A. Identify enclosed controller, components, and control wiring according to Division 26 Section "Electrical Identification."

3.6 CONTROL WIRING INSTALLATION

- A. Install wiring between enclosed controllers according to Division 26 Section "Conductors and Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect hand-off-automatic switch and other automatic-control devices where applicable.
 - 1. Connect selector switches to bypass only manual- and automatic-control devices that have no safety functions when switch is in hand position.
 - 2. Connect selector switches with enclosed controller circuit in both hand and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.7 CONNECTIONS

- A. Conduit installation requirements are specified in other Division 26 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties.
- B. Ground equipment according to Division 26 Section "Grounding and Bonding."

3.8 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each enclosed controller element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to perform the following:
 - 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 - 2. Assist in field testing of equipment including pretesting and adjusting of solid-state controllers.
 - 3. Report results in writing.
- C. Testing: Perform the following field quality control tests in accordance with Division 26 section "Electrical Testing"
 - 1. Perform each electrical test and visual and mechanical inspection, except optional tests, stated in NETA ATS, "Motor Control Motor Starters." Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.9 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers. Refer to Division 1 Section "Closeout Procedures."

END OF SECTION

SURGE PROTECTIVE DEVICES

PART 1 -	- GENERAL	
1.1	RELATED DOCUMENTS	
1.2	SUMMARY	
1.3	RELATED SPECIFICATION	
1.4	REFERENCES	
1.5	SYSTEM DESCRIPTION	
1.6	MAIN DISTRIBUTION PANELBOARDS AND BRANCH CIRCUIT PANELBOARDS	
1.7	DOCUMENTATION	4
1.8	WARRANTY	4
PART 2 -	PRODUCTS	4
2.1	MANUFACTURERS	
2.2	ACCESSORIES	
	- EXECUTION	
3.1	INSTALLATION	
3.2	FIELD QUALITY CONTROL	4

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 specification sections, apply to work of this section.
- B. Related Sections include the following:
 - 1. Division 26 Section "Electrical General Requirements."

1.2 SUMMARY

A. These specifications describe the requirements for a high energy surge protective devices system (abbreviated as SPD in this specification and on all drawings). The specified system shall provide effective high energy surge current diversion and be suitable for application in ANSI/IEEE C62.41 Category A, B, and C environments, as tested by ANSI/IEEE C62.45. The system shall be connected in parallel with the protected system; no series connected elements shall be used, which could constitute a single point failure.

1.3 RELATED SPECIFICATION

- A. Main Distribution Switchboard Section 26 2413.
- B. Panelboards Section 26 2416.

1.4 REFERENCES

- A. The Transient Voltage Surge Suppression System shall be designed and manufactured to the following standards.
- B. American National Standards Institute and Institute of Electrical and Electronic Engineers (ANSI/EEE, C62.1, C62.41 and C62.45).
- C. Federal Information Processing Standards Publication 94 (FIPS PUB 94).
- D. National Electrical Manufacturers Association (NEMA LS-1).

- E. National Fire Protection Association (NFPA 70, 75, and 78).
- F. Underwriters Laboratories (UL 1449, Third Edition, UL 1283).
- G. National Electric Code (NEC 285).

1.5 SYSTEM DESCRIPTION

- A. Environmental Requirements:
 - 1. Storage temperature range shall be -55 to +85 degrees C (-67 to +185 degrees F).
 - 2. Operating temperature range shall be -40 to +50 degrees C (-40 to +122 degrees F).
 - 3. Operation shall be reliable in an environment with 0% to 95% non-condensing relative humidity.
 - 4. The audible noise level of the specified system shall be less that 45 dBa at 5 feet (1.5 m).
- B. Transient voltage surge suppression system with integral EMI/RFI filtering (abbreviated as SPD in this specification and on all drawings). The specified system shall provide effective high energy surge current diversion and be suitable for application in ANSI/IEE C62.41 Category A, B, and C environments, as tested by ANSI/IEEE C62.45. The system shall be connected in parallel with the protected system; no series connected elements shall be used, which could constitute a single point failure.
- C. Provide documentation of specified system's UL 1449, Third Edition, listing and suppression ratings which shall be included as required product data submittal information.
- D. The SPD system may be mounted integral to the Main Distribution Panelboards or integral to the Electronic Grade Panelboards as indicated on the drawings and specified as follows:
- 1.6 MAIN DISTRIBUTION PANELBOARDS AND BRANCH CIRCUIT PANELBOARDS
 - A. Electrical Characteristics
 - 1. Nominal Line Voltage:
 - a. 120/208 voltage, three phase, 4 wire plus ground, as indicated on drawings (MDP and SPD Branch Circuit Panelboards).
 - 2. Maximum Continuous Line Current:
 - a. As noted on drawings.
 - 3. Maximum Continuous Operating Voltage:
 - a. >115% of nominal.
 - 4. Operating Frequency:
 - a. 47-63 Hz.
 - 5. Protection Modes:
 - a. Line to line.

- b. Line to neutral.
- c. Line to ground.
- d. Neutral to ground.
- 6. Connection Means:
 - a. Direct bus connection, parallel connection.
- 7. Main Distribution Panelboard Maximum Surge Current:
 - a. Maximum surge current shall be based on a single pulse, IEEE C62.41 standard 8 x 20 microsecond wave form. Device shall not suffer more than 10% deviation in clamping voltage at specified surge current.
 - 1) Per Phase Total: 240 kA.
 - 2) Per Mode: 120 kA.
- 8. Branch Circuit Panelboards Maximum Surge Current:
 - a. Maximum surge current shall be based on a single pulse, IEEE C62.41 standard 8 x 20 microsecond wave form. Device shall not suffer more than 10% deviation in clamping voltage at specified surge current.
 - 1) Per Phase Total: 80 kA.
 - 2) Per Mode: 40 kA.
- 9. UL 1449 voltage suppression rating:
 - a. L-N, L-G, N-G: 700 volts for 208/120V systems.
 - b. L-L: 1500 volts for 208/120V systems.
 - c. L-N, L-G, N-G: 1200 volts for 480/277V systems.
 - d. L-L: 2000 volts for 480/277V systems.
- 10. AC tracking filter with EMI/RFI filtering.
- 11. EMI-RFI Noise Rejection Based on MIL-STD-E220A Methodology:
 - a. 100 KHZ: 50dB
- 12. Surge Life Cycle:
 - a. Capable of surviving 1000 sequential category C3 combination wave surges as defined by ANSI/IEEE C62.41 and ANSI/IEE C62.45, without failing the specified UL 1449 suppression ratings.
- 13. Internal Connections:
 - a. All internal wiring within the SPD device subject to surge currents shall be made of low impedance copper bus bar. Modular, parallel SPD design shall consist of 40mm metal oxide varistors individually fused at 200KAIC for each suppression mode.

1.7 DOCUMENTATION

- A. The manufacturer shall furnish an installation manual with installation, start up, and operating instructions for the specified system.
- B. Electrical and mechanical drawings shall be provided by the manufacturer which show unit dimensions, weights, component and connection locations, mounting provisions, connection details, and wiring diagram.
- C. Documentation of specified system's UL 1449 listing and clamping voltage ratings shall be included as required product data submittal information.
- D. A list of recommended spare parts shall be supplied at the customer's request.

1.8 WARRANTY

A. The manufacturer shall provide a full five-year warranty from date of shipment against any part failure when installed in compliance with manufacturer's written instructions, UL listing requirements, and any applicable national or local electrical codes.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Square D (base bid).

2.2 ACCESSORIES

- A. Unit Status indicators
 - 1. Red and green LED indicators shall be provided on the front cover to redundantly indicate unit module status. The absence of the green light and the presence of the red light shall reliably indicate that one or more surge current diversion modules has failed and that service is needed to restore full operation.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Service entrance suppressors shall be installed in the switchboard.
- B. Locate suppressor on load side of main disconnect device, as close as possible to the phase conductors and ground/neutral bar.
- C. A breaker shall be provided in the main distribution panelboard to directly connect the SPD unit. This breaker shall be directly integrated to the suppressor and switchboard bus using bolted bus bar connections.
- D. The suppressor and integral disconnect shall be installed to the switchboard using a direct bus bar connection. SPD to disconnect conductors shall be as short and straight as possible, less than 5 feet.
- E. All monitoring diagnostics features (indicator lights) shall be mounted on the front of the switchboard, adjacent to SPD.

3.2 FIELD QUALITY CONTROL

A. Field inspection and testing will be performed the manufacturer.

- B. Measure steady state load currents at each panelboard feeder; rearrange circuits in the panelboard to balance the phase loads to within 20 percent of each other. Maintain proper phasing for multi-wire branch circuits.
- C. Visual and Mechanical Inspection: Inspect for physical damage, proper alignment, anchorage, and grounding. Check proper installation and tightness of connections for circuit breakers, fusible switches, and fuses.

END OF SECTION

INTERIOR LIGHTING

PART 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	- GENERAL RELATED DOCUMENTS SUMMARY DEFINITIONS SUBMITTALS QUALITY ASSURANCE COORDINATION WARRANTY EXTRA MATERIALS	1 1 2 2 3 4 4
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	- PRODUCTS MANUFACTURERS FIXTURES AND COMPONENTS, GENERAL LIGHTING FIXTURES FLUORESCENT LAMP BALLASTS EXIT SIGNS EMERGENCY LIGHTING UNITS FLUORESCENT EMERGENCY BATTERY UNITS EMERGENCY LOAD TRANSFER DEVICE FLUORESCENT LAMPS 10 FIXTURE SUPPORT COMPONENTS 11 FINISHES 12 FLUORESCENT FIXTURE RETROFIT MATERIALS 13 SOURCE QUALITY CONTROL 1	5 5 6 6 8 8 9 9 10 10 11 11 11 11 11 11 11 11 11 11 11
PART 3 3.1 3.2 3.3 3.4 3.5	- EXECUTION 1 INSTALLATION 1 CONNECTIONS 1 FIELD QUALITY CONTROL 1 ADJUSTING 1 CLEANING 1	11 12 12 13
PART 1	- GENERAL	
1.1	RELATED DOCUMENTS	

Drawings and general provisions of the Contract, including General and Supplementary Conditions A. and Division 1 Specification Sections, apply to this Section.

1.2 **SUMMARY**

- This Section includes the following: Α.
 - 1. Interior lighting fixtures with lamps and ballasts.
 - 2. Lighting fixtures mounted on exterior building surfaces.
 - 3. Emergency lighting units.
 - 4. Exit signs.
 - Accessories, including lighting fixture retrofitting. 5.
- B. Related Sections include the following:

- 1. Division 26 Section "Wiring Devices" for manual wall-box dimmers for incandescent lamps.
- 2. Division 26 Section "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

- A. BF: Ballast factor. Ratio of light output of a given lamp(s) operated by the subject ballast to the light output of the same lamp(s) when operated on an ANSI reference circuit.
- B. CRI: Color rendering index.
- C. CU: Coefficient of utilization.
- D. LER: Luminaire efficiency rating, which is calculated according to NEMA LE 5. This value can be estimated from photometric data using the following formula:
 - 1. LER is equal to the product of total rated lamp lumens times BF times luminaire efficiency, divided by input watts.
- E. RCR: Room cavity ratio.

1.4 SUBMITTALS

- A. Submit under provisions of Section 26 0010.
- B. Product Data: For each type of lighting fixture scheduled, arranged in order of fixture designation. Submit as one package, bound together. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of fixture, including dimensions and verification of indicated parameters.
 - 2. Emergency lighting unit battery and charger.
 - 3. Fluorescent and high-intensity-discharge ballasts.
 - 4. Air and Thermal Performance Data: For air-handling fixtures. Furnish data required in "Submittals" Article in Division 23 Section "Diffusers, Registers, and Grilles."
 - Sound Performance Data: For air-handling fixtures. Indicate sound power level and sound transmission class in test reports certified according to standards specified in Division 15 Section "Diffusers, Registers and Grilles."
 - 6. Lamps.
 - 7. Photometric performance data.
- C. Shop Drawings: Show details of nonstandard or custom fixtures. Indicate dimensions, weights, methods of field assembly, components, features, and accessories.
- D. Wiring Diagrams: Power, signal, and control wiring.
- E. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

- 1. Suspended ceiling components.
- 2. Structural members to which lighting-fixture suspension systems will be attached.
- 3. Other items in finished ceiling, including the following:
 - a. Air outlets and inlets.
 - b. Speakers.
 - c. Sprinklers.
 - d. Access panels.
- 4. Perimeter moldings.
- F. Samples for Verification: For interior lighting fixtures designated for sample submission in the Interior Lighting Fixture Schedule.
 - 1. Lamps: Specified units installed.
 - 2. Ballast: 120-V models of specified ballast types.
 - 3. Accessories: Cords and plugs.
- G. Product Certificates: For each type of ballast for dimmer-controlled fixtures, signed by product manufacturer.
- H. Source quality-control test reports.
- I. Field quality-control test reports.
- J. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section "Operation and Maintenance Data," include the following:
 - 1. Catalog data for each fixture. Include the diffuser, ballast, and lamps installed in that fixture.
- K. Warranties: Special warranties specified in this Section.
- 1.5 QUALITY ASSURANCE
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - B. Comply with:
 - 1. NFPA 70 National Electrical Code.
 - 2. NECA/IESNA 500-1998 Recommended Practice for Installing Indoor Commercial Lighting Systems.
 - 3. NECA/IESNA 502-1999 Recommended Practice for Installing Industrial Lighting Systems.
 - 4. Resource Conservation and Recovery Act (RCRA), May 1994.
 - 5. Comprehensive Environmental Response, Compensation and Liability Act (CERCLA).
 - 6. Code of Federal Regulations (47 CFR 37342).

- 7. Michigan Department of State Police, Fire Marshall Division Policy Number 11-06 "Plastic Materials as Interior Finishes" pertaining to the use of plastic lenses in lighting fixtures for health care facilities.
- 8. Michigan Department of Community Industry Services requirements that all lamps shall be protected from breakage. Exposed lamps are not acceptable.
- C. FMG Compliance: Fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FMG.
- D. NFPA 101 Compliance: Comply with visibility and luminance requirements for exit signs.

1.6 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.7 WARRANTY

- A. Special Warranty for Emergency Lighting Unit Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 10 years from date of Substantial Completion at each project. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.
- B. Special Warranty for Fluorescent Ballasts: Manufacturer's standard form in which ballast manufacturer agrees to repair or replace ballasts that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Electronic Ballasts: Five years from date of Substantial Completion at each project.
- C. Manufacturer's Special Warranty for T8 Fluorescent Lamps: Manufacturer's standard form, made out to Owner and signed by lamp manufacturer agreeing to replace lamps that fail in materials or workmanship, f.o.b. the nearest shipping point to Project site, within specified warranty period indicated below.
 - 1. Warranty Period: One year from date of Substantial Completion at each project.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: 20 of each type and rating installed.
 - 2. Plastic Diffusers and Lenses: 6 of each type and rating installed.
 - 3. Fluorescent Emergency Battery Units: 3 of each type and rating installed.
 - 4. Ballasts: 6 of each type and rating installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Products: Subject to compliance with requirements, provide one of the products specified.
- 2.2 FIXTURES AND COMPONENTS, GENERAL
 - A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
 - B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A.
 - C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
 - D. HID Fixtures: Comply with UL 1572. Where LER is specified, test according to NEMA LE 5B.
 - E. Metal Parts: Free of burrs and sharp corners and edges.
 - F. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.
 - G. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
 - H. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
 - 4. Laminated Silver Metallized Film: 90 percent.
 - I. Plastic Diffusers, Covers, and Globes:
 - 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - Lens Thickness: At least 0.125 inch minimum unless different thickness is scheduled.
 - b. UV stabilized.
 - 2. Glass: Annealed crystal glass, unless otherwise indicated.
 - J. Electromagnetic-Interference Filters: A component of fixture assembly. Suppress conducted electromagnetic-interference as required by MIL-STD-461D. Fabricate lighting fixtures with one filter on each ballast indicated to require a filter.

- K. Air-Handling Fluorescent Fixtures: For use with plenum ceiling for air return and heat extraction and for attaching an air-diffuser-boot assembly specified in Division 15 Section "Diffusers, Registers, and Grilles."
 - 1. Air Supply Units: Slots in one or both side trims join with air-diffuser-boot assemblies.
 - 2. Heat Removal Units: Air path leads through lamp cavity.
 - 3. Combination Heat Removal and Air Supply Unit: Heat is removed through lamp cavity at both ends of the fixture door with air supply same as for air supply units.
 - 4. Dampers: Operable from outside fixture for control of return-air volume.
 - 5. Static Fixtures: Air supply slots are blanked off, and fixture appearance matches active units.
- L. General: Install ballasts, lamps, and specified accessories at factory. Replace and install any damaged lamps on project site.
- 2.3 LIGHTING FIXTURES
 - A. As indicated on the drawings.
- 2.4 FLUORESCENT LAMP BALLASTS
 - A. Description: Include the following features, unless otherwise indicated:
 - 1. Designed for type and quantity of lamps indicated at full light output except for emergency lamps powered by in-fixture battery-packs.
 - 2. Externally fused with slow-blow type rated between 2.65 and 3.0 times the line current.
 - B. Program rapid start electronic ballasts for linear lamps shall include the following features, unless otherwise indicated:
 - 1. Products:
 - a. Advance.
 - b. Universal Lighting.
 - 2. Comply with NEMA C82.11.
 - 3. Ballast Type: Programmed rapid start, unless otherwise indicated.
 - 4. Programmed Start: Ballasts with two-step lamp starting to extend life of frequently started lamps.
 - 5. Sound Rating: A.
 - 6. Total harmonic distortion rating of less than 10 percent according to NEMA C82.11. Input current third harmonic content shall not exceed 10%.
 - 7. Lamp end-of-life detection and shutdown circuit.
 - 8. Transient Voltage Protection: IEEE C62.41, Category A.

- 9. Operating Frequency: 25 kHz or higher, and operate without visible flicker.
- 10. Lamp Current Crest Factor: Less than 1.7.
- 11. Parallel Lamp Circuits: Multiple lamp ballasts connected to maintain full light output on surviving lamps if one or more lamps fail.
- 12. Power factor shall be 90% minimum.
- 13. Ballast factor shall be .875 to 1.00.
- C. Electromagnetic ballasts for linear lamps shall have the following features, unless otherwise indicated:
 - Products:
 - a. Advance.
 - b. Universal Lighting Technologies
 - 2. Comply with NEMA C82.1.
 - 3. Type: Energy-saving, high power factor, Class P, automatic-reset thermal protection.
 - 4. Ballast Manufacturer Certification: Indicated by label.
 - 5. Provide lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
 - 6. Provide ballast suitable for lamps specified.
 - 7. Ballast shall not exceed sound level above Class A.
- D. Ballasts for dimmer-controlled fixtures shall comply with general and fixture-related requirements above for electronic ballasts and the following features:
 - 1. Products:
 - a. Advance: Mark 10.
 - b. Lutron.
 - 2. Dimming Range: 100 to 5 percent of rated lamp lumens.
 - 3. Ballast Input Watts: Can be reduced to 20 percent of normal.
 - 4. Compatibility: Certified by manufacturer for use with specific dimming system indicated.
 - 5. Provide ballast suitable for specified lamp type.
- E. Ballasts for Low-Temperature Environments:
 - 1. Temperatures 0 deg F and Higher: Electronic or electromagnetic type rated for 0 deg F minus 17 deg C starting temperature.
 - 2. Temperatures Minus 20 deg F (Minus 29 deg C) and Higher: Electromagnetic type designed for use with high-output lamps.

F. Ballasts for Low Electromagnetic-Interference Environments: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for consumer equipment.

2.5 EXIT SIGNS

- A. General: Comply with UL 924; for sign colors and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:
 - 1. Lamps for AC Operation: Incandescent, 2 for each fixture, 50,000 hours of rated lamp life.
 - 2. Lamps for AC Operation: Fluorescent, 2 for each fixture, 20,000 hours of rated lamp life.
 - 3. Lamps for AC Operation: Light-emitting diodes, 70,000 hours minimum of rated lamp life.
 - 4. Additional Lamps for DC Operation: Two minimum, bayonet-base type, for connection to external dc source.
- C. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 - 1. Battery: Sealed, maintenance-free, nickel-cadmium type with special warranty.
 - 2. Charger: Fully automatic, solid-state type with sealed transfer relay.
 - 3. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
- D. Provide edge lit signs with a mirror plaque background.

2.6 EMERGENCY LIGHTING UNITS

- A. General: Self-contained units complying with UL 924.
 - 1. Battery: Sealed, maintenance-free, lead-acid type with minimum 10-year nominal life and special warranty.
 - 2. Charger: Fully automatic, solid-state type with sealed transfer relay.
 - 3. Operation: Relay automatically turns lamp on when power supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - 4. Wire Guard: Where indicated, heavy-chrome-plated wire guard protects lamp heads or fixtures.
 - 5. Integral Time-Delay Relay: Holds unit on for fixed interval when power is restored after an outage; time delay permits high-intensity-discharge lamps to restrike and develop adequate output.

2.7 FLUORESCENT EMERGENCY BATTERY UNITS

- A. Internal Type: Self-contained, modular, battery-inverter unit factory mounted within fixture body. Comply with UL 924.
 - 1. Emergency Connection: Operate one fluorescent lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 - 2. Night Light Connection: Emergency Light Fixtures shall NOT be connected as Night Lights.
 - 3. Test Switch and Light-Emitting-Diode Indicator Light: Visible and accessible without opening fixture or entering ceiling space. Install remote test switch and plate in adjacent ceiling tile.
 - 4. Battery: Sealed, maintenance-free, nickel-cadmium type with minimum seven-year nominal life.
 - 5. Charger: Fully automatic, solid-state, constant-current type.
 - 6. Lamp Ratings:

	Minimum Lumen Output (two lamps)
Lamp Type	
F28T8	1400
F54T5HO	1400

- 7. Universal transformer to operate at 120 volt or 277 volt.
- 8. Products, linear fluorescent:
 - a. Lithonia PS1400 (with quick disconnect).
 - b. Equal by Bodine, Dual Lite or lota (with quick disconnect that matches the Lithonia PS1400). Do not bid if quick disconnect is not identical to the Lithonia PS1400.

2.8 EMERGENCY LOAD TRANSFER DEVICE

- A. Manufacturers:
 - 1. Nine-24, Inc.: BLTC Series.
 - 2. Bodine GTD Series.
 - 3. Dual Lite.
 - 4. LVS.
 - 5. Side-Lite.
- B. Description: Localized load transfer switch to sense normal presence of normal power for switched circuits and switch luminaire over to emergency source upon loss of normal source. Device shall be installed integral to luminaire or mounted remotely as application required.
- C. U.L. 924 Listed.
- D. Integral test switch and indicating lamps to indicate status.

2.9 FLUORESCENT LAMPS

- A. Low-Mercury Lamps: Comply with Federal toxic characteristic leaching procedure test, and yield less than 0.2 mg of mercury per liter, when tested according to NEMA LL 1.
- B. T5HO rapid start low-mercury lamps, rated 54 W maximum, nominal length of 45.2 inches 1148 mm, 4600 initial lumens (minimum), CRI greater than 80, color temperature 4100 K, and average rated life of 30,000 hours, unless otherwise indicated.
- C. T8 rapid-start low-mercury lamps, rated 28 W maximum, 2650 initial lumens (minimum), CRI of 80 (minimum), color temperature of 4100 K, and average rated life of 80,000 hours at 3 hours operation per start, unless otherwise indicated.
- D. T8 rapid-start low-mercury lamps, rated 17 W maximum, nominal length of 24 inches610 mm, 1300 initial lumens (minimum), CRI of 80 (minimum), color temperature of 4100 K, and average rated life of 60,000 hours at 3 hours operation per start, unless otherwise indicated
- E. Fluorescent Lamp Manufacturers:
 - 1. Osram Sylvania.
 - General Electric.
 - 3. Philips.

2.10 FIXTURE SUPPORT COMPONENTS

- A. Comply with Division 26 Section "Electrical Supports" for channel- and angle-iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.
- C. Twin-Stem Hangers: Two, 1/2-inch steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.
- D. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated, 12 gage.
- E. Wires For Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage.
- F. Rod Hangers: 3/16-inch- minimum diameter, cadmium-plated, threaded steel rod.
- G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.
- H. Aircraft Cable Support: Use cable, anchorages, and intermediate supports recommended by fixture manufacturer.

2.11 FINISHES

- A. Fixtures: Manufacturers' standard, unless otherwise indicated.
 - 1. Paint Finish: Applied over corrosion-resistant treatment or primer, free of defects.
 - 2. Metallic Finish: Corrosion resistant.

2.12 FLUORESCENT FIXTURE RETROFIT MATERIALS

- A. Comply with UL 1598 listing requirements.
 - 1. Reflector Kit: UL 1598, Type I. Suitable for two- to four-lamp, surface-mounted or recessed lighting fixtures by improving reflectivity of fixture surfaces. No electrical parts are to be changed.
 - Ballast and Lamp Change Kit: UL 1598, Type II. Suitable for changing existing ballast, lamps, and sockets as scheduled.

2.13 SOURCE QUALITY CONTROL

- A. Provide services of a qualified, independent testing and inspecting agency to factory test fixtures with ballasts and lamps; certify results for electrical ratings and photometric data.
- B. Factory test fixtures with ballasts and lamps; certify results for electrical ratings and photometric data.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install in accordance with manufacturers instructions.
- B. Locate recessed ceiling luminaires as indicated on reflected ceiling plan.
- C. Fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture.
- D. Support for Fixtures in or on Grid-Type Suspended Ceilings: Use grid for support.
 - 1. Install a minimum of four ceiling support system rods or wires for each fixture. Locate not more than 6 inches from fixture corners.
 - 2. Support Clips: Fasten to fixtures and to ceiling grid members at or near each fixture corner with clips that are UL listed for the application.
 - 3. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch metal channels spanning and secured to ceiling tees.
- E. Support luminaires independent of ceiling framing. Support recessed grid luminaries from two opposite corners directly to structure. Wire or rod shall have breaking strength of the weight of fixture at a safety factor of 3.
- F. Exposed Grid Ceilings: Support surface mounted luminaires on grid ceiling directly from building structure.
- G. Install recessed luminaires to permit removal from below.
- H. Install recessed luminaires using accessories and firestopping materials to meet regulatory requirements for fire rating.
- I. Suspended Fixture Support: As follows:
 - 1. Install suspended luminaires and exit signs using pendants supported from swivel hangers except where noted to use chain hangers. Provide pendant length required to suspend luminaire at indicated height.

- 2. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
- 3. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers.
- 4. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
- 5. Continuous Rows: Suspend from cable.
- J. Air-Handling Fixtures: Install with dampers closed and ready for adjustment.
- K. Adjust aimable fixtures to provide required light intensities.
- L. Install surface mounted luminaires and exit signs plumb and adjust to align with building lines and with each other. Secure to prohibit movement.
- M. Where fluorescent fixtures are shown with dual switches, connect all inner lamps to one switch and all outer lamps to the other switch. Dim the inner lamps where a dimmer switch is shown.
- N. Connect night light fixtures and emergency lighting fixtures to the hot (unswitched) side of lighting circuits.
- O. Provide green grounding conductors back to the panel ground for lighting circuits. Raceways shall not be used as grounding conductors.
- P. Fixtures shall have their exterior labels removed and shall be thoroughly cleaned. Non-functioning lamps shall be replaced.
- Q. Mount fluorescent emergency lighting battery packs in accordance with the manufacturer's instructions. Locate the remote test/monitor modules identically so that they are visible and they form a straight line when viewed from the end of the corridor or room. Where a suspended ceiling exists, center the modules in adjacent ceiling tiles.
- R. Mount sealed beam emergency lighting units where shown and aim their lamps to light the egress path as uniformly as possible.

3.2 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- B. Make wiring connections to branch circuit using building wire with insulation suitable for temperature conditions within luminaire.
- C. Bond products and metal accessories to branch circuit equipment grounding conductor.
- D. Connect luminaires to branch circuit outlet boxes provided under Section 16130 using 1/2" flexible conduit.

3.3 FIELD QUALITY CONTROL

- A. Inspect each installed fixture for damage. Replace damaged fixtures and components.
- B. Examine each luminaire to determine suitability for lamps specified.
- C. Verify normal operation of each fixture after installation.

- D. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify normal transfer to battery power source and retransfer to normal.
- E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.
- F. Corroded Fixtures: During warranty period, replace fixtures that show any signs of corrosion.
- G. Check for variance in lamp color temperature throughout project.
- H. Spot check for lamp output level from start up through 10 minute duration and make rotation.
- I. All fluorescent and H.I.D. lamps shall be allowed to run a minimum of 100 hours, continuously, prior to punchlist or any dimming.
- J. A visual inspection shall be performed to verify cleanliness and alignment of the fixtures, misalignment and light leaks shall be corrected, and rattles due to ventilation system vibration shall be eliminated.

3.4 ADJUSTING

- A. Aim and adjust luminaires as directed by the Architect/Engineer.
- B. Adjust exit sign directional arrows as indicated on Drawings.
- C. Relamp luminaires that have failed lamps at Substantial Completion.
- D. Adjust all "low end trim" settings of dimming switches prior to punchlist.
- E. Adjust and calibrate all dimming system controls until the system works as designed. Contact the Architect/Engineer when dimming is complete and demonstrate operation to owner's representative and Architect/Engineer.

3.5 CLEANING

- A. Clean electrical parts to remove conductive and deleterious materials.
- B. Remove dirt and debris from enclosures and lenses.
- C. Clean photometric control surfaces as recommended by manufacturer.
- D. Clean finishes and touch up damage.

END OF SECTION

EXTERIOR LIGHTING

PART 1 -	- GENERAL	
1.1	RELATED DOCUMENTS	1
1.2	SUMMARY	1
1.3	DEFINITIONS	
1.4	STRUCTURAL ANALYSIS CRITERIA FOR POLE SELECTION	2
1.5	SUBMITTALS	
1.6	QUALITY ASSURANCE	3
1.7	DELIVERY, STORAGE, AND HANDLING	
1.8	WARRANTY	4
PART 2 -	- PRODUCTS	4
2.1	MANUFACTURERS	
2.2	LUMINAIRES, GENERAL REQUIREMENTS	
2.3	FLUORESCENT BALLASTS AND LAMPS	
2.4	POLES AND SUPPORT COMPONENTS, GENERAL REQUIREMENTS	
2.5	ALUMINUM POLES	
2.6	POLE ACCESSORIES	
PART 3 -	- EXECUTION	8
3.1	LUMINAIRE INSTALLATION	
3.2	POLE INSTALLATION	
3.3	BOLLARD LUMINAIRE INSTALLATION	
3.4	INSTALLATION OF INDIVIDUAL GROUND-MOUNTING LUMINAIRES	
3.5	CORROSION PREVENTION	
3.6	GROUNDING	
3.7	FIELD QUALITY CONTROL	
3.8	DEMONSTRATION	
0.0		

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Exterior luminaires with lamps and ballasts.
 - 2. Luminaire-mounted photoelectric relays.
 - 3. Poles and accessories.
 - 4. Luminaire lowering devices.
- B. Related Sections include the following:
 - 1. Division 26 Section "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings.

1.3 DEFINITIONS

- A. CRI: Color-rendering index.
- B. HID: High-intensity discharge.
- C. Luminaire: Complete lighting fixture, including ballast housing if provided.
- D. Pole: Luminaire support structure, including tower used for large area illumination.
- E. Standard: Same definition as "Pole" above.

1.4 STRUCTURAL ANALYSIS CRITERIA FOR POLE SELECTION

- A. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied as stated in AASHTO LTS-4.
- B. Live Load: Single load of 500 lbf, distributed as stated in AASHTO LTS-4.
- C. Ice Load: Load of 3 lbf/sq. ft., applied as stated in AASHTO LTS-4.
- D. Wind Load: Pressure of wind on pole and luminaire, calculated and applied as stated in AASHTO LTS-4.
 - 1. Wind speed for calculating wind load for poles exceeding 50 feet in height is 70 mph
 - 2. Wind speed for calculating wind load for poles 50 feet or less in height is 70 mph.

1.5 SUBMITTALS

- A. Product Data: For each luminaire, pole, and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
 - 2. Details of attaching luminaires and accessories.
 - 3. Details of installation and construction.
 - 4. Luminaire materials.
 - 5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories.
 - a. For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
 - b. Photometric data shall be certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
 - 6. Photoelectric relays.

- 7. Ballasts, including energy-efficiency data.
- 8. Lamps, including life, output, and energy-efficiency data.
- 9. Materials, dimensions, and finishes of poles.
- 10. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.
- 11. Anchor bolts for poles.
- 12. Manufactured pole foundations.

B. Shop Drawings:

- 1. Anchor-bolt templates keyed to specific poles and certified by manufacturer.
- 2. Design calculations, certified by a qualified professional engineer, indicating strength of screw foundations and soil conditions on which they are based.
- 3. Wiring Diagrams: Power and control wiring.
- C. Samples for Verification: For products designated for sample submission in Exterior Lighting Device Schedule. Each sample shall include lamps and ballasts.
- D. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements in AASHTO LTS-4 and that load imposed by luminaire has been included in design.
- E. Qualification Data: For agencies providing photometric data for lighting fixtures.
- F. Field quality-control test reports.
- G. Operation and Maintenance Data: For luminaires and poles luminaire lowering devices to include in emergency, operation, and maintenance manuals.
- H. Warranty: Special warranty specified in this Section.

1.6 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. Comply with IEEE C2, "National Electrical Safety Code."

E. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Package aluminum poles for shipping according to ASTM B 660.
- B. Store poles on decay-resistant-treated skids at least 12 inches above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.
- C. Handle wood poles so they will not be damaged. Do not use pointed tools that can indent pole surface more than 1/4 inch deep. Do not apply tools to section of pole to be installed below ground line.
- D. Retain factory-applied pole wrappings on fiberglass and laminated wood poles until right before pole installation. Handle poles with web fabric straps.
- E. Retain factory-applied pole wrappings on metal poles until right before pole installation. For poles with nonmetallic finishes, handle with web fabric straps.

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Warranty shall include parts and labor.
 - 1. Warranty Period for Luminaires: Five years from date of Substantial Completion.
 - 2. Warranty Period for Metal Corrosion: Five years from date of Substantial Completion.
 - 3. Warranty Period for Color Retention: Five years from date of Substantial Completion.
 - 4. Warranty Period for Lamps: Replace lamps and fuses that fail within 5 years from date of Substantial Completion.
 - 5. Warranty Period for Poles: Repair or replace lighting poles and standards that fail in finish, materials, and workmanship within manufacturer's standard warranty period, but not less than five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
 - 2. Basis of Design Product: The design of each item of exterior luminaire and its support is based on the product named. Subject to compliance with requirements, provide either the named product or a comparable product by one of the other manufacturers specified.

2.2 LUMINAIRES, GENERAL REQUIREMENTS

- A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.
- B. Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
- C. Metal Parts: Free of burrs and sharp corners and edges.
- D. Sheet Metal Components: Corrosion-resistant aluminum, unless otherwise indicated. Form and support to prevent warping and sagging.
- E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.
- F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.
- G. Exposed Hardware Material: Stainless steel.
- H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.
- J. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
- K. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- L. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
- M. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling."

- 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color: As selected from manufacturer's standard catalog of colors.
 - b. Color: Match Architect's sample of custom color.
 - c. Color: As selected by Architect from manufacturer's full range.
- N. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
 - 3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 - 4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
 - a. Color: as specified on fixture schedule.

2.3 FLUORESCENT BALLASTS AND LAMPS

- A. Low-Temperature Ballast Capability: Rated by its manufacturer for reliable starting and operation of indicated lamp(s) at temperatures minus 20 deg F and higher.
- B. Ballast Characteristics:
 - 1. Power Factor: 90 percent, minimum.
 - 2. Sound Rating: A.
 - 3. Total Harmonic Distortion Rating: Less than 10 percent.
 - 4. Electromagnetic Ballasts: Comply with ANSI C82.1, energy-saving, high power factor, Class P, automatic-reset thermal protection.
 - 5. Case Temperature for Compact Lamp Ballasts: 65 deg C, maximum.
 - 6. Transient-Voltage Protection: Comply with IEEE C62.41 Category A or better.
- C. Low-Temperature Lamp Capability: Rated for reliable starting and operation with ballast provided at temperatures minus 20 deg and higher.
- D. Fluorescent Lamps: Low-mercury type. Comply with the EPA's toxicity characteristic leaching procedure test; shall yield less than 0.2 mg of mercury per liter when tested according to NEMA LL 1.

2.4 POLES AND SUPPORT COMPONENTS, GENERAL REQUIREMENTS

- A. Structural Characteristics: Comply with AASHTO LTS-4.
 - 1. Wind-Load Strength of Poles: Adequate at indicated heights above grade without failure, permanent deflection, or whipping in steady winds of speed indicated in Part 1 "Structural Analysis Criteria for Pole Selection" Article, with a gust factor of 1.3.
 - 2. Strength Analysis: For each pole, multiply the actual equivalent projected area of luminaires and brackets by a factor of 1.1 to obtain the equivalent projected area to be used in pole selection strength analysis.
- B. Luminaire Attachment Provisions: Comply with luminaire manufacturers' mounting requirements. Use stainless-steel fasteners and mounting bolts, unless otherwise indicated.
- C. Mountings, Fasteners, and Appurtenances: Corrosion-resistant items compatible with support components.
 - 1. Materials: Shall not cause galvanic action at contact points.
 - 2. Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers: Hot-dip galvanized after fabrication, unless stainless-steel items are indicated.
 - 3. Anchor-Bolt Template: Plywood or steel.
- D. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Concrete, reinforcement, and formwork are specified in Division 3 Section "Cast-in-Place Concrete."
- E. Power-Installed Screw Foundations: Factory fabricated by pole manufacturer, with structural steel complying with ASTM A 36/A 36M and hot-dip galvanized according to ASTM A 123/A 123M; and with top-plate and mounting bolts to match pole base flange and strength required to support pole, luminaire, and accessories.

2.5 ALUMINUM POLES

- A. Poles: Seamless, extruded structural tube complying with ASTM B 429, Alloy 6063-T6 with access handhole in pole wall.
- B. Poles: ASTM B 209, 5052-H34 marine sheet alloy with access handhole in pole wall.
 - 1. Shape: Square, straight.
 - 2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.
- C. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.
- D. Grounding and Bonding Lugs: Welded 1/2-inch threaded lug, complying with requirements in Division 26 Section "Grounding and Bonding," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.

- E. Brackets for Luminaires: Detachable, with pole and adapter fittings of cast aluminum. Adapter fitting welded to pole and bracket, then bolted together with stainless-steel bolts.
 - 1. Tapered oval cross section, with straight tubular end section to accommodate luminaire.
 - 2. Finish: Same as pole.
- F. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.
- G. Aluminum Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
 - 3. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 - 4. Class I, Color Anodic Finish: AA-M32C22A42/A44 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
 - a. Color: Dark bronze.

2.6 POLE ACCESSORIES

- A. Base Covers: Manufacturers' standard metal units, arranged to cover pole's mounting bolts and nuts. Finish same as pole.
- B. Vibration Dampener: For all steel lighting poles taller than 15', provide factory or field installed vibration dampening device to eliminate second mode or higher resonance that can occur with low velocity steady state winds. Vibration dampeners shall be installed inside of the poles. Dampening method shall be steel chain encased in a plastic tube approximately 2/3 the length of the pole. Coordinate all requirements with pole manufacturer.

PART 3 - EXECUTION

3.1 LUMINAIRE INSTALLATION

- A. Install exterior lighting system per N.E.C.A./I.E.S.N.A. 501-2006.
- B. Install lamps in each luminaire.
- C. Fasten luminaire to indicated structural supports.
 - 1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

D. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources.

3.2 POLE INSTALLATION

- A. Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on the pole.
- B. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features, unless otherwise indicated on Drawings:
 - 1. Fire Hydrants and Storm Drainage Piping: 60 inches.
 - 2. Water, Gas, Electric, Communication, and Sewer Lines: 10 feet.
 - 3. Trees: 15 feet.
- C. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Division 3 Section "Cast-in-Place Concrete."
- D. Foundation-Mounted Poles: Mount pole with leveling nuts, and tighten top nuts to torque level recommended by pole manufacturer.
 - 1. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer.
 - 2. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space.
 - 3. Install base covers, unless otherwise indicated.
 - 4. Use a short piece of 1/2-inch- diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.
- E. Embedded Poles with Tamped Earth Backfill: Set poles to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height.
 - 1. Dig holes large enough to permit use of tampers in the full depth of hole.
 - 2. Backfill in 6-inch layers and thoroughly tamp each layer so compaction of backfill is equal to or greater than that of undisturbed earth.
- F. Embedded Poles with Concrete Backfill: Set poles in augered holes to depth below finished grade indicated on Drawings, but not less than one-sixth of pole height.
 - 1. Make holes 6 inches in diameter larger than pole diameter.
 - 2. Fill augered hole around pole with air-entrained concrete having a minimum compressive strength of 3000 psi at 28 days, and finish in a dome above finished grade.
 - 3. Use a short piece of 1/2-inch- diameter pipe to make a drain hole through concrete dome. Arrange to drain condensation from interior of pole.

- 4. Cure concrete a minimum of 72 hours before performing work on pole.
- G. Poles and Pole Foundations Set in Concrete Paved Areas: Install poles with minimum of 6-inchwide, unpaved gap between the pole or pole foundation and the edge of adjacent concrete slab. Fill unpaved ring with pea gravel to a level 1 inch below top of concrete slab.
- H. Raise and set poles using web fabric slings (not chain or cable).

3.3 BOLLARD LUMINAIRE INSTALLATION

- A. Align units for optimum directional alignment of light distribution.
- B. Install on concrete base with top 4 inches above finished grade or surface at bollard location. Cast conduit into base, and shape base to match shape of bollard base. Finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 3 Section "Cast-in-Place Concrete."

3.4 INSTALLATION OF INDIVIDUAL GROUND-MOUNTING LUMINAIRES

A. Install on concrete base with top 4 inches above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 3 Section "Cast-in-Place Concrete."

3.5 CORROSION PREVENTION

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
- B. Steel Conduits: Comply with Division 26 Section "Raceways and Boxes." In concrete foundations, wrap conduit with 0.010-inch- thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.6 GROUNDING

- A. Ground metal poles and support structures according to Division 26 Section "Grounding and Bonding."
 - 1. Install grounding electrode for each pole, unless otherwise indicated.
 - 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.
- B. Ground nonmetallic poles and support structures according to Division 26 Section "Grounding and Bonding."
 - 1. Install grounding electrode for each pole.
 - 2. Install grounding conductor and conductor protector.
 - 3. Ground metallic components of pole accessories and foundations.

3.7 FIELD QUALITY CONTROL

A. Inspect each installed fixture for damage. Replace damaged fixtures and components.

- B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
 - Verify operation of photoelectric controls.
- C. Illumination Tests:
 - 1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IESNA testing guide(s):
 - a. IESNA LM-5, "Photometric Measurements of Area and Sports Lighting."
 - b. IESNA LM-50, "Photometric Measurements of Roadway Lighting Installations."
 - c. IESNA LM-52, "Photometric Measurements of Roadway Sign Installations."
 - d. IESNA LM-64, "Photometric Measurements of Parking Areas."
 - e. IESNA LM-72, "Directional Positioning of Photometric Data."
- D. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain luminaire lowering devices. Refer to Division 1 Section "Demonstration and Training.

END OF SECTION

FIRE ALARM

	GENERAL	
1.1	RELATED DOCUMENTS	. 1
1.2	SECTION INCLUDES	. 1
1.3	REFERENCES	
1.4	REGULATORY REQUIREMENTS	. 2
1.5	SUMMARY	. 2
1.6	SYSTEM DESCRIPTION	
1.7	SYSTEM FUNCTIONS	. 3
1.8	SUBMITTALS	
	PROJECT RECORD DOCUMENTS	
	OPERATION, MAINTENANCE DATA, AND CALCULATIONS	
	DELIVERY, STORAGE, AND HANDLING	
1.12	EXTRA MATERIALS	. 7
PART 2 -	PRODUCTS	7
2.1	MANUFACTURERS	
	FIRE ALARM CONTROL PANEL (FACP).	7
2.3	REMOTE FIRE ALARM ANNUNCIATOR PANEL	 8
2.4	EMERGENCY POWER SUPPLY	
2.5	SMOKE DETECTORS, INTELLIGENT ADDRESSABLE	
	THERMAL DETECTOR, INTELLIGENT ADDRESSABLE	
2.7	DUCT SMOKE DETECTORS	. 9
2.8	DUCT SMOKE DETECTOR REMOTE ALARM INDICATORS	
	MANUAL STATIONS, INTELLIGENT	
	ADDRESSABLE INTERFACE MODULE	
	ADDRESSABLE CONTROL MODULE	
2.12	AUDIO VISUAL DEVICES	10
2.13	AUXILIARY DEVICES	11
2.14	WIRE AND CABLE	11
DADT 2	EXECUTION	11
	WARRANTY TESTS AND REPORTS	
3.3	INSTALLATION	ıδ

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and Division 1 specification sections, apply to work of this section.
- B. Related Sections include the following:
 - 1. Division 26 Section "Electrical General Requirements."

1.2 SECTION INCLUDES

A. Fire alarm and smoke detection systems. This section intends to describe a Protected Premises Fire Alarm System. The control panel shall be intelligent device addressable, analog detecting, low voltage and modular with multiplex communication techniques, in full compliance with all applicable

- codes and guidelines. The features and system capacities contained in this specification shall be furnished as part of this project.
- B. The system as described shall be installed, tested, and delivered to the Owner in first class condition. The system shall include all the required hardware and software to accomplish the requirements of this specification and the contract documents, whether or not specifically itemized herein.
- C. All equipment furnished shall be new and include the latest state of the art products from a single manufacturer, engaged in the manufacturing and sale of fire detection devices for over ten years. The equipment manufacturer shall have an installed base of existing systems as a reference.

1.3 REFERENCES

- A. NFPA 72 National Fire Alarm Code.
- B. NFPA 101 Life Safety Code.
- C. U.L. 1971 Standard for Safety Signaling Devices for the Hearing Impaired.

1.4 REGULATORY REQUIREMENTS

- A. System: UL (FPED) and FM listed.
- B. Conform to requirements of NFPA 101.
- C. A.D.A. Federal guidelines.
- D. Conform to State of Michigan Fire Code.
- E. Conform to International Building Code.

1.5 SUMMARY

- A. The Fire Alarm System shall consist of all necessary hardware equipment and software programming to perform the following functions:
 - 1. Fire Alarm and Detection Operations.
 - 2. Remote Monitoring of Sprinkler Systems.
 - 3. Remote Manual and Automatic Control of all Door Hold-open Devices, and other auxiliary functions indicated on the drawings.

1.6 SYSTEM DESCRIPTION

- A. General: Complete, zoned, noncoded, addressable, microprocessor-based fire detection and alarm system with manual and automatic alarm initiation, addressable analog initiating devices, and automatic alert.
- B. The fire alarm system shall allow for loading and editing special instructions and operating sequences as required. The system shall be capable of on-site programming to accommodate

- system expansion and facilitate changes in operation. All software operations shall be stored in a non-volatile programmable memory within the fire alarm control panel (FACP).
- C. Resident software shall allow for full configuration of initiating circuits so that additional hardware shall not be necessary to accommodate future changes.
- D. Resident software shall allow for configuration of notification appliance and control circuits so that additional hardware shall not be necessary to accommodate changes.
- E. The system shall have the capability of recalling alarms and trouble conditions in chronological order for the purpose of recreating an event history.
- F. Signal Transmission: Notification appliance circuits shall be NFPA Style Y, Class B. Signaling line circuits shall be NFPA Style 4, Class B.
- G. Data Communication Transmission Between Control Units: Style 7, Class A.

1.7 SYSTEM FUNCTIONS

- A. Signal Initiation: The manual or automatic operation of an alarm-Initiating or supervisory-operating device shall cause the FACP to transmit an appropriate signal including:
 - General alarm.
 - 2. System trouble.
 - 3. Valve tamper supervisory.
 - 4. Door release.
 - 5. Fan shutdown.
 - 6. Release electrically held door locks.
 - 7. A general alarm shall be initiated by:
 - 8. Water-flow alarm switch operation.
 - 9. Smoke detection. Alarm verification is required for all smoke detector zones.
 - 10. Manual station operation.
 - 11. Heat detector operation.
- B. General Alarm: A system general alarm shall:
 - 1. Indicate the general alarm condition at the FACP.
 - 2. Identify the device that is the source of the alarm at the FACP.
 - 3. Display the alarm on an 80 character LCD display. The system alarm LED shall flash on the control panel until the alarm has been acknowledged. Once acknowledged, this same LED shall latch on. A subsequent alarm received from another zone shall flash the system alarm LED on the control unit. The display shall show the new alarm information.

- 4. Sound a pulsing alarm tone within the FACP until the event has been acknowledged.
- 5. Operate audible and visible alarm notification signals throughout the building.
- 6. Sound a continuous fire alarm signal until silenced by the alarm silence switch at the FACP.
- 7. Flash all visible alarm notification appliances continuously until the System Reset Switch is operated. Any subsequent zone alarm shall reactivate the alarm notification appliances.
- 8. Close fire and smoke doors normally held open by magnetic door holders.
- 9. Stop supply and return fans serving zone where alarm is initiated.
- 10. Close smoke dampers on system serving zone where alarm is initiated.
- 11. Transmit the alarm to the proprietary supervising station.
- C. A supervisory alarm shall be initiated by:
 - 1. Sprinkler valve tamper switch operation.
- D. Loss of primary power at the FACP shall sound a trouble signal at the FACP and shall indicate at the FACP when the system is operating on an alternate power supply.
- E. Circuit Supervision: Circuit faults shall be indicated by means of both a zone and a trouble signal at the FACP.
- F. Annunciation: Manual and automatic operation of alarm and supervisory initiating devices shall be annunciated on the FACP, indicating the location and type of device.
- G. FACP Alphanumeric Display: Shall display plain-language description of alarms, trouble signals, supervisory signals, monitoring actions, system and component status, and system commands.
- H. Independent System Monitoring: Supervise each independent smoke detector, fire suppression system and duct detector, for both normal operation and trouble.
- I. Alarm Silencing: If the "Alarm Silence" button is pressed, all audio alarm signals shall cease operation.
- J. System Reset: The "System Reset" button shall be used to return the system to its normal state after an alarm condition has been remedied.
- K. Activation of an auxiliary bypass switch shall override the selected automatic functions.
- L. Auxiliary manual controls shall be supervised so that an "off normal" position of any switch shall cause an "off normal" system trouble. The "off normal" status shall be clearly identified in plain-language on the FACP.
- M. Recording of Events: Record all alarm, supervisory, and trouble events in non-volatile memory.
- N. Smoke Sensor Sensitivity Adjustment:
 - 1. Authorized operation of controls at the FACP shall cause the selection of specific addressable smoke sensors for adjustment, display of their current status and sensitivity settings, and control of changes in those settings.

- 2. Remote Controllability: Individually monitor sensors at the FACP for calibration, sensitivity, and alarm condition, and individually adjust for sensitivity from the FACP. The alarm decision for each sensor shall be determined by the control unit. The control unit shall determine the condition of each sensor by comparing the sensor value to the stored values.
- O. The actuation of the "enable one person test" program at the FACP shall activate the "One Person Testing" mode of the system which shall cause the following to occur:
 - 1. The city circuit connection shall be bypassed.
 - 2. Control relay functions shall be bypassed.
 - 3. The FACP shall show a trouble condition.
 - 4. The alarm activation of any initiation device shall cause the audible notification appliances to code a number of pulses to match the zone number.
 - 5. The FACP shall automatically reset after signaling is complete.
 - 6. Any momentary opening of an initiating or notification appliance circuit wiring shall cause the audible signals to sound for 4 seconds indicating the trouble condition.
 - 7. The system shall have the capacity of 8 programmable, passcode protected, one person testing groups, such that only a portion of the system need be disabled during testing.

P. Power Requirements

- The FACP shall receive 120 VAC power via a dedicated 20A branch circuit breaker provided with a red lock-on device.
- 2. The system shall be provided with sufficient battery capacity to operate the entire system upon loss of normal 120 VAC power in a normal supervisory mode for a period of 24 hours with 15 minutes of alarm operation at the end of this period. The system shall automatically transfer to battery standby upon power failure. All battery charging and recharging operations shall be automatic.
- 3. All circuits requiring system operating power shall be 24 VDC and shall be individually fused at the control panel.
- 4. The incoming power to the system shall be supervised so that any power failure must be audibly and visibly indicated at the control panel. A green "power on" LED shall be displayed continuously while incoming power is present.
- 5. The system batteries shall be supervised so that a low battery condition or disconnection of the battery shall be audibly and visibly indicated at the FACP and the command center.
- Q. The system shall support 100% of addressable devices in alarm or operated at the same time, under both primary (AC) and secondary (battery) power conditions.

1.8 SUBMITTALS

A. Bidders will be required to submit shop drawings and product data during the construction phase of each project. Provide the following submittals for review:

- Complete description data indicating UL listing for all network components. Include dimensioned plans and elevations showing minimum clearances and installed features and devices.
- 2. Complete sequence of operation of all functions of the network that is project specific.
- 3. A list of every address of every device connected to a panel that is provided for purposes of alarm initiating, status monitoring, supervised notification appliance circuits, and auxiliary control.
- A listing of the manufacturer's representatives responsible for installation coordination and service.
- Location of all controls, alarm actuating devices and notification appliance devices as shown on drawings.
- 6. Wiring diagrams from manufacturer differentiating between factory-and field- installed wiring. Include diagrams for equipment and for system with all terminals and interconnections identified. Indicate components for both field and factory wiring. Provide complete diagrams for all components and interfaces including equipment supplied by others.
- 7. Operation and maintenance data for inclusion in Operating and Maintenance Manual specified in Division 1. Include data for each type product, including all features and operating sequences, both automatic and manual. Include recommendations for spare parts to be stocked at the site. Provide the names, addresses, and telephone numbers of service organizations that carry stock of repair parts for the system to be furnished.
- 8. The manufacturer shall provide calculations for battery size as applicable. Battery size shall be a minimum 125% of the calculated requirement.
- 9. Provide calculations for control modules indicating circuit loading with 20% spare capacity.
- B. Submission to Authority Having Jurisdiction: In addition to routine submission of the above material, make an identical submission to the authority having jurisdiction. Include copies of annotated Contract Drawings as required to depict component locations to facilitate review. Upon receipt of comments from the Authority, submit them for review. Make resubmissions if required to make clarifications or revisions to obtain approval.

1.9 PROJECT RECORD DOCUMENTS

- A. Submit as built drawings locating devices and conductor runs.
- B. Record of field tests of system.
- C. Submit manufacturer's certificate that system meets or exceeds specified requirements.

1.10 OPERATION, MAINTENANCE DATA, AND CALCULATIONS

- A. Provide to the Owner's representative operating instructions, maintenance, and repair procedures.
- B. After installation, include manufacturer representative's letter stating that system is operational.

1.11 DELIVERY, STORAGE, AND HANDLING

A. Delivery, storage and handling of products will take place under the contract terms of each project in the construction phase of each project.

1.12 EXTRA MATERIALS

- A. Provide spare parts to the Owner's representative as noted below:
 - 1. Two keys of each type (for each project).
 - 2. Two smoke detectors (for each project).

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. National Time & Signal (Expand the existing 902 FACP as required).

2.2 FIRE ALARM CONTROL PANEL (FACP).

- A. General: Comply with UL 864, "Control Units for Fire-Protective Signaling Systems."
- B. Cabinet: Lockable steel enclosure. Arrange unit so all operations required for testing or for normal care and maintenance of the system are performed from the front of the enclosure. If more than a single unit is required to form a complete control unit, provide exactly matching modular unit enclosures. Accommodate all components and allow ample gutter space for interconnection of units as well as field wiring. Identify each enclosure by an engraved, red-laminated, phenolic resin nameplate. Lettering on the enclosure nameplate shall not be less than 1-inch high.
- C. Systems: Alarm and supervisory systems are separate and independent in the FACP. The alarm-initiating zone boards in the FACP consist of plug-in modules. Construction requiring removal of field wiring for module replacement is not acceptable.
- D. Control Modules: Types and capacities required to perform all functions of the fire alarm systems plus 20% for future expansion. Local visible, and audible signals notify of alarm, supervisory, and trouble conditions
- E. Zones: Provide for all alarm and supervisory zones indicated.
- F. Resetting: Provide the necessary controls to prevent the resetting of any alarm, supervisory, or trouble signal while the alarm or trouble condition still exists.
- G. Alphanumeric Display and System Controls: Arrange to provide the basic interface between human operator at FACP and addressable system components, including annunciation, supervision, and control. A display with a minimum of 80 characters displays alarm, supervisory, and component status messages and indicates control commands to be entered into the system for control of smoke detector sensitivity and other parameters. Arrange keypad for use in entering and executing control commands.
- H. System power supplies including necessary transformers, regulators, filters and surge protection required for system operation.

- I. System processor, with internal operating system to process incoming alarm signals and issue output commands required as a result of the alarm signals and issue output. Total system response time shall not exceed 2.5 seconds on a system configured to the 3000 point capacity. All system processors shall be supervised by individual watchdog circuitry furnishing automatic restart after loss of activity. Systems with single watchdog circuits for all processors will not be accepted unless furnished with a standby CPU.
- J. A limited energy output circuit for operation of direct current (DC) audible or visual devices, leased line or city tie, shall be provided by a controllable signal module.
- K. Where control of operations requiring switching functions is indicated, there shall be provided a software controlled relay module.
 - 1. Motherboards shall be furnished as the system bus furnishing systems communications to the various plug in modules necessary for system operations.
- L. Remote Station Signal Transmitter: Electrically supervised, capable of transmitting contact I.D. and point annunciation signals over a communication means to remote central station receiver (Audio Sentry Corporation). The electrical contractor/National Time & Signal shall coordinate all requirements with John Romano at Audio Sentry Corporation: 586-294-2941. Note: Both National Time & Signal and Audio Sentry shall be sub-contracted by the electrical contractor. Include all costs in bid. Note: this is for Athens High School only. Troy High School's Remote Station Signal Transmitter has been revised under a different contract.

2.3 REMOTE FIRE ALARM ANNUNCIATOR PANEL

- A. Provide remote annunciation and control using an 80 character, back-lit, alphanumeric, LCD readout. Alarm indication shall be identical to that at the main FACP including tone alert. Provide a minimum of four programmable control switches, alarm silence and system reset.
- B. Provide brushed aluminum trim plate.

2.4 EMERGENCY POWER SUPPLY

- A. General: Components include battery, charger, and an automatic transfer switch.
- B. Battery: Sealed lead-acid or nickel cadmium type. Provide sufficient capacity to operate the complete alarm system in normal or supervisory (non-alarm) mode for a period of 24 hours. Following this period of operation on battery power, the battery shall have sufficient capacity to operate all components of the system, including all alarm indicating devices in alarm of supervisory mode for a period of 15 minutes.
- C. Magnetic door holders are not served by emergency battery power. Magnetic door holders are released after 15 seconds when normal power fails.

2.5 SMOKE DETECTORS, INTELLIGENT ADDRESSABLE

- A. Furnish and install where indicated on the drawings intelligent analog smoke detectors with features and characteristics as follows:
 - 1. Photoelectric detectors shall be listed for use as open area protective coverage, in duct installation and shall be insensitive to air velocity changes.

- a. The control panel shall provide a sensitivity readout for all detectors without removal from the pluggable base. Detectors not listed for sensitivity testing and logging from the control panel are not acceptable.
- b. Detectors shall be operational with relay bases (as applicable), audible bases, and remote indicating LED's, programmable by the control panel and controlled by the detector electronics.
- B. Provide smoke detectors above fire alarm control panel, remote annunciator panels, and remote notification appliance power supply panels.
- C. Provide smoke detectors with auxiliary set of contacts where required.

2.6 THERMAL DETECTOR, INTELLIGENT ADDRESSABLE

A. The intelligent thermal detectors shall be of the rate compensated fixed temperature type and shall be listed by Underwriters Laboratories, Inc. The intelligent thermal detectors shall be individually annunciated on the control panel. The intelligent thermal detectors shall contain an integral alarm lamp.

2.7 DUCT SMOKE DETECTORS

- A. The air duct detector shall be listed by Underwriters Laboratories, Inc. The air duct detector shall operate on a cross-sectional air sampling principle to overcome stratification and the skin effect. The air duct detector shall consist of a standard (intelligent/analog) photoelectric detector mounted in an air duct sampling assembly and sampling tube that protrudes across the duct of the ventilating system. The air duct detector shall retain the features of the intelligent/analog photoelectric detector, and be installed in the ventilating duct as indicated in the manufacturer's instructions. Provide with addressable control module. Relay based duct detectors not acceptable.
- B. The duct mounted detector shall have an auxiliary set of contacts in order for the temperature controls contractor to tie in the starter of the fans. Contacts shall be rated 1A, 120V.

2.8 DUCT SMOKE DETECTOR REMOTE ALARM INDICATORS

- A. Provide remote alarm indicator station for duct smoke detectors located above ceilings or in other locations above 10 feet and/or not readily accessible.
- B. Provide LED alarm indicator designed for mounting in a single gang coverplate.

2.9 MANUAL STATIONS, INTELLIGENT

- A. Provide single action intelligent manual stations where shown on the drawings, to be flush or surface mounted as required.
 - 1. The manual stations shall be addressable and identifiable by the fire alarm control panel.
 - a. Address assignments shall be set mechanically or electronically and reside within the station in non volatile memory.

2.10 ADDRESSABLE INTERFACE MODULE

- A. Provide for integration of compatible two wire and shorting style contact devices into the analog signaling circuit. Intelligent analog signaling circuit interface module shall have the following capabilities:
 - 1. Communication interaction with the analog signaling circuit having the capability of reporting alarm or trouble conditions from the devices monitored.
 - 2. Compatibility with ionization, photoelectric, and linear beam style smoke detectors, heat detectors, and all listed contact type devices.
 - 3. The module shall be addressable and identifiable by the control panel.
 - a. Address assignments shall be set mechanically or electronically and reside within the module in non volatile memory.
 - 4. Water Flow Switches: The water flow switches shall be provided by the mechanical contractor and wired by the electrical contractor. The switches shall be connected to the fire alarm system through the use of addressable interface modules.
 - 5. Tamper Switches: The tamper switches shall be provided by the mechanical contractor and wired by the electrical contractor. The switches shall be connected to the fire alarm system through the use of addressable interface modules.
 - 6. Provide addressable interface modules to uniquely identify each flow and tamper switch.

2.11 ADDRESSABLE CONTROL MODULE

- A. Provide for integration of auxiliary control functions into the analog signaling circuit. Intelligent analog signaling circuit control module shall have the following capabilities:
 - 1. Communication interaction with the analog signaling circuit having the capability of initiating a control function to an auxiliary device based on a specified event.
 - 2. Provide NO/NC contact pairs rated at 2 amps 120 VAC or 24 VDC.

2.12 AUDIO VISUAL DEVICES

- A. Alarm Strobes (Visual): Visual alarm signals shall be furnished with minimum light intensity of 15cd average (horizontal and vertical distribution listed in accordance with UL 1971) and meet A.D.A. 75cd minimum intensity at horizontal and vertical axis and shall comply with the following:
 - 1. Xenon strobe with minimum repetition rate of 1 HZ, not exceeding 2 HZ and a maximum duty cycle of 40% with a pulse duration of .2 seconds.
 - 2. Unfiltered or clear white light not exceeding 1000 candela.
 - Visual signals shall be mounted at 96 inches above finish floor level, or six inches below ceiling level whichever is lower in accordance with NFPA 72, 1996. Provide wall mounted or ceiling mounted devices, as indicated on plans.
 - 4. Visual signals shall flash in synchronization in all corridors and in rooms where more than one strobe is installed.

- B. Alarm Horns: The alarm horns shall be of the polarized 24 VDC type. The mechanisms shall contain an aerospace grade aluminum diaphragm, tempered and polished armature, and tungsten contact point, all housed in a red die-cast frame and grill assembly. Horns shall have an integral strobe light that will flash during an alarm. Horns shall have a minimum sound level of 93 dB at 10 feet.
- C. Combination notification appliances (horn/strobe) consist of factory-combined, audible and visual notification units in a single mounting assembly. Provide wall mounted or ceiling mounted devices, as indicated on plans.
- D. Audible devices shall be furnished to provide minimum of 15 db above ambient sound levels. Maximum sound levels shall not exceed 120 db, provisions shall be made to adjust the audible levels accordingly.

2.13 AUXILIARY DEVICES

A. Door Release: Magnetic door holder with integral diodes to reduce buzzing, 24 VDC coil voltage.

2.14 WIRE AND CABLE

- A. Wire and cable for fire alarm systems shall be UL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.
 - Circuit Integrity Cable: Twisted shielded pair, NFPA 70 Article 760, Classification CI, for power-limited fire alarm signal service. UL listed as Type FPL, and complying with requirements in UL 1424 and in UL 2196 for a 2-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum

PART 3 - EXECUTION

3.1 WARRANTY

- A. All equipment and systems shall be warranted by the contractor for a period of two years following acceptance. The warranty shall include parts, labor, prompt field service, pick-up and delivery.
- B. Provide two years testing and maintenance, which shall consist of:
 - 1. Regularly and systematically examining all detectors, manual stations, panels, relays, pressure switches and accessories pertaining to the system.
 - 2. Regularly and systematically examine, adjust and clear all the electrical and mechanical components of water flow switches.
 - 3. Tests and written reports which certify that all initiating devices have been tested and which indicate the result of the inspection test as required by the authority having jurisdiction.

3.2 TESTS AND REPORTS

- A. The contractor shall perform all electrical and mechanical tests required by the equipment manufacturer's certification form. In addition, they shall measure and adjust each of the ionization detectors to the maximum stable sensitivity setting. This must be performed with the detector at its operational location and under normal operational environmental conditions in the area. Bench settings are not acceptable. All test and report costs shall be in the unit price established for each device. A checkout report shall be prepared by the installation technicians and submitted in triplicate, one copy of which will be registered with the equipment manufacturer. The report shall include, but not be limited to:
 - 1. A complete list of equipment installed and wired.
 - 2. Indication that all equipment is properly installed and functions and conforms with these specifications.
 - 3. Test of individual zones as applicable.
 - 4. Serial numbers, locations by zone and model number for each installed detector.
 - 5. Voltage (sensitivity) settings for each ionization and photoelectric detector as measured in place with the HVAC system operating.
 - 6. Response time on thermostats and flame detectors (if used).
 - 7. Technician's name, certificate number and date.
- B. After completion of all the tests and adjustments listed above, the contractor shall submit the following information to the Architect:
 - 1. "As-built" conduit layout diagrams including wire color code and/or tag number.
 - 2. Complete "as-built" wiring diagrams.
 - 3. Detailed catalog data on all installed system components.
 - 4. Copy of the test report.
- C. Final tests and inspection shall be held in the presence of engineer. The contractor shall supply personnel and required auxiliary equipment for this test without additional cost.
- D. The completed smoke detection system shall be tested to insure that it is operating properly. Acceptance of the system shall also require a demonstration of the stability of the system. This shall be adequately demonstrated if the system operates for a ninety (90) day test period.
- E. Before final acceptance of work, the contractor shall deliver five copies of a composite "Operating and Shop Maintenance Manual." Each manual shall contain, but not be limited to: a statement of guarantee including date of termination and name and phone number of the person to be called in the event of equipment failure.
- F. Individual factory issued manuals shall contain all technical information on each piece of equipment installed. In the event such manuals are not obtainable form the factory, it shall be the responsibility of the contractor to compile and include them. Advertising brochures or operational instructions shall not be used in lieu of the required technical manuals.

3.3 INSTALLATION

- A. Control and other panels shall be mounted with sufficient clearance for observation and testing.
- B. All fire alarm junction boxes must be clearly marked for easy identification as indicated in 16195. All wiring shall be in conduit unless noted otherwise on the contract documents or in the specifications. Flexible connectors shall be used for all devices mounted in suspended lay-in ceiling panels. All conduit, mounting boxes, junction boxes and panels shall be securely hung and fastened with appropriate fittings to insure positive grounding throughout the entire system.
- C. Fire alarm pull stations and horns installed in finished areas shall be mounted semi-flush and may be surface mounted in non-finished areas. Smoke detectors and thermal detectors shall be mounted on a recess mounted junction box in finished areas and to surface mounted junction boxes in non-finished areas.
- D. No wiring other than that directly associated with fire alarm detection, alarm or auxiliary fire protection functions shall be permitted in fire alarm conduits. Wiring splices are to be avoided to the extent possible, and if needed they must be made only in junction boxes and shall be crimp connected. Transposing or changing color coding of wires shall not be permitted. Wire nut-type connections are not acceptable. All conductors in conduit containing more than one wire shall be labeled on each end with "E-Z markers" or equivalent. Conductors in cabinets shall be carefully formed and harnessed so that each drops off directly opposite to its terminal. Cabinet terminals shall be numbered and coded. All controls, function switches, etc., shall be clearly labeled on all equipment panels. All wiring shall be checked and tested to insure that there are no grounds, opens or shorts.
- E. Install manual station flush mounted with operating handle 48 inches maximum above floor. Install audible and visual signal devices no more than 96 inches above highest floor level within the space or 6 inches below the ceiling, whichever is lower.
- F. Mount outlet box for electric door holder to withstand 80 pounds pulling force.
- G. Make conduit and wiring connections to door release devices, sprinkler flow switches, sprinkler valve tamper switches, panels, duct smoke detectors, and other auxiliary supervised devices.
- H. Automatic Detector Installation: NFPA 72.
- I. All gymnasiums and locker rooms fire alarm devices shall be provided with protective wire guards.
- J. Fire alarm system cable shall be plenum rated, with red outer coloring. All cable drops to devices shall be in conduit (concealed in walls). Cabling installed in open ceiling spaces shall be type FPLP, low smoke, fire resistant, with red coloring. Cabling shall be per manufacturer's recommendation, and shall be able to power the strobes and horn/strobes together, or independently.
- K. Install fire alarm cable in ceiling spaces to avoid damage. Use bridle rings and other similar means of support (lay-in ceiling areas).
- L. Cabling to the Fire Alarm Control Panel and drops to devices shall be in recessed conduit.
- M. Fire alarm cabling in exposed ceiling spaces and above drywall ceiling areas shall be in conduit. Conduit used for fire alarm system shall have couplings and junction boxes painted red.

END OF SECTION

SOILS AND AGGREGATES

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Subsoil materials.
- 2. Topsoil materials.
- 3. Coarse aggregate materials.
- 4. Fine aggregate materials.

B. Related Sections:

- 1. Section 31 22 13 Rough Grading.
- 2. Section 31 23 17 Trenching.
- 3. Section 31 23 23 Fill.
- 4. Section 32 91 19 Landscape Grading.
- 5. Section 33 11 16 Site Water Utility Distribution Piping.
- 6. Section 33 41 00 Storm Utility Drainage Piping.
- 7. Section 33 46 00 Subdrainage: Filter aggregate.

1.2 REFERENCES

A. ASTM International:

- 1. ASTM D422 Standard Test Method for Particle-Size Analysis of Soils
- 2. ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)).
- 3. ASTM D2487 Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System).
- 4. ASTM D2974 Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils.
- 5. ASTM C4972 Test Method for PH of Soils.

1.3 SUBMITTALS

- A. Samples: Submit 2, 20lb samples of each type of material to be tested, to the testing company.
- B. Materials Source: Submit name of imported materials supplier(s).
- C. Manufacturer's Certificate: The Contractor shall submit to the Owner, two copies of material certificates signed by the Material Producer and Contractor. Certificates shall state that each material item meets specified requirements.
- D. Gradation Reports: The Contractor shall submit to the Owner, two copies of the gradations for each of the required aggregate mixtures. Mix designs shall be within allowable tolerances as specified for the particular section.

1.4 QUALITY ASSURANCE

- A. Furnish each aggregate material from single source throughout the Work.
- B. Perform Work in accordance with local governing agency standards.
- C. Testing and Inspection: The Owner may engage a testing agency to sample and test materials proposed for use in the Work.

PART 2 PRODUCTS

2.1 SUBSOIL MATERIALS

- A. Subsoil Type S1:
 - 1. Excavated and re-used material, imported borrow and select or local borrow.
 - 2. Graded.
 - 3. Free of lumps larger than 3 inches, rocks larger than 2 inches, organic material, and debris.

2.2 TOPSOIL MATERIALS

- A. Topsoil Type S2:
 - 1. Fertile, friable, natural topsoil of loamy character, obtained from well drained arable site.
 - 2. Reasonably free of clay, lumps, coarse sands, plants, roots, rocks larger than 1/2 inch, subsoil, debris, large weeds, and foreign matter.
 - 3. Acidity range pH of 5.0 to 7.5.
 - 4. Containing minimum of 10 percent organic matter.

2.3 AGGREGATE MATERIALS

- A. Crushed Stone Fill, Type A1: Dense-graded crushed concrete or crushed aggregate shall meet the requirements of Section 902 of the Michigan Department of Transportation Standard Specification for Construction, and shall consist of 21AA Crushed Aggregate.
- B. Granular Fill, Type A2: Granular material shall consist of natural sand, stone screenings, gravel or a blend of natural sand, gravel and stone screenings. It shall be composed of rough surfaced and angular grains of quartz or other hard durable rock and meet the requirements of Section 902 of the Michigan Department of Transportation Standard Specification for Construction, and shall consist of Class II granular material.
- C. Open-Graded Drainage Course Aggregate Materials (OGDC), Type A3: for use in Temporary Construction Access Drives, Drainage Course under Pavement Aggregate Base Courses and other miscellaneous uses shall consist of crushed stone, crushed gravel or crushed concrete free from organic matter or other deleterious substances with material sized between 1" and 3" in diameter, with less than 6% fine material (#200 sieve). Such materials are usually referred to as "1x3" or "OGDC".
- D. Crushed Aggregate Surface Course (CASC), Type A4: shall meet the requirements of Section 306 of the Michigan Department of Transportation Standard Specification for Construction, and shall consist of 23A Crushed Aggregate.

2.4 SOURCE QUALITY CONTROL

- A. Testing and Analysis of Subsoil Material: Perform in accordance with ASTM D1557.
- B. Testing and Analysis of Topsoil Material: Perform in accordance with ASTM D2974 and ASTM D4972.
- C. When tests indicate materials do not meet specified requirements, change material and retest.
- D. Provide materials from same source throughout the Work.

PART 3 EXECUTION

3.1 EXCAVATION

- A. Excavate subsoil and aggregates from areas designated. Strip topsoil to full depth of topsoil in designated areas.
- B. Stockpile excavated material meeting requirements for subsoil materials, topsoil materials and aggregates.
- C. Remove excess excavated subsoil and topsoil not intended for reuse, from site.
- D. Remove excavated materials not meeting requirements for subsoil materials, topsoil materials and aggregates from site.

3.2 EXAMINATION

A. Verify compacted substrate is dry and ready to support paving and imposed loads.

- 3. Subgrade preparations shall consist of the final machining of the subgrade immediately prior to placing the aggregate subbase or base materials. The surface shall be true to line and grade. Proof roll in areas to receive aggregate materials with a 25-ton rubber-tired roller, a loaded front-end loader or loaded dump truck to locate all soft surface areas. Replace soil that deflects and will not compact with acceptable fill material and compact such fill in accordance with these Specifications.
- C. Verify substrate has been inspected, gradients and elevations are correct.

3.3 PREPARATION

- A. Correct irregularities in substrate gradient and elevation by scarifying, reshaping, and recompacting.
- B. Do not place fill on soft, muddy, or frozen surfaces.

3.4 AGGREGATE TRANSPORTING AND PLACEMENT

- A. The aggregate shall be transported from the crushing plant to the point of use in hauling vehicles which are covered. Deliveries shall be scheduled so that spreading and compaction of all aggregate delivered that day can be completed during daylight hours, unless adequate artificial lighting is provided, or stockpile locations are provided. Hauling over freshly placed material shall not be permitted until the material has been compacted as specified.
- B. Upon arrival, the aggregate shall be spread to a thickness not to exceed 6 inches by an approved grading method. It shall be struck off in a uniform layer of such depth that, when the Work is completed, it shall have the required thickness and conform to the grade and contour indicated.
- C. On areas where irregularities or unavoidable obstacles make the use of mechanical spreading and finishing equipment impractical, the aggregate may be spread, raked, leveled and compacted by using hand tools.
- D. After spreading, the aggregate shall be thoroughly and uniformly compacted by approved compaction equipment. The speed of the compaction equipment shall at all times be sufficiently slow enough to avoid displacement of the aggregate. Any displacement occurring as a result of reversing direction of the compaction equipment or from any other cause shall be corrected at once. Rolling shall continue until all roller marks are eliminated, the surface is of uniform texture and true to grade and cross-section and the required field-density is obtained.
- E. Use mechanical tamping equipment in areas inaccessible to compaction equipment.

3.5 MINIMUM QUALITY REQUIREMENTS

- A. The Contractor shall at no expense to the Owner test in-place aggregate surface, base course and subbase materials for compliance with the requirements for density and thickness.
- B. Maximum dry density shall be determined per ASTM D1557 modified proctor.
- C. In-place compacted minimum thickness is as shown in the cross-sectional details on the Plans. Any thickness less than shown on the plans is not acceptable.

3.6 TOLERANCES

- A. Maximum Variation From Flat Surface: 1/2 inch measured with 10 foot straight edge.
- B. Maximum Variation From Thickness: No less than shown on the Plans.
- C. Maximum Variation From Elevation: 1/2 inch.

3.7 FIELD QUALITY CONTROL

- A. Quality Control During Aggregate Placement: Perform the following sampling and testing of aggregate mixtures for quality control during operations. Record the locations where samples are taken to correlate with subsequent testing.
- B. Test uncompacted aggregate for gradation distribution per ASTM D422 and for compaction per ASTM D1557 modified proctor.
- Perform three tests for each day's aggregate placement, unless otherwise specified or directed.
- D. Test in-place, compacted aggregate for density and thickness. Perform five tests for each day's aggregate placement unless otherwise specified or directed.
- E. Additional testing may be required if any of the previous tests indicate insufficient values. If two successive tests indicate insufficient values, contact the Owner for a course of action.
- F. Aggregate materials not complying with specified requirements shall be removed and replaced with new aggregate.
- G. Upon completion of the construction Work and after spoils and debris have been removed, regrade any areas disturbed by the operations.

3.8 STOCKPILING

- A. Stockpile materials on site at locations designated by Owner.
- B. Stockpile in sufficient quantities to meet Project schedule and requirements.
- C. Separate different materials with dividers or stockpile individually to prevent mixing.
- D. Direct surface water away from stockpile site to prevent erosion or deterioration of materials.
- E. Stockpile unsuitable materials on impervious material and cover to prevent erosion and leaching, until disposed of.

3.9 STOCKPILE CLEANUP

A. Remove stockpile, leave area in clean and neat condition. Grade site surface to prevent free standing surface water.

END OF SECTION

SITE CLEARING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Protecting existing vegetation to remain.
- 2. Removing existing vegetation.
- 3. Clearing and grubbing.
- 4. Stripping and stockpiling topsoil.
- 5. Stripping and stockpiling rock.
- 6. Removing above- and below-grade site improvements.
- 7. Temporary erosion and sedimentation control.

1.3 DEFINITIONS

- A. Subsoil: Soil beneath the level of subgrade; soil beneath the topsoil layers of a naturally occurring soil profile, typified by less than 1 percent organic matter and few soil organisms.
- B. Surface Soil: Soil that is present at the top layer of the existing soil profile. In undisturbed areas, surface soil is typically called "topsoil," but in disturbed areas such as urban environments, the surface soil can be subsoil.
- C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing inplace surface soil; the zone where plant roots grow.
- D. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing inplace surface soil; the zone where plant roots grow. Its appearance is generally friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects larger than 2 inches (50 mm) in diameter; and free of weeds, roots, toxic materials, or other nonsoil materials.
- E. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction and indicated on Drawings.
- F. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction and indicated on Drawings.
- G. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 MATERIAL OWNERSHIP

A. Except for materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.6 INFORMATIONAL SUBMITTALS

- A. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.
 - 1. Use sufficiently detailed photographs or video recordings.
 - 2. Include plans and notations to indicate specific wounds and damage conditions of each tree or other plant designated to remain.
- B. Topsoil stripping and stockpiling program.
- C. Rock stockpiling program.
- D. Record Drawings: Identifying and accurately showing locations of capped utilities and other subsurface structural, electrical, and mechanical conditions.
- E. Burning: Burning on site is not allowed.

1.7 QUALITY ASSURANCE

- A. Topsoil Stripping and Stockpiling Program: Prepare a written program to systematically demonstrate the ability of personnel to properly follow procedures and handle materials and equipment during the Work. Include dimensioned diagrams for placement and protection of stockpiles.
- B. Rock Stockpiling Program: Prepare a written program to systematically demonstrate the ability of personnel to properly follow procedures and handle materials and equipment during the Work. Include dimensioned diagrams for placement and protection of stockpiles.

1.8 FIELD CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed trafficways if required by Owner or authorities having jurisdiction.
- B. Improvements on Adjoining Property: Authority for performing site clearing indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.
 - 1. Do not proceed with work on adjoining property until directed by Architect.
- C. Salvageable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises at location directed by the owner.
- D. Utility Locator Service: Three full working days before construction begins, call the Miss Dig system at 811.

- E. Do not commence site clearing operations until temporary erosion- and sedimentation-control measures are in place.
- F. Tree- and Plant-Protection Zones: Protect according to requirements in Section 015639 "Temporary Tree and Plant Protection."
- G. Soil Stripping, Handling, and Stockpiling: Perform only when the soil is dry or slightly moist.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312010 "Building Earthwork."
 - Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect and maintain benchmarks and survey control points from disturbance during construction.
- B. Verify that trees, shrubs, and other vegetation to remain or to be relocated have been flagged and that protection zones have been identified and enclosed according to plan requirements.
- C. Protect existing site improvements to remain from damage during construction.
 - 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

- A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.
- B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
- C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
- Remove erosion and sedimentation controls, and restore and stabilize areas disturbed during removal.

3.3 TREE AND PLANT PROTECTION

- A. Protect trees and plants remaining on-site according to according to plan requirements.
- B. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations according to plan requirements.

3.4 EXISTING UTILITIES

- A. Owner will arrange for disconnecting and sealing indicated utilities that serve existing structures before site clearing, when requested by Contractor.
 - 1. Verify that utilities have been disconnected and capped before proceeding with site clearing.
- B. Locate, identify, disconnect, and seal or cap utilities indicated to be removed. Retain one of two subparagraphs below.
 - 1. Arrange with utility companies to shut off indicated utilities.
 - 2. Owner will arrange to shut off indicated utilities when requested by Contractor.
- C. Locate, identify, and disconnect utilities indicated to be abandoned in place.
- D. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others, unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Architect not less than 3 days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Architect's written permission.
- E. Excavate for and remove underground utilities indicated to be removed.
- F. Removal of underground utilities is included in earthwork sections; in applicable fire suppression, plumbing, HVAC, electrical, communications, electronic safety and security, and utilities sections; and in Section 024116 "Structure Demolition" and Section 024119 "Selective Demolition."

3.5 CLEARING AND GRUBBING

- A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 - 1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
 - 2. Grind down stumps and remove roots larger than 3 inches (75 mm) in diameter, obstructions, and debris to a depth of 24 inches (450 mm) below exposed subgrade.
 - 3. Use only hand methods or air spade for grubbing within protection zones.
 - 4. Chip removed tree branches and dispose of off-site.
- B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 - 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches (200 mm), and compact each layer to a density equal to adjacent original ground.

3.6 TOPSOIL STRIPPING

- A. Remove sod and grass before stripping topsoil.
- B. Strip topsoil to required depth in a manner to prevent intermingling with underlying subsoil or other waste materials.

- 1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects larger than 2 inches (50 mm) in diameter; trash, debris, weeds, roots, and other waste materials.
- C. Stockpile topsoil away from edge of excavations without intermixing with subsoil or other materials. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.
 - 1. Limit height of topsoil stockpiles to 72 inches (1800 mm).
 - 2. Do not stockpile topsoil within protection zones.
 - 3. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
 - 4. Stockpile surplus topsoil to allow for respreading deeper topsoil.

3.7 STOCKPILING ROCK

- A. Remove from construction area naturally formed rocks that measure more than 1 foot (300 mm) across in least dimension. Do not include excavated or crushed rock.
 - 1. Separate or wash off non-rock materials from rocks, including soil, clay lumps, gravel, and other objects larger than 2 inches (50 mm) in diameter; trash, debris, weeds, roots, and other waste materials.
- B. Stockpile rock at location directed by the owner without intermixing with other materials. Cover to prevent windblown debris from accumulating among rocks.
 - 1. Limit height of rock stockpiles to 36 inches (900 mm).
 - 2. Do not stockpile rock within protection zones.
 - 3. Dispose of surplus rock. Surplus rock is that which exceeds quantity indicated to be stockpiled or reused.
 - 4. Stockpile surplus rock to allow later use by the Owner.

3.8 SITE IMPROVEMENTS

- A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.
- B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.
 - 1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut along line of existing pavement to remain before removing adjacent existing pavement. Saw-cut faces vertically. If possible, adjust line of demolition to the nearest joint.
 - 2. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer's written instructions. Keep paint off surfaces that will remain exposed.

3.9 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.

- B. Burning tree, shrub, and other vegetation waste is permitted according to burning requirements and permitting of authorities having jurisdiction. Control such burning to produce the least smoke or air pollutants and minimum annoyance to surrounding properties. Burning of other waste and debris is prohibited.
- C. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials, and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION

BUILDING EARTHWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Preparing and grading subgrades for slabs-on-grade.
 - Excavating and backfilling for buildings and structures.
 - 3. Drainage and moisture-control fill course for slabs-on-grade.
- B. Related Sections: The following Sections contain requirements that relate to this Section.
 - 1. Section 311000 "Site Clearing" for site stripping, grubbing, topsoil removal, and tree protection.

1.3 DEFINITIONS

- A. Excavation consists of the removal of material encountered to subgrade elevations and the reuse or disposal of materials removed.
- B. Subgrade: The uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, or topsoil materials.
- C. Borrow: Soil material obtained off-site when sufficient approved soil material is not available from excavations.
- D. Drainage Fill: Course of washed granular material supporting slab-on-grade placed to cut off upward capillary flow of pore water.
- E. Unauthorized excavation consists of removing materials beyond indicated subgrade elevations or dimensions without direction by the Architect. Unauthorized excavation, as well as remedial work directed by the Architect, shall be at the Contractor's expense.
- F. Structures: Buildings, footings, foundations, retaining walls, slabs, or other man-made stationary features constructed above or below ground surface.

1.4 SUBMITTALS

A. General: Submit the following according to the Conditions of the Contract and Division 1 Specification Sections.

- B. Test Reports: In addition to test reports required under field quality control, submit the following:
 - Laboratory analysis of each soil material proposed for fill and backfill from on-site and borrow sources.
 - 2. One optimum moisture-maximum density curve for each soil material.
 - 3. Report of actual unconfined compressive strength and/or results of bearing tests of each stratum tested.

1.5 QUALITY ASSURANCE

- A. Codes and Standards: Perform earthwork complying with requirements of authorities having jurisdiction.
- B. Testing and Inspection Service: Owner will employ a qualified independent geotechnical engineering testing agency to classify proposed on-site and borrow soils to verify that soils comply with specified requirements and to perform required field and laboratory testing.
- C. Preinstallation Conference: Conduct conference at Project site to comply with requirements of Division 1.
 - Before commencing earthwork, meet with representatives of the governing authorities, Owner, Architect, consultants, Geotechnical Engineer, independent testing agency, and other concerned entities. Review earthwork procedures and responsibilities including testing and inspection procedures and requirements. Notify participants at least 3 working days prior to convening conference. Record discussions and agreements and furnish a copy to each participant.

1.6 PROJECT CONDITIONS

- A. Existing Utilities: Do not interrupt existing utilities serving facilities occupied by the Owner or others except when permitted in writing by the Architect and then only after acceptable temporary utility services have been provided.
 - 1. Provide a minimum 72-hours' notice to the Architect and receive written notice to proceed before interrupting any utility.
- B. Demolish and completely remove from site existing underground utilities indicated to be removed. Coordinate with utility companies to shutoff services if lines are active.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide approved borrow soil materials from off-site when sufficient approved soil materials are not available from excavations.
- B. Satisfactory Soil Materials: ASTM D 2487 soil classification groups GW, GP, GM, SW, SP, and SM; free of rock or gravel larger than 2 inches in any dimension, debris, waste, frozen materials, vegetation and other deleterious matter.

- C. Unsatisfactory Soil Materials: ASTM D 2487 soil classification groups GC, SC, ML, MH, CL, CH, OL, OH, and PT.
- D. Backfill and Fill Materials: Satisfactory soil materials as recommended by a geotechnical engineer.
- E. Engineered Fill: MDOT Class II sand.
- F. Drainage Fill: MDOT Class II sand.

2.2 ACCESSORIES

A. Warning Tape: Acid- and alkali-resistant polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earthwork operations.
- B. Protect subgrades and foundation soils against freezing temperatures or frost. Provide protective insulating materials as necessary.
- C. Provide erosion control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.
- D. Tree protection is specified in the Section 311000 "Site Clearing."

3.2 DEWATERING

- A. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
- B. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.

3.3 EXCAVATION

- A. Explosives: Do not use explosives.
- B. Unclassified Excavation: Excavation is unclassified and includes excavation to required subgrade elevations regardless of the character of materials and obstructions encountered.

3.4 STABILITY OF EXCAVATIONS

A. Comply with local codes, ordinances, and requirements of authorities having jurisdiction to maintain stable excavations.

3.5 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 0.10 foot. Extend excavations a sufficient distance from structures for placing and removing concrete formwork, installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.

3.6 APPROVAL OF SUBGRADE

- A. Notify Owner's Testing Agency when excavations have reached required subgrade.
- B. When Owner's Testing Agency determines that unforeseen unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.
 - 1. Unforeseen additional excavation and replacement material will be paid according to the Contract provisions for changes in Work.
- C. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by the Architect.

3.7 UNAUTHORIZED EXCAVATION

- A. Fill unauthorized excavation under foundations or wall footings by extending indicated bottom elevation of concrete foundation or footing to excavation bottom, without altering required top elevation. Lean concrete fill may be used to bring elevations to proper position when acceptable to the Architect.
 - 1. Fill unauthorized excavations under other construction as directed by the Architect.

3.8 STORAGE OF SOIL MATERIALS

- A. Stockpile excavated materials acceptable for backfill and fill soil materials, including acceptable borrow materials. Stockpile soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent wind-blown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.9 BACKFILL

- A. Backfill excavations promptly, but not before completing the following:
 - 1. Acceptance of construction below finish grade including, where applicable, dampproofing, waterproofing, and perimeter insulation.
 - Concrete formwork removal.
 - Removal of trash and debris from excavation.
 - 4. Removal of temporary shoring and bracing, and sheeting.

5. Installing permanent or temporary horizontal bracing on horizontally supported walls.

3.10 FILL

- A. Preparation: Remove vegetation, topsoil, debris, wet, and unsatisfactory soil materials, obstructions, and deleterious materials from ground surface prior to placing fills.
 - 1. Plow strip, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing surface.
- B. Prior to fill placement in fill areas and after rough grade has been achieved in cut areas, the subgrade should be thoroughly proof-rolled with a heavy rubber tired vehicle such as a loaded scraper or loaded dump truck by making a minimum of 5 passes in each of two perpendicular directions covering the proposed building and pavement areas. Any areas that exhibit excessive pumping and or yielding during proof-rolling, should be stabilized by aeration, drying and compaction if weather conditions are favorable, or removal and replacement with engineered fill. In addition to detecting unstable areas, the proof-compaction operation should serve to densify shallow loose granular deposits.
- C. Place fill material in layers to required elevations for each location listed below.
 - Under building slabs, use drainage fill material or satisfactory excavated or borrow soil material.
 - 2. Under footings and foundations, use engineered fill.

3.11 MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill layer before compaction to within 2 percent of optimum moisture content.
 - Do not place backfill or fill material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Remove and replace, or scarify and air-dry satisfactory soil material that is too wet to compact to specified density.
 - a. Stockpile or spread and dry removed wet satisfactory soil material.

3.12 COMPACTION

- A. Place backfill and fill materials in layers not more than 12 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- B. Place backfill and fill materials evenly on all sides of structures to required elevations. Place backfill and fill uniformly along the full length of each structure.
- C. Percentage of Maximum Dry Density Requirements: Compact soil to not less than the following percentages of maximum dry density according to ASTM D 1557:
 - 1. Under structures and building slabs, compact the top 12 inches below subgrade and each layer of backfill or fill material at 95 percent maximum dry density.

2. Under lawn or unpaved areas, compact the top 6 inches below subgrade and each layer of backfill or fill material at 90 percent maximum dry density.

3.13 GRADING

- A. General: Uniformly grade areas to a smooth surface, free from irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 - 1. Provide a smooth transition between existing adjacent grades and new grades.
 - Cut out soft spots, fill low spots, and trim high spots to conform to required surface tolerances.
- B. Site Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
- C. Grading Inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.

3.14 DRAINAGE FILL

- A. Under slabs-on-grade, place drainage fill course on prepared subgrade.
 - 1. Compact drainage fill to required cross sections and thickness.
 - 2. When compacted thickness of drainage fill is 6 inches or less, place materials in a single layer.
 - 3. When compacted thickness of drainage fill exceeds 6 inches thick place materials in equal layers, with no layer more than 6 inches thick nor less than 3 inches thick when compacted.

3.15 FIELD QUALITY CONTROL

- A. Testing Agency Services: Allow testing agency to inspect and test each subgrade and each fill or backfill layer. Do not proceed until test results for previously completed work verify compliance with requirements.
 - Perform field in-place density tests according to ASTM D 1556 (sand cone method), ASTM D 2167 (rubber balloon method), or ASTM D 2937 (drive cylinder method), as applicable.
 - a. Field in-place density tests may also be performed by the nuclear method according to ASTM D 2922, provided that calibration curves are periodically checked and adjusted to correlate to tests performed using ASTM D 1556. With each density calibration check, check the calibration curves furnished with the moisture gages according to ASTM D 3017.
 - b. When field in-place density tests are performed using nuclear methods, make calibration checks of both density and moisture gages at beginning of work, on each different type of material encountered, and at intervals as directed by the Architect.

- 2. Footing Subgrade: At footing subgrades, perform testing as required to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of each subgrade with related tested strata when acceptable to the Architect.
- 3. Building Slab Areas: At subgrade and at each compacted fill and backfill layer, perform at least one field in-place density test for every 2,000 sq. ft. or less of paved area or building slab, but in no case fewer than three tests.
- 4. Foundation Wall Backfill: In each compacted backfill layer, perform at least one field inplace density test for each 100 feet or less of wall length, but no fewer than two tests along a wall face.
- B. When testing agency reports that subgrades, fills, or backfills are below specified density, scarify and moisten or aerate, or remove and replace soil to the depth required, recompact and retest until required density is obtained.

3.16 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and re-establish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or lose compaction due to subsequent construction operations or weather conditions.
 - 1. Scarify or remove and replace material to depth directed by the Architect; reshape and recompact at optimum moisture content to the required density.
- C. Settling: Where settling occurs during the Project correction period, remove finished surfacing, backfill with additional approved material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to the greatest extent possible.

3.17 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off the Owner's property.

EXCAVATION

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes:

- Soil densification.
- 2. Excavating for paving, roads, and parking areas.
- 3. Excavating for slabs-on-grade.
- 4. Excavating for site structures.
- 5. Excavating for landscaping.

B. Related Sections:

- 1. Section 31 05 16 Soils and Aggregates.
- 2. Section 31 22 13 Rough Grading: Topsoil and subsoil removal from site surface.
- 3. Section 31 23 17 Trenching: Excavating for utility trenches.
- 4. Section 31 23 23 Fill.
- 5. Section 33 11 16 Site Water Utility Distribution Piping.
- 6. Geotechnical report; bore hole locations and findings of subsurface materials.

1.2 REFERENCES

A. Local utility standards when working within 24 inches of utility lines.

1.3 SUBMITTALS

- A. Excavation Protection Plan: Describe sheeting, shoring, and bracing materials and installation required to protect excavations and adjacent structures and property; include structural calculations to support plan.
- B. Shop Drawings: Indicate soil densification grid for each size and configuration footing requiring soils densification.

1.4 QUALITY ASSURANCE

A. Perform Work in accordance with local governing agency standards.

1.5 QUALIFICATIONS

A. Prepare excavation protection plan under direct supervision of Professional Engineer experienced in design of this Work and licensed in State of Michigan.

PART 2 PRODUCTS

Not Used.

PART 3 EXECUTION

3.1 PREPARATION

- A. Call Local Utility Line Information service, Miss Dig at 1-800-482-7171 or 811, not less than three working days before performing Work.
 - Request underground utilities to be located and marked within and surrounding construction areas.
- B. Identify required lines, levels, contours, and datum.
- C. Notify utility company prior to the removal and relocation of utilities.
- D. Protect utilities indicated to remain from damage.
- E. Protect plant life, lawns, and other features remaining as portion of final landscaping.
- F. Protect bench marks, survey control points, existing structures, fences, sidewalks, paving, and curbs from excavating equipment and vehicular traffic.

3.2 SOIL DENSIFICATION - VIBRO-COMPACTION

- A. Densify existing subsoils with relative density rating of compact to dense to attain relative density rating of very dense.
- B. Densification Equipment:
 - 1. Depth Vibrator: Poker type with follower tubes with visible marking every 12 inches to enable insertion depth measurement.
 - 2. Motion: radial in horizontal plane.
 - 3. Data Acquisition System: Record amps or pressure of the vibrator motor over time and depth.
- C. Insert vibrator to maximum specified depth. Densify soils for 30 seconds or other time as directed by Geotechnical Engineer. Withdraw vibrator every 12 inches increments and repeat densification at each increment.
 - 1. When subsurface obstruction prevents vibrator insertion to specified depth, request instructions from Geotechnical Engineer to compensate for obstruction.

D. Tolerances:

- 1. Maximum Deviation from Center of Completed Compaction: 8 inches from indicated position.
- 2. Maximum Deviation from Vertical: 4 degrees during vibrator insertion.

3.3 EXCAVATION

- A. Underpin adjacent structures which may be damaged by excavation work.
- B. Excavate subsoil to accommodate slabs-on-grade, paving and site structures.
- C. Compact disturbed load bearing soil in direct contact with foundations to original bearing capacity; perform compaction in accordance with Section 31 23 23 and Section 31 23 17.
- D. Slope banks with machine to angle of repose or less until shored.
- E. Grade top perimeter of excavation to prevent surface water from draining into excavation.
- F. Trim excavation. Remove loose matter.
- G. Remove lumped subsoil, boulders, and rock up to 1/3 cu yd measured by volume. Remove larger material as specified in Section 31 23 23.
- H. Notify Architect/Engineer of unexpected subsurface conditions.
- Correct areas over excavated with crushed stone fill Type A1 specified in Section 31 05 16 or as directed by the Geotechnical Engineer.
- J. Remove excess and unsuitable material from site.
- K. Stockpile subsoil to be re-used on-site in area designated on site to depth not exceeding 8 feet and protect from erosion.
- L. Repair or replace items indicated to remain damaged by excavation.

3.4 FIELD QUALITY CONTROL

- A. Request inspection of excavation and controlled fill operations in accordance with applicable code and local governing agency requirements.
- Request visual inspection of bearing surfaces by inspection agency before installing subsequent work.

3.5 PROTECTION

- A. Prevent displacement or loose soil from falling into excavation; maintain soil stability.
- B. Protect bottom of excavations and soil adjacent to and beneath foundation from freezing.
- C. Protect structures, utilities and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth operations.

TRENCHING

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Excavating trenches for utilities from 5 feet outside building to utility service.
- 2. Compacted fill from top of utility bedding to subgrade elevations.
- 3. Backfilling and compaction.

B. Related Sections:

- 1. Section 31 05 16 Soils and Aggregates.
- 2. Section 31 22 13 Rough Grading: Topsoil and subsoil removal from site surface.
- 3. Section 31 23 16 Excavation: General building excavation.
- 4. Section 31 23 23 Fill: General backfilling.
- 5. Section 32 91 19 Landscape Grading: Filling of topsoil over backfilled trenches to finish grade elevation.
- 6. Section 33 11 16 Site Water Utility Distribution Piping
- 7. Section 33 41 00 Storm Utility Drainage Piping
- 8. Section 33 46 00 Subdrainage

1.2 REFERENCES

A. ASTM International:

- 1. ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)).
- 2. ASTM D2922 Standard Test Method for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth).
- 3. ASTM D3017 Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth).

1.3 DEFINITIONS

A. Utility: Any buried pipe, duct, conduit, or cable.

1.4 SUBMITTALS

A. Product Data: Submit data for geotextile fabric indicating fabric and construction.

- B. Materials Source: Submit name of imported fill materials suppliers.
- C. Manufacturer's Certificate: Certify Products meet or exceed specified requirements.

1.5 QUALITY ASSURANCE

A. Perform Work in accordance with local governing agency standards.

1.6 FIELD MEASUREMENTS

A. Verify field measurements prior to fabrication.

1.7 COORDINATION

 Verify Work associated with lower elevation utilities is complete before placing higher elevation utilities.

PART 2 PRODUCTS

2.1 FILL MATERIALS

- A. Subsoil Fill: Type S1 as specified in Section 31 05 16.
- B. Crushed Stone Fill: Type A1 as specified in Section 31 05 16.
- C. Granular Fill: Type A2 as specified in Section 31 05 16.

2.2 ACCESSORIES

- A. Geotextile Fabric: Non-biodegradable, non-woven.
 - 1. Mirafi; Model 140N Filter Fabric or approved equal.

PART 3 EXECUTION

3.1 LINES AND GRADES

- A. Lay pipes to lines and grades indicated on Drawings.
 - 1. Engineer reserves right to make changes in lines, grades, and depths of utilities when changes are required for Project conditions.
- B. Use laser-beam instrument with qualified operator to establish lines and grades.

3.2 PREPARATION

- A. Call Local Utility Line Information service, Miss Dig, at 1-800-482-7171 or 811, not less than three working days before performing Work.
 - 1. Request underground utilities to be located and marked within and surrounding construction areas.
- B. Identify required lines, levels, contours, and datum locations.

- C. Protect plant life, lawns, and other features remaining as portion of final landscaping.
- D. Protect bench marks, existing structures, fences, sidewalks, paving, and curbs from excavating equipment and vehicular traffic.
- E. Maintain and protect above and below grade utilities indicated to remain.

3.3 TRENCHING

- A. Excavate subsoil required for utilities to utility service.
- B. Remove lumped subsoil, boulders, and rock up of 1/6 cubic yard, measured by volume.
- C. Perform excavation within 24 inches of existing utility service or in accordance with utility's requirements.
- D. Do not advance open trench more than 200 feet ahead of installed pipe.
- E. Cut trenches to width indicated on Drawings. Remove water or materials that interfere with Work.
- F. Excavate bottom of trenches maximum 12 inches wider than outside diameter of pipe.
- G. Excavate trenches to depth indicated on Drawings. Provide uniform and continuous bearing and support for bedding material and pipe.
- H. Do not interfere with 45 degree bearing splay of foundations.
- I. When Project conditions permit, slope side walls of excavation starting 2 feet above top of pipe. When side walls can not be sloped, provide sheeting and shoring to protect excavation as specified in this section.
- J. Cut out soft areas of subgrade not capable of compaction in place. Backfill with bedding material and compact to density equal to or greater than requirements for subsequent backfill material.
- K. Trim excavation. Remove loose matter.
- L. Correct areas over excavated areas with compacted backfill as specified for authorized excavation.
- M. Remove excess subsoil not intended for reuse, from site.
- N. Stockpile subsoil for reuse in area designated on site to depth not exceeding 8 feet and protect from erosion.

3.4 SHEETING AND SHORING

- A. Sheet, shore, and brace excavations to prevent danger to persons, structures and adjacent properties and to prevent caving, erosion, and loss of surrounding subsoil.
- B. Support trenches more than 5 feet deep excavated through unstable, loose, or soft material. Provide sheeting, shoring, bracing, or other protection to maintain stability of excavation.

- C. Repair damage caused by failure of the sheeting, shoring, or bracing and for settlement of filled excavations or adjacent soil.
- D. Repair damage to new and existing Work from settlement, water or earth pressure or other causes resulting from inadequate sheeting, shoring, or bracing.

3.5 BACKFILLING

- A. Backfill trenches to contours and elevations with unfrozen fill materials.
- B. Systematically backfill to allow maximum time for natural settlement. Do not backfill over porous, wet, frozen, or spongy subgrade surfaces.
- C. Place material in continuous layers as follows:
 - 1. Common Fill: Maximum 4 inches compacted depth.
 - 2. Granular Fill: Maximum 4 inches compacted depth.
- D. Employ placement method that does not disturb or damage foundation perimeter drainage and utilities in trench.
- E. Maintain optimum moisture content of fill materials to attain required compaction density.
- F. Do not leave more than 50 feet of trench open at end of working day.
- G. Protect open trench to prevent danger to Owner and the public.

3.6 TOLERANCES

A. Top Surface of Backfilling: Plus or minus 1 inch from required elevations.

3.7 FIELD QUALITY CONTROL

- A. Perform laboratory material tests in accordance with ASTM D1557.
- B. Perform in place compaction tests in accordance with the following:
 - 1. Density Tests: ASTM D2922.
 - Moisture Tests: ASTM D3017.
- C. When tests indicate Work does not meet specified requirements, remove Work, replace, compact, and retest.

3.8 PROTECTION OF FINISHED WORK

A. Reshape and re-compact fills subjected to vehicular traffic during construction.

FILL

PART 1 GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Backfilling site structures to subgrade elevations.
- 2. Fill under slabs-on-grade.
- 3. Fill under paving.
- 4. Fill for over-excavation.

B. Related Sections:

- 1. Section 31 05 16 Soils and Aggregates.
- 2. Section 31 22 13 Rough Grading: Site filling.
- 3. Section 31 23 16 Excavation.
- 4. Section 31 23 17 Trenching: Backfilling of utility trenches.
- 5. Section 32 91 19 Landscape Grading.
- 6. Section 33 11 16 Site Water Utility Distribution Piping.
- 7. Section 33 46 00 Subdrainage.

1.2 REFERENCES

A. ASTM International:

- ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)).
- 2. ASTM D2922 Standard Test Method for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth).
- 3. ASTM D3017 Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth).

1.3 SUBMITTALS

- A. Section 01 33 00 Submittal Procedures: Requirements for submittals.
- B. Product Data: Submit data for geotextile fabric indicating fabric and construction.
- C. Materials Source: Submit name of imported fill materials suppliers.

D. Manufacturer's Certificate: Certify Products meet or exceed specified requirements.

1.4 QUALITY ASSURANCE

A. Perform Work in accordance with local governing agency standards.

PART 2 PRODUCTS

2.1 FILL MATERIALS

- A. Common Fill: Type S1 as specified in Section 31 05 16.
- B. Crushed Stone Fill: Type A1 as specified in Section 31 05 16.
- C. Granular Fill: Type A2 as specified in Section 31 05 16.

2.2 ACCESSORIES

- A. Geotextile Fabric: Non-biodegradable, woven in areas of undercutting.
 - 1. Tensar TX5 or approved equal.

PART 3 EXECUTION

3.1 EXAMINATION

A. Administrative Requirements: Coordination and project conditions.

3.2 PREPARATION

- A. Compact subgrade to density requirements for subsequent backfill materials.
- B. Cut out soft areas of subgrade not capable of compaction in place. Backfill with structural or granular fill per Geotechnical Report and compact to density equal to or greater than requirements for subsequent fill material.
- C. Scarify subgrade surface to a minimum depth of 8 inches.
- D. Proof roll to identify soft spots; fill and compact to density equal to or greater than requirements for subsequent fill material.

3.3 BACKFILLING

- A. Backfill areas to contours and elevations with unfrozen materials.
- B. Systematically backfill to allow maximum time for natural settlement. Do not backfill over porous, wet, frozen or spongy subgrade surfaces.
- C. Place geotextile fabric in areas of undercutting as directed by the Geotechnical Engineer.

Maximum Loose

D. Place material in continuous layers as follows:

Compaction Method	<u>Lift Thickness</u>
Hand-operated vibratory plate or light roller in confined areas	4 inches
Hand-operated vibratory roller weighing at least 1,000 pounds	6 inches
Vibratory roller drum roller, minimum dynamic force, 2,000 pounds	9 inches
Vibratory drum roller, minimum dynamic force, 30,000 pounds	12 inches
Sheeps-foot roller	8 inches

- E. Employ placement method that does not disturb or damage other work.
- F. Maintain optimum moisture content of backfill materials to attain required compaction density.
- G. Make gradual grade changes. Blend slope into level areas.
- H. Remove surplus backfill materials from site.
- I. Leave fill material stockpile areas free of excess fill materials.

3.4 TOLERANCES

- A. Top Surface of Backfilling Under Paved Areas: Plus or minus 1 inch from required elevations.
- B. Top Surface of General Backfilling: Plus or minus 1 inch from required elevations.

3.5 FIELD QUALITY CONTROL

- A. Perform laboratory material tests in accordance with ASTM D1557.
- B. Perform in place compaction tests in accordance with the following:
 - 1. Density Tests: ASTM D2922.
 - 2. Moisture Tests: ASTM D3017.
- C. When tests indicate Work does not meet specified requirements, remove Work, replace and retest.
- D. Proof roll compacted fill surfaces under slabs-on-grade and paving.

3.6 PROTECTION OF FINISHED WORK

A. Reshape and re-compact fills subjected to vehicular traffic

EROSION CONTROLS

PART 1 GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Check Dams.
 - 2. Inlet Filter.
 - 3. Silt Fencing
- B. Related Sections:
 - 1. Section 31 05 16 Soils and Aggregates.
 - 2. Section 31 10 00 Site Clearing.
 - 3. Section 31 23 16 Excavation.
 - 4. Section 31 23 23 Fill.
 - 5. Section 32 91 19 Landscape Grading.
 - 6. Section 32 92 19 Seeding and Soil Supplements.

1.2 REFERENCES

- A. ASTM International:
 - ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)).
- 1.3 SUBMITTALS
 - A. Manufacturer's Certificate: Certify Products meet or exceed specified requirements.
- 1.4 QUALITY ASSURANCE
 - A. Perform Work in accordance with local governing agency standards.
- 1.5 ENVIRONMENTAL REQUIREMENTS
 - A. Do not place grout when air temperature is below freezing.

PART 2 PRODUCTS

2.1 ROCK MATERIALS

A. Rock: Sound, tough, durable fractured rock, free from decompressed stones or other defects impairing its durability. Broken concrete or rounded stones are not acceptable.

2.2 PLANTING MATERIALS

- A. Seeding and Soil Supplements: as specified in Section 32 92 19.
- B. Mulch: as specified in Section 32 92 19

2.3 ACCESSORIES

- A. Inlet Filter Fabric: Geotextile fabric with minimum flow rate of 100 gal/min./s.f. meeting local governing agency requirements.
- B. Silt Fencing: Geotextile filter fabric with minimum flow rate of 10 gal/min./s.f., Amoco Pro Pex 2130 or approved equal.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Verify existing conditions before starting work.
- B. Verify compacted subgrade is acceptable and ready to support devices and imposed loads.

3.2 CHECK DAM

- A. Determine length required for ditch or depression slope and excavate, compact and foundation area to firm, even surface.
- B. Produce an even distribution of rock pieces, with minimum voids to the indicated shape, height and slope.

3.3 SITE STABILIZATION

- A. Incorporate erosion control devices indicated on the Drawings into the Project at the earliest practicable time.
- B. Construct, stabilize and activate erosion controls before site disturbance within tributary areas of those controls.
- C. Stockpile and waste pile heights shall not exceed 8 feet. Slope stockpile sides at 2: 1 or flatter.
- D. Stabilize any disturbed area of affected erosion control devices on which activity has ceased and which will remain exposed for more than 20 days.
 - 1. During non-germinating periods, apply mulch at recommended rates.

- 2. Stabilize disturbed areas which are not at finished grade and which will be disturbed within one year in accordance with Section 32 92 19 at 50 percent of permanent application rate with no topsoil.
- 3. Stabilize disturbed areas which are either at finished grade or will not be disturbed within one year in accordance with Section 32 92 19 permanent seeding specifications.
- E. Stabilize stockpiles immediately.

3.4 FIELD QUALITY CONTROL

- A. Inspect erosion control devices on a weekly basis and after each runoff event. Make necessary repairs to ensure erosion and sediment controls are in good working order.
- B. Compaction Testing: In accordance with ASTM D1557.
- C. When tests indicate Work does not meet specified requirements, remove Work, replace and retest.

3.5 CLEANING

- A. When sediment accumulation in sedimentation structures has reached a point one-third depth of sediment structure or device, remove and dispose of sediment.
- B. Do not damage structure or device during cleaning operations.
- C. Do not permit sediment to erode into construction or site areas or natural waterways.
- D. Clean channels when depth of sediment reaches approximately one half channel depth.

	UNDERGROUND HYDRONIC DISTRIBUTION PIPING
1.1 1.2 1.3 1.4 1.5	DEFINITIONS PERFORMANCE REQUIREMENTS SUBMITTALS QUALITY ASSURANCE PROJECT CONDITIONS
2.1 2.2 2.3	PRODUCTS MANUFACTURERS PIPING MATERIALS PP COMPOSITE PRESSURE PIPE AND FITTINGS POLYETHYLENE PIPE RIGID PVC CASED PIPING ENCASEMENT FOR PP COMPOSITE PIPING AND SAND INSULATION
3.1 3.2 3.3 3.4 3.5	EXECUTION ! EARTHWORK ! PIPING APPLICATION ! PIPING INSTALLATION ! JOINT CONSTRUCTION ! IDENTIFICATION ! FIELD QUALITY CONTROL !
PART 1 -	- GENERAL
1.1	RELATED DOCUMENTS
A.	Drawings and general provisions of the Contract, including General and Supplementary

- Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections include the following:
 - 1. Division 20 Section "Mechanical General Requirements."
 - 2. Division 20 Section "Basic Mechanical Materials and Methods."
 - 3. Division 23 Section "Hydronic Piping."
 - 4. Division 23 Section "Snow Melting and Floor Heating."
- 1.2 **DEFINITIONS**
 - A. HDPE: High density polyethylene plastic.
 - LLDPE: Linear, low-density polyethylene plastic. B.
 - C. PE: Polyethylene plastic.
 - D. PEX: Crosslinked polyethylene plastic.

- E. PP: Polypropylene.
- F. PVC: Polyvinyl chloride plastic.

1.3 PERFORMANCE REQUIREMENTS

- A. Provide components and installation capable of producing hydronic piping systems with the following minimum working-pressure ratings:
 - 1. Chilled-Water Piping: 90 psig.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. PP composite pressure pipe and fittings.
 - 2. Conduit piping.
 - Cased piping.
 - 4. Flexible cased piping.
 - Loose-fill insulation.
- B. Shop Drawings:
 - 1. Perform stress calculations in accordance with ANSI B31.1.
 - 2. Calculate requirements for expansion compensation for underground piping.
 - 3. Show expansion compensators, offsets, and loops with appropriate materials to allow piping movement in the required locations. Show anchors and guides that restrain piping movement with calculated loads, and show concrete thrust block dimensions.
 - 4. Show pipe sizes, locations, and elevations. Show piping in trench, conduit, and cased pipe with details showing clearances between piping, and show insulation thickness.
- C. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from hydronic distribution piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures. Show expansion loops and 90 degree fittings.
- D. Profile Drawings: Show system piping in elevation. Draw profiles at horizontal scale of not less than 1 inch equals 50 feet and at vertical scale of not less than 1 inch equals 5 feet. Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing hydronic distribution piping.
- E. Welding certificates.
- F. Field quality-control test reports.

1.5 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.
- B. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.

1.6 PROJECT CONDITIONS

- A. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Architect no fewer than two days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Architect's written permission.

1.7 COORDINATION

A. Coordinate pipe-fitting pressure classes with products specified in related Sections.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIALS

- A. Refer to Part 3 "Piping Application" Article for applications of pipes, tubes, fittings, and joining methods.
- B. Refer to Division 20 Section "Basic Mechanical Materials and Methods" for commonly used joining materials.

2.3 PP COMPOSITE PRESSURE PIPE AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Aquatherm, Inc.; Greenpipe Faser Composite.
 - 2. Nupi Americas; a subsidiary of Nupigeco, S.p.A.; Niron.
 - 3. Orion; a Watts Water Technologies Company; Polystar.
- B. PP Composite Pressure Pipe: ASTM F 2389 and CSA B137.11, PP-R, SDR 17.6 piping. Piping shall contain a fiber layer to restrict thermal expansion.

- 1. Fittings: Manufactured from PP-R resin meeting short-term properties and long-term strength requirements of ASTM F 2389. Fittings shall contain no reworked or recycled materials except that generated in manufacturer's own plant from resin of same specification from same raw material.
- Certifications: Fittings shall be certified by NSF International as complying with NSF 14, NSF 61, and ASTM F 2389 or CSA B137.11.

2.4 POLYETHYLENE PIPE

- A. High Density Polyethylene Pipe:
 - 1. Sizes NPS 3 and Larger: PE3408, Cell Classification ASTM D3350, or equivalent conforming to ASTM D3035-06, DR15.5, 110 psig.
 - a. Molded Polyethylene Fittings: ASTM D3035 PE resin, socket- or butt-fusion type, made to match PE pipe dimensions.
 - b. Metal to PE Transition Fittings: O-Ring design meeting ASTM 2513.

2.5 RIGID PVC CASED PIPING

A. Manufacturers:

- 1. Insul-Tek Piping Systems, Inc.
- 2. Rovanco Piping Systems, Inc.
- 3. Thermacore Process, L.P.
- B. Carrier Pipe: Polyvinylchloride (PVC) SDR 26 Class 160 conforming to ASTM D2241 in nominal 20-foot lengths.
- C. Carrier Pipe Insulation: Polyurethane foam with the following minimum characteristics: K Factor .13, Density 2 pfc, Closed Cell Content 90-95 percent in conformance with MIL-1-24172 and ASTM C-591 completely filling the annular space between carrier pipe and jacketing. Minimum insulation thickness shall be 1.05 inches.
- D. Casing: High-impact, seamless Polyvinylchloride (PVC) Class 12454-B compound conforming to ASTM 1784, Type 1, Grade 1 through 16-inch diameter. No FRP jacketing will be allowed. Minimum jacket thickness shall be 100 MILS.
- E. Joining Method: Bell by Spigot pipe is joined with rubber ring gasket seals, conforming to ASTM D-1869, on each 20 foot length to allow for expansion and contraction. Coupling joints to be uninsulated.
- F. Fittings: PVC, made of the same type and grade materials as the pipe to which they are attached and rated at the same pressure and temperature as the pipe, fitted with rubber ring gaskets. All fittings to be un-insulated to permit proper thrust-blocking.
- G. End Seals: Casing and Polyethylene Shrink Type End Seal Testing Certification: Testing and certification procedures shall demonstrate that casing and end seals are capable of resisting penetration of water into the casing and insulation at 20 feet of head pressure, measured above the highest point of the test sample, subjected over the entire surface of an 8-foot casing test sample for not less than 48 hours, after the sample has been subjected to cold cycle testing.

The cold cycle testing shall consist of 14 days of cycling with 24 hour periods with water while the sample is either buried or encased in dry bedding and with a minimum of 12 inches of sand all around sample.

2.6 ENCASEMENT FOR PP COMPOSITE PIPING AND SAND INSULATION

- A. Description: ASTM A 674 or AWWA C105, high-density, crosslaminated PE film of 0.004-inch or LLDPE film of 0.008-inch minimum thickness.
- B. Form: Sheet.
- C. Color: Black or natural.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to Division 31 Section "Earthwork" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATION

- A. Chilled-Water Piping: Use any of the following
 - 1. PP composite pressure pipe and fittings.
 - 2. Polyethylene pipe.
 - 3. Cased piping with polyurethane carrier-pipe insulation.

3.3 PIPING INSTALLATION

- A. General Locations and Arrangements: Drawings indicate general location and arrangement of piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated, unless deviations to layout are approved on Coordination Drawings.
- B. Remove any standing water in the bottom of trench.
- C. Bed the pipe on a minimum 6-inch layer of granular fill material with a minimum 6-inch clearance between the pipes.
 - 1. Exception: Bed PP composite pressure pipe on minimum 12-inch layer sand fill material as detailed on the drawings.
- D. Do not insulate piping or backfill piping trench until field quality-control testing has been completed and results approved.
- E. Install piping at uniform grade of 0.2 percent upward in direction of flow or as indicated.
- F. Install components with pressure rating equal to or greater than system operating pressure.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.

- I. Thrust Blocks (where required on cased piping): All underground changes of direction, i.e. 90 degree els, 45 degree els, tees, etc. will be un-insulated. They will be poured in concrete thrust blocks to form anchor points and direct the expansion and contraction to take place at the gasketed joints.
- J. Refer to Division 20 Section "Basic Mechanical Materials and Methods" for sleeves and mechanical sleeve seals through exterior building walls.
- K. Secure anchors, where necessary, with concrete thrust blocks. Concrete is specified in Division 03 "Cast-in-Place Concrete."
- L. Connect to hydronic piping where it passes through the building wall or floor. Hydronic piping inside the building is specified in Division 23 Section "Hydronic Piping."

3.4 JOINT CONSTRUCTION

- A. Refer to Division 20 Section "Basic Mechanical Materials and Methods" for basic piping joint construction.
- B. Conduit and Cased Piping Joints: Assemble sections and finish joints with pourable or split insulation, exterior jacket sleeve, and apply shrink-wrap seals as required by manufacturer's written installation instructions.

3.5 IDENTIFICATION

A. Install continuous plastic underground warning tapes during back filling of trenches for underground hydronic distribution piping. Locate 6 to 8 inches below finished grade, directly over piping. Refer to Division 20 Section "Mechanical Identification" for warning-tape materials and devices and their installation.

3.6 FIELD QUALITY CONTROL

- A. Prepare hydronic piping for testing according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Isolate equipment. Do not subject equipment to test pressure.
 - 3. Install relief valve set at pressure no more than one-third higher than test pressure.
 - 4. Fill system with water. Where there is risk of freezing, air or a safe, compatible liquid may be used.
 - 5. Use vents installed at high points to release trapped air while filling system.
- B. Test hydronic piping as follows:
 - 1. Subject hydronic piping to hydrostatic test pressure that is not less than 1.5 times the design pressure, but not less than 90 psig.
 - 2. After hydrostatic test pressure has been applied for 10 minutes, examine joints for leakage. Remake leaking joints using new materials and repeat hydrostatic test until no leaks exist.

SECTION 336113 UNDERGROUND HYDRONIC DISTRIBUTION PIPING

C. Prepare a written report of testing.