Science/STEM Internal Audit Update

Technology & Engineering Education Association of Pennsylvania

Science Technology Engineering Math

What STEM Is	What STEM is not
Preparation for tomorrow's careers	A fad
Designing and solving problems	Following directions
Ongoing	Only event-based
Integrated	Isolated

SDHT Curriculum Review Cycle	2016-17	2017-18	2018-19	2019-20	2020-21	
K12 ELA	Audit	Audit Develop Implement 1	Implement 1	Implement 2	Monitor 2	
K-12 Reading	Audit		implement 1	Monitor 1	Wionitor 2	
K-12 Science	Adjust and Align	Audit	Develop	Implement 1	Implement 2	
K-12 ART			Бечеюр	implement 1	Monitor 1	
K-12 Social Studies K-12 HPE	Adjust and Align	Adjust and Align	Audit	Develop	Implement 1	

art

Who is the Audit Team?

Elementary Teachers

Katie Holder
Cameron Bush
Nicole McKeown
Lizzie Gallagher
Trish Campbell
Natalie Habert
Betsy Montgomery
Sharon Jackson
Emily Stefanski
Karen Kunsa
Erin Oelkers
Laurie Ardoline

Principals

Sara Christianson
Joel DiBartolomeo
Beth Mastrocola
Jillian McGilvery
Dr. George Ramoundos

Curriculum Department

Jennifer Saksa Dr. Jeff Nesbitt

Who is the Audit Team?

Middle School and High School Teachers

Kelly Sweeney
Thomas Henry
Debbie McGlone
Michael Huth
Jessica Ramos
Jana Fitzpatrick
Patricia Collins
Kelly Kindregan
Tim Foster
Dr. Jeremy
Tomaszewski

Becky Mortland
David Corsi
Laura Clinton
Chris Walter
Dr. Vicki Pollard
Jonathan Howe
Colleen Pompetti
Nicholas Bilotti
Dr. Steve
Peterson
John Scholtz

Principals

Dan Horan Pete Donaghy

Curriculum Department

Jennifer Saksa Dr. Jeff Nesbitt

Curriculum Audit Cycle - Science STEM

Curriculum Baseline

- Background reading and preparation by audit team
- Standards identified

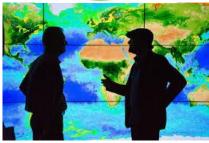
Internal Analysis

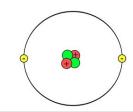
- Current curriculum and resource evaluation using
 - PA Science Standards (Science)
 - Next Generation Science Standards (NGSS Science and Engineering)
 - K-12 Computer Science Standards (Technology)
 - PA Technology Standards (Technology and Engineering)
 - Teacher survey
- Data Analysis survey results, test results, enrollment, recommendation criteria
- Standards Gap Analysis What are we teaching? What is missing? What needs to change?

PA Academic Standards for Science and Technology and Engineering Education

- Biological Sciences
 - Organisms and Cells
 - Genetics
 - Evolution
- Physical Sciences
 - Chemistry
 - Physics
- Earth and Space Sciences
 - Earth Structures, Processes and Cycles
 - Origin and Evolution of the Universe

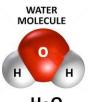
Next Generation Science Standards


National Academy of Science, National Science Teachers Association, and American Association for the Advancement of Science


Structure and Properties of Matter

2nd Grade

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.


5th Grade

 Develop a model to describe that matter is made of particles too small to be seen.

Middle School

 Develop models to describe the atomic composition of simple molecules and extended structures.

High School

Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
Periodic Table of Elements

Computer Science

- Computing Systems
- Networks and the Internet
- Data and Analysis
- Algorithms and Programming
- Impacts of Computing

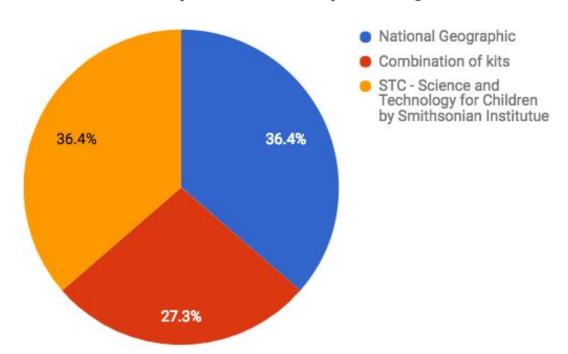
PA Technology and **Engineering Education**

- Scope of Technology
- Technology and Society
- Technology and Engineering Design
- Abilities for a Technological World
- The Designed World

What the audit looks like:

P	Ţ Di	isci 😑	SubDisc =	Gra ▼	Standar =	Statement	- I -	- CHEM =	BIO- ACADEMIC =	IPS =	Ch =	Bio =	Physic
	pli	ine	ipline	de			P			yes/	em	yes/	S
				Leve			S			no	ye	no	
				1							s/n		
											0		
1	38 Ph	nysical	Matter and	High	HS-PS1-1	Use the periodic table as a model to predict the relative properties of elements based on the	no	Chapter 6-9,11. Mystery	Weak- discussion of valence	no	yes	yes	AP-1/2
	Sc	eience	its	School		patterns of electrons in the outermost energy level of atoms. [Clarification Statement:		of the Periodic Table	electrons as they relate to				
			Interactions			Examples of properties that could be predicted from patterns could include reactivity of metals	,	Activity, Reactivity of	bonding				
						types of bonds formed, numbers of bonds formed, and reactions with oxygen.] [Assessment		Metals SR lab, Shapes of					
						Boundary: Assessment is limited to main group elements. Assessment does not include		molecules POGIL,					
						quantitative understanding of ionization energy beyond relative trends.]		Bonding WebQuest,					
								Formative and summative					
								assessments					

Initial Audit Findings

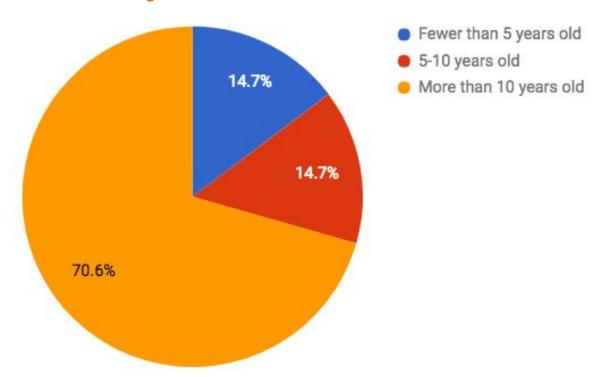


Science/STEM Findings - Elementary

Standards Gap Analysis - Science	PA Standards for Science-aligned NGSS Standards-gaps exist
Standards Gap Analysis - Technology	Computer Science Standards
Standards Gap Analysis - Engineering	NGSS-gaps exist Engineering Practices
Teacher Input	Hands on, newer kits, engineering, professional development
Performance Data	PA avg. % prof/adv = 74.5; SDHT avg of schools = 92.9% prof/adv

Elementary Resources Example

Which Resource do you use to teach your 2nd grade unit on solids, liquids and gases?


Science STEM findings - Secondary

Standards Gap Analysis - Science	PA Standards for Science-aligned NGSS Standards-gaps exist Earth and Space Science Engineering Practices
Standards Gap Analysis - Technology	Computer Science Standards-gaps exist Coding
Standards Gap Analysis - Engineering	PA Academic Standards for Technology and Engineering Education-partially aligned in electives NGSS-gaps exist Engineering Practices

Science STEM Findings - Secondary

Teacher Input	Textbooks, Engineering, Computer Science Offerings
Performance Data	Keystone: 2017 State % adv/prof=63.4; SDHT % adv/prof = 81.6 PSSA: 2017 State % adv/prof = 52.7; SDHT % adv/prof = 77.7
Enrollment Data	Generally representative of overall population

Secondary Science Materials

Next Steps - Curriculum Audit Cycle

Internal Analysis

Continue Reviewing Standards and Curriculum

External Analysis

- Science Advisory Group meeting with several local scientists and engineers to discuss expectations at collegiate level
- Visiting, Interviewing, Surveying or Conducting Site Visits of high-performing schools focusing on the strengths of that curriculum related to Science, Technology, and/or Computer Science.
- Parent Survey & Analysis
- Student Survey/Focus Group & Analysis
- Empirical research & best practices via national associations

Experts' best guess about the combination of traits that will guarantee rewarding employment in tomorrow's economy...

Elite-level technical abilities

The probing mind of a scientist

And a deft human touch