Prerequisite skills for Algebra II Level 2

- o solving linear equations/inequalities and absolute value equations/inequalities
- o <u>functions vs. relations</u>
- o graphing functions from tables of values
- o finding x and y intercepts from standard form
- o writing equations in point-slope, slope intercept, standard form
- o <u>solving systems of equations</u> (2 variables)
- o systems of linear inequalities
- quadratic <u>factoring</u> and including $\underline{a \neq 1}$
- o simplifying square roots
- o solving quadratics by factoring, square roots, quadratic formula, or completing the square
- o <u>simplifying</u>, <u>multiplying and dividing</u> rational expressions, including domain restrictions

Solving linear absolute value equations/inequalities

- 1. $\frac{3}{4}x + 7 = 16$ 2. |x 3| = 10
- 3. -2|2x+3| = 16

4. Solve for m in y = mx + b

- 5. Solve for w in P = 2l + 2w6. $\frac{-|2x-1|}{6} = -5$
- 7. $\frac{2}{3}s 4 = \frac{1}{4}s \frac{1}{2}$ 8. $\frac{4}{5}x + 3 = \frac{2}{15}x - \frac{3}{10}$

9. Solve for x. Then graph your answer on the number line.		
a3	3x + 2 > 8	← →
с.	$-4x + 3 \le -6x + 12$	←
d.	5x + 25 < 0 U $6x - 36 > 0$	← →
e.	2x - 10 < -2 $x + 3 > -15$	<
f.	$ x + 5 \le 15$	←
g. <u> x</u>	$\frac{(x+4)}{3} > 9$	←
h. 1	4 - 2 x - 1 < 12	←

Graphing from tables of values

- 12) Create a table for each and graph the function
 - a) y = 3x 1

c) $y = x^3$

d) $y = 3 - \sqrt{x}$

Date:

13) a. Write the equation of a line that crosses through G(-4, 5) and H(-2, -1).

b. Write an equation of a line parallel to the line in part (a).

c. Write an equation of a line perpendicular to the line in part (a).

d. What type of angle do the lines in parts b and c create at their intersection?

7. Write an equation of a line that crosses through F(5, 7) and M(-3, -1) in the following forms:

Slope-Intercept

<u>Point-Slope</u>

Standard

14. Solve each system of equations:

3x + 9y = 9	y = -2x + 9	-2x + 7y = 10
$y = \frac{2}{3}x - 2$	3x - 4y = 8	x - 3y = -3

15. At a recent concert, there were 1500 people. Adult tickets were \$12 each and student tickets were 50% off the adult price. If the concert profit was \$15,600, find the number of adult and student tickets sold.

Factoring and solving polynomials

16. Factor the following completely or state that it is prime:

a.)
$$9x^2 - 36$$
 b.) $8x^2 + 25x + 3$

c.)
$$6x^2 - 30x - 36$$
 d.) $x^2 - 10x + 25$

e.)
$$6x^3 - 12x^2$$
 f.) $3x^2 + x - 10$

g)
$$2x^3 - 14x^2 + 24x$$
 h.) $3x^2 + 17x + 10$

i)
$$4y^2 + 14y + 6$$
 j.) $6x^2 - 12x - 18$

Simplifying square roots. *Simplify each.*

a.)
$$\sqrt{98}$$
 b.) $\sqrt{72}$ c.) $\sqrt{108}$

d.)
$$2\sqrt{6} \cdot 5\sqrt{3}$$
 e.) $\sqrt{15} \cdot \sqrt{10}$ f.) $\frac{\sqrt{50}}{\sqrt{2}} - \sqrt{20}$

g.)
$$\sqrt{20} - \sqrt{200} + \sqrt{45}$$
 h.) $\sqrt{\frac{32}{50}}$ i.) $\frac{\sqrt{120}}{\sqrt{20}}$

Solving quadratics. *Solve for x using any appropriate method*

a.)
$$x^2 - 3x = 4$$
 b.) $x^2 = 10x - 25$

e.)
$$x^2 - 6x + 8 = 0$$

f.) $3x^2 - 7x + 2 = 0$

g.)
$$x^2 - 3x + 1 = 6$$

h.) $4x^2 + 7x + 2 = 0$

Rational Expressions. *Multiply, divide, simplify. State any restrictions.*

a)
$$\frac{3x-12}{8x+12} \cdot \frac{12x+8}{5x-20}$$
 b) $\frac{3x^2}{5y^3} \div \frac{9x^8}{15y^6}$

c)
$$\frac{x^2 + 4x}{x - 5} \div \frac{x^2 - x - 20}{2}$$
 d) $\frac{x^2 - 6x + 5}{x^2 - x - 20} \bullet \frac{x^2 - 16}{1 - x^2}$

e)
$$\frac{x^2 + 4x + 4}{x^2 - 4}$$
 f) $\frac{x^2 + 5x - 6}{x^2 - 4x + 4}$