Parkland School District
February 2015

ELEMENTARY MATHEMATICS
Why is learning math different now than when I was in school?

- Knowledge gained from research
- Professional leadership of the National Council of Teaching Mathematics (NCTM)
- Public or political pressure for change in mathematics education due largely to poor U.S. student performance
- Implementation of the PA Core Standards
TIMSS is the largest study of math and science education ever conducted.
A major finding called the US mathematics curriculum a mile wide and an inch deep.
US curriculum was found to be unfocused, pursuing many more topics than other countries while repeating many concepts.
Although the world has changed greatly over the past 100 years, it was found teaching mathematics during the same time frame was essentially unchanged!
US Lesson findings....

- In more than 99.5% of the US lessons the teacher reverts to showing students how to solve the problem.
- Out of 81 videotaped US lessons ZERO lessons had any high level mathematics content observed; in contrast 30-40% of lessons in Germany and Japan contained high level content.
- 89% of the US lessons consisted of low level content.
The Common Core Standards

- National Common Core Standards
- State Core Standards: PA Core Standards

Why Core Standards?
- Prepares students for college and/or career
- Provides clear, focused standards
- Sets consistent expectations
- Includes both knowledge and application of subject area
- Based on real world application
Comparing Standards

CC.2.1.2.B.3 Use place value understanding and properties of operations to add and subtract within 1000.

2.2.2.B Add and subtract single and double-digit numbers with and without regrouping, to include problems with money.
73 – 46 =

- Line up tens and ones
- Must start in the ones place
- Can’t take 6 away from 3, so borrow from the 7; 7 becomes a 6, 3 becomes a 13
- Subtract the columns: 13 – 6 = 7; 6 – 4 = 2
- Answer is 27
Three different invented strategies for Subtraction by counting up

Add Tens to Get Close, Then Ones

73 - 46

46 and 20 is 66. (30 more is too much.) Then 4 more is 70 and 3 is 73. That's 20 and 7 or 27.

![Diagram showing addition process](image1)

46 + 20 = 66
66 + 4 = 70
70 + 3 = 73
20 + 4 + 3 = 27

Add Tens to Overshoot, Then Come Back

73 - 46

46 and 30 is 76. That's 3 too much, so it's 27.

![Diagram showing addition process](image2)

46 + 30 → 76 - 3 → 73
30 - 3 = 27

Add Ones to Make a Ten, Then Tens and Ones

73 - 46

46 and 4 is 50. 50 and 20 is 70 and 3 more is 73. The 4 and 3 is 7 and 20 is 27.

![Diagram showing addition process](image3)

46 + 4 → 50
50 + 20 → 70
70 + 3 → 73
4 + 20 + 3 = 27

Similarly, 46 and 4 is 50. 50 and 23 is 73. 23 and 4 is 27.

![Diagram showing addition process](image4)

46 + 4 → 50
50 + 23 → 73
23 + 4 = 27
Four different invented strategies for take away subtraction

Take Tens from the Tens, Then Subtract Ones

73 \(-\) 46
70 minus 40 is 30.
Take away 6 more is 24.
Now add in the 3 ones → 27.

Take Away Tens, Then Ones

73 \(-\) 46
73 minus 40 is 33. Then take away 6:
3 makes 30 and 3 more is 27.

Take Extra Tens, Then Add Back

73 \(-\) 46
73 take away 50 is 23. That's 4 too many.
23 and 4 is 27.

Add to the Whole If Necessary

73 \(-\) 46
Give 3 to 73 to make 76. 76 take away 46 is 30. Now give 3 back → 27.
Subtraction Algorithm

- Begin with Models Only:

Not enough ones to take off 7. Trade a ten for 10 ones.

Now there are 15 ones. I can take 7 off easily.

And now I can take off 2 tens.

That’s 18 left.
73 – 46 =
- Line up tens and ones
- Can’t take 6 ones away from 3 ones, so borrow 1 ten from the 7; 7 tens (70) becomes 6 tens (60), 3 ones are now 13 ones.
- Subtract the tens/ones: 60 – 40 = 20; 13 – 6 = 7
- Answer is 27

STUDENT NOW HAS:
• Greater depth of understanding of subtraction and number concepts
• Multiple tools in the tool box to solve subtraction problems
• The ability to transfer this knowledge to other upcoming concepts (even if it’s not until the next year!)
Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others
4. Model with Mathematics
5. Use appropriate tools strategically
6. Attend to precision
7. Look for and make use of structure
8. Look for and express regularity in repeated reasoning
Standards Based Curriculum vs. Traditional Curriculum

- Traditional:
 - Text book with many topics (most one day lessons and no deep understanding).
 - Teacher demonstrates how to do the math and students practice.
 - One way to solve a problem.
- Standards Based:
 - Based on how students learn math and how concepts develop over time.
 - Cover fewer topics, spend more time on each concept, and make connections among concepts.
 - Students learn through inquiry, not only through teacher explanation.
 - Strong emphasis on problem solving and conceptual understanding.
 - Multiple ways to solve a problem.
Understanding is the Goal! Understanding is......

- being able to think and act flexibly with a topic or concept.
- more than a collection of information, facts, data or procedures.
- the ability to justify why a given mathematical answer is true or why a mathematical rule makes sense.
- essential for students to be able to connect prior knowledge to new knowledge.
Parent Resources

National Common Core Standards:
- http://achievethecore.org/common-core-intro-for-parents
- http://www.pta.org/parents/content.cfm?ItemNumber=2583

Pa Core Standards:
- http://www.pdesas.org/standard/pacore

Go Math:
- http://www-k6.thinkcentral.com/ePC/start.do
Parkway Manor: Feb 3, 2015

- **Kindergarten: Room 143**
 - Kelly Bedics and Karen Brown (Diane Neikam)

- **1st Grade: Gym (HERE)**
 - Dan Ryan and Kim vanLierop (Karen Dopera)

- **2nd Grade: Cafeteria**
 - Mandy Sommer and Kristin Madeira (Jamie Giaquinto)

- **3rd Grade: Room 140**
 - Emily Hamm and Lee Moyer (Scott Bartman)

- **4th Grade: Library**
 - Tina Apgar-Doll and Nicole Mandry (Rob Holmes)

- **5th Grade: Room 141**
 - Jacque Creamer and Emily Toth (Kelly Rosario)
Fogelsville: Feb 9, 2015

- **Kindergarten: Gym**
 - Kelly Bedics (Diane Neikam)

- **1st Grade: Cafeteria**
 - Dan Ryan and Kim vanLierop (Karen Auliso)

- **2nd Grade: Room 309**
 - Mandy Sommer and Kristin Madeira (Kelly Rosario)

- **3rd Grade: Art Room**
 - Emily Hamm and Lee Moyer (Michael Gehringer)

- **4th Grade: Library**
 - Tina Apgar-Doll and Nicole Mandry (Di Schantz)

- **5th Grade: Room 320**
 - Jacque Creamer and Emily Toth (Brenda DeRenzo)