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1.1. In triangle ABC three distinct triangles are inscribed, similar to each other, but not neces-
sarily similar to triangle ABC, with corresponding points on corresponding sides of triangle
ABC. Prove that if two of these triangles share a vertex, than the third one does as well.

1.2. Let a, b, and c be positive real numbers. Prove that
(

a

a + 2b

)2

+
(

b

b + 2c

)2

+
(

c

c + 2a

)2

≥ 1
3
.

1.3. An elevated Schröder path of order 2n is a lattice path in the first quadrant of the coordinate
plane traveling from the origin to (2n, 0) using three kinds of steps: [1, 1], [2, 0], and [1,−1].
An uprun in an elevated Schröder path is a maximum string of consecutive steps of the form
[1, 1]. Let U(n, k) denote the number of Schröder paths of order 2n with exactly k upruns.
Compute U(n, 0), U(n, 1), U(n, n− 1), and U(n, n).

1.4. Each positive integer a undergoes the following procedure in order to obtain the number
d = d(a):

(i) move the last (rightmost) digit of a to the front (leftmost) to obtain the number b;

(ii) square b to obtain the number c;

(iii) move the first digit of c to the end to obtain the number d.

(All the numbers in the problem are considered to be represented in base 10). For example,
for a = 2003, we get b = 3200, c = 10240000, and d(2003) = 02400001 = 2400001.

Find all numbers a for which d(a) = a2.
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2.1. Let {an}∞n=1 = {2, 4, 8, 1, 3, 6, . . . } be the infinite integer sequence such that an is the leftmost
digit in the decimal representation of 2n, and let {bn}∞n=1 = {5, 2, 1, 6, 3, 1, . . . } be the infinite
integer sequence such that an is the leftmost digit in the decimal representation of 5n. Prove
that for any block of consecutive terms in {an}, there is a block of consecutive terms in {bn}
in the reverse order.

2.2. Let d be a positive integer. Integers t1, t2, . . . , td and real numbers that a1, a2, . . . , ad are given
such that

a1t
j
1 + a2t

j
2 + · · ·+ adt

j
d

is an integer for all integers j with 0 ≤ j < d. Prove that

a1t
d
1 + a2t

d
2 + · · ·+ adt

d
d

is also an integer.

2.3. Let n and k be integers with 0 ≤ k < n
2 . Initially, let A be the sequence of subsets of

{1, 2, . . . , n} with exactly k elements, and B the sequence of subsets of {1, 2, . . . , n} with
exactly k + 1 elements, both arranged in lexicographic (dictionary) order. Now let S be the
first element in A. If there is a T in B such that S ⊆ T , remove S from A and the first such
T from B, and repeat this process as long as A is nonempty; otherwise, stop. Prove that this
process terminates with A empty.

2.4. Let P be a point in the interior of acute triangle ABC. Set Ra = PA, Rb = PB, and Rc = PC.
Let da, db and dc denote the distances from P to sides BC,CA, and AB, respectively. Prove
that

1
3
≤ R2

a sin2 A
2 + R2

b sin2 B
2 + R2

c sin2 C
2

d2
a + d2

b + d2
c

≤ 1.
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3.1. Let n be a positive integer. Consider an 2×n chessboard. In some cells there are some coins.
In each step we are allowed to choose a cell containing more than 2 coins, remove two of the
coins in the cell, put one coin back into either the cell upper to the chosen cell or to the cell to
the right of the chosen cell. Assume that there are at least 2n coins on the chessboard. Prove
that after a finite number of moves, it is possible for the upper right corner cell to contain a
coin.

3.2. Let x, y, and z be positive real numbers with x + y + z = 1. Prove that

xy√
xy + yz

+
yz√

yz + zx
+

zx√
zx + xy

≤
√

2
2

.

3.3. Let a, b1, b2, . . . , bn, c1, c2, . . . , cn be real numbers such that

x2n + ax2n−1 + ax2n−2 + · · ·+ ax + 1 = (x2 + b1x + c1)(x2 + b2x + c2) · · · (x2 + bnx + cn)

for all real numbers x. Prove that c1 = c2 = · · · = 1.

3.4. Let ABCD be a cyclic quadrilateral. Diagonals AC and BD meet at E. Let P be point inside
the quadrilateral. Let O1, O2, O3 and O4 be circumcenters of triangles ABP, BCP, CDP , and
DAP , respectively. Prove that lines O1O3, O2O4, and OE are concurrent.
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4.1. In acute triangle ABC, ∠A < 45◦. Point D lies in the interior of triangle ABC such that
BD = CD and ∠BDC = 4∠A. Point E is the reflection of C across line AB, and point F is
the reflection of B across line AC. Prove that AD ⊥ EF .

4.2. Given 106 points in the space, show that the set of pairwise distances of given points has at
least 79 elements.

4.3. Let f : R→ R be a function such that for all real numbers x and y,

f(x3 + y3) = (x + y)(f(x)2 − f(x)f(y) + f(y)2).

Prove that for all real numbers x, f(1996x) = 1996f(x).

4.4. Let c be a fixed positive integer, and let {an}∞n=1 be a sequence of positive integers such
that an < an+1 < an + c for every positive integer n. Let s denote the infinite string of
digits obtained by writing the terms in the sequence consecutively from left to right, starting
from the first term. For every positive integer k, let sk denote the number whose decimal
representation is identical to the k most left digits of s. Prove that for every positive integer
m there exists a positive integer k such that sk is divisible by m.
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5.1. Let ω be with center O. Convex quadrilateral AEDB inscribed in ω with segment AB as
a diameter of ω. Rays ED and AB meet at C. Let ω1 denote the circumcircle of triangle
OBD, and let segment OF be a diameter of ω1. Ray CF meet ω1 at G. Prove that A,O, G,
and E lie on a circle.

5.2. Let k be a positive integer, and let x1, x2, . . . , xn be positive real numbers. Prove that
(

n∑

i=1

1
1 + xi

)(
n∑

i=1

xi

)
≤

(∑

i=1

n
xk+1

i

1 + xi

)(
n∑

i=1

1
xk

i

)
.

5.3. Given positive integer n with n ≥ 2, determine the minimum number of elements in set X
such that for any n 2-element subsets S1, S2, . . . , Sn of X, there exists an n-element subset Y
of X with Y ∩ Si has at most one element for every integer i = 1, 2, . . . , n.

5.4. Given positive integers a and c and integer b, prove that there exists a positive integer x such
that ax + x ≡ b (mod c).
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6.1. Determine all positive integers a such that

Sn = {√a}+ {√a}2 + · · ·+ {√a}n

is rational for some positive integer n. (For real number x, {x} = x− bxc, where bxc denote
the the greatest integer less than or equal to x.)

6.2. A integer is called good if it can be written as the sum of three cubes of positive integers.
Prove that for every i = 0, 1, 2, 3, there are infinitely many positive integers n such that there
are exactly i good numbers among n, n + 2, and n + 28.

6.3. Let ABC be an acute triangle and let D, E, and F be the feet of the altitudes from A,B, and
C to sides BC, CA, and AB respectively. Let P, Q, and R be the feet of the perpendiculars
from A,B, and C to EF, FD, and DE respectively. Prove that

2(PQ + QR + RP ) ≥ DE + EF + FD.

6.4. Let G be a directed complete graph on n vertices having each of its edges colored either red
or blue. Prove that there exists a vertex v ∈ G with the property that for every other vertex
u ∈ G, there exists a monochromatic directed path from v to u.
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7.1. In an n× n array, each of the numbers 1, 2, . . . , n appear exactly n times. Show that there is
a row or a column in the array with at least

√
n distinct numbers.

7.2. Let ABC be a triangle. Circle ω passes through A and B and meets sides AC and BC
at D and E, respectively. Let F be the midpoint of segment AD. Suppose that there is
a point G on side AB such that FG ⊥ AC. Prove that ∠EGF = ∠ABC if and only if
AF/FC = BG/GA.

7.3. Let n be a positive integer which is not a power of a prime number. Prove that there exists
an equiangular polygon whose side lengths are 1, 2, . . . , n in some order.

7.4. Find all functions f : RtoR such that f(1) = 1 and

f

(
f(x)y +

x

y

)
= xyf(x2 + y2)

for all real numbers x and y with y 6= 0.
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8.1. Let p be a prime great than 3. Prove that there exists integers a1, a2, . . . , an with

−p

2
< a1 < a2 < · · · < an <

p

2

such that
(p− a1)(p− a2) · · · (p− an)

|a1a2 · · · an|
is a perfect power of 3.

8.2. let a, b, and c be nonnegative real numbers with

1
a2 + 1

+
1

b2 + 1
+

1
c2 + 1

= 2.

Prove that
ab + bc + ca ≤ 3

2
.

8.3. Let M denote the midpoint of side BC in triangle ABC. Line AM intersects the incircle of
ABC at points K and L. Lines parallel to BC are drawn through K and L, intersecting the
incircle again at points X and Y , respectively. Lines AX and AY intersect BC at P and Q,
respectively. Prove that BP = CQ.

8.4. Consider the integer lattice points in the plane, with one pebble placed at the origin. We
play a game where at each step one pebble is removed from a lattice point and two new
pebbles are placed at two neighboring (either horizontally or vertically, but not both) lattice
points, provided that those points are unoccupied. There will be a pebble lies inside or on
the boundary of the square S determined by the lines |x + |y|| = k. Determine the minimum
value of k.
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9.1. Let a, b, x, y be positive integers such that ax+ by is divisible by a2 + b2. Prove that gcd(x2 +
y2, a2 + b2) > 1.

9.2. In triangle ABC, point L lies on side BC. Extend segment AB through B to M such that
∠ALC = 2∠AMC. Extend segment AC through C to N such that ∠ALB = 2∠ANB. Let
O be the circumcenter of triangle AMN . Prove that OL ⊥ BC.

9.3. Find the maximum value of real number k such that

(b− c)2(b + c)
a

+
(c− a)2(c + a)

b
+

(a− b)2(a + b)
c

≥ k(a2 + b2 + c2 − ab− bc− ca)

for all positive real numbers a, b, and c.

9.4. Given n collinear points, consider the distances between the points. Suppose each distance
appears at most twice. Prove that there are at least bn/2c distances that appear once each.
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10.1. For positive integer n, Lucy and Windy play the n-game with numbers. Initially, Lucy goes
first by writing number 1 on the board, and then the players alternate. On his turn, a player
erases the number, say k, on the board and writes either the number k + 1 or k + 2, or 2k on
the board. The player who first reaches a number greater than n losses. Find all n for which
Lucy has a winning strategy.

10.2. In triangle ABC, point L lies on side BC. Extend segment AB through B to M such that
∠ALC = 2∠AMC. Extend segment AC through C to N such that ∠ALB = 2∠ANB. Let
O be the circumcenter of triangle AMN . Prove that OL ⊥ BC.

10.3. Let R∗ denote the set of nonzero real numbers. Find all functions f : R∗ → R∗ such that

f(x2 + y) = (f(x))2 +
f(xy)
f(x)

for every pair of nonzero real numbers x and y with x2 + y 6= 0.

10.4. Let n be a positive integer with n ≥ 2. Fix 2n points in space in such a way that no four of
them are in the same plane, and select any n2 + 1 segments determined by the given points.
Prove that these segments form at least n triangles.
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11.1. Let n be a given positive integer. Consider a set S of n points, with no 3 collinear, such that
the distance between any pair of points in the set is least 1. We define the radius of the set,
denoted by rS , as the largest circumradius of the triangles with their vertices in S. Determine
the minimum value of rS .

11.2. Suppose that a sequence a1, a2, a3, . . . satisfies

0 < an ≤ a2n + a2n+1 (∗)

for all n ≥ 1. Determine if the series
∑∞

n=1 an converges or not. What if a1, a2, a3, . . . is a
sequence of positive numbers satisfies

0 < an ≤ an+1 + an2 (∗∗)

instead?

11.3. Let ABC be a triangle. Circle Ω passes through points B and C. Circle ω is tangent internally
to Ω and also to sides AB and AC at T, P , and Q, respectively. Let M be midpoint of arc
B̂C (containing T ) of Ω. Prove that lines PQ,BC, and MT are concurrent.

11.4. Suppose n coins have been placed in piles on the integers on the real line. (A “pile” may
contain zero coins.) Let T denote the following sequence of operations.

(a) Move piles 0, 1, 2, . . . to 1, 2, 3, . . . , respectively.

(b) Remove one coin from each nonempty pile from among piles
1, 2, 3, . . . , then place the removed coins in pile 0.

(c) Swap piles i and −i for i = 1, 2, 3, . . . .

Prove that successive applications of T from any starting position eventually lead to some
sequence of positions being repeated, and describe all possible positions that can occur in
such a sequence.
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12.1. Set A1, A2, . . . , A35 are given with the property that |Ai| = 27 for 1 ≤ i ≤ 35, such that
the intersection of any three of them has exactly one element. Show that there is a element
belongs to all the given sets.

12.2. Let ABC be a triangle, and let O, R, and r denote its circumcenter, circumradius, and
inradius. Set AB = c, BC = a, CA = b, and s = a+b+c

2 . Point N lies inside the triangle such
that

[NBC]
s− a

=
[NCA]
s− b

=
[NAB]
s− c

.

Express ON by R and r.

12.3. If p is a prime number greater than 3 and k = b2p/3c, prove that the sum
(

p

1

)
+

(
p

2

)
+ · · ·+

(
p

k

)

of binomial coefficients is divisible by p2.

12.4. Let a, b, c, x, y, z be positive real numbers such that ax + by + cz = xyz. Prove that

x + y + z >
√

a + b +
√

b + c +
√

c + a.
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13.1. Let p be a prime number. Find all natural numbers n such that p divides ϕ(n) and such that

n divides a
ϕ(n)

p − 1 for all positive integers a relatively prime to n.

13.2. Let ABC be a triangle with circumcirlce ω. Point D lies on side BC such that ∠BAD =
∠CAD. Let IA denote the excenter of triangle ABC opposite A, and let ωA denote the circle
with AIA as its diameter. Cricles ω and ωA meet at P other than A. The circumcle of triangle
APD meet line BC again at Q (other than D). Prove that Q lies the excircle of triangle
ABC opposite A.

13.3. Each positive integer is colored either red or blue. Prove that there exists an infinite increasing
sequence of positive integers {kn}∞n=1 such that the sequence

2k1, k1 + k2, 2k2, k2 + k3, 3k3, k3 + k4, 2k4, . . .

is monochromatic.

13.4. Let a1, a2, . . . , an be positive real numbers with a1 + a2 + · · ·+ an = 1. Prove that

(a1a2 +a2a3 + · · ·+an−1an +ana1)
(

a1

a2
2 + a2

+
a2

a2
3 + a3

+ · · ·+ an−1

a2
n + an

+
an

a2
1 + a1

)
≥ n

n + 1
.
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14.1. Let k be a given positive integer greater than 1. An k-digit integer a1ak−1 . . . ak is called
parity-monotonic if for every integer i with 1 ≤ i ≤ k − 1,

{
ai > ai+1 if ai is odd,
ai < ai+1 if ai is even.

How many k-digit parity-monotonic integers are there?

14.2. Four circles ω, ωA, ωB, and ωC , with the same radius r, are drawn in the interior of triangle
ABC such that ωA is tangent to sides AB and AC, ωB to BC and BA, ωC to CA and CB,
and ω (externally) to ωA, ωB, and ωC . Find the possible values of ratio between r and the
inradius of the triangles.

14.3. Let P be a polynomial with rational coefficients. Suppose that for any integer n, P (n) is an
integer. Prove that for any distinct integers m and n,

lcm(1, 2, . . . ,deg(P ))
P (m)− P (n)

m− n

is an integer.

14.4. Given a positive integer n, prove that there exists ε > 0 such that for any n positive real
numbers a1, a2, . . . , an, there exists t > 0 such that

ε < {ta1}, {ta2}, . . . , {tan} <
1
2
.
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15.1. Given n points on the plane with no three collinear, a set of k of the points is called k-polite
if they determine a convex k-gon that contains no other given point in its interior. Let ck

denote the number of k-polite subsets of the given points. Show that the series

n∑

k=3

(−1)kck

is independent of the configuration of the points and depends only on n.

15.2. Let ABC be an acute triangle. Circle ωBC has segment BC as its diameter. Circle ωA is
tangent to lines AB and AC and is tangent externally to ωBC at A1. Points B1 and C1 are
defined analogously. Prove that lines AA1, BB1, and CC1 are concurrent.

15.3. Let p be a polynomial of degree n ≥ 2 such that |p(x)| ≤ 1 for all x in the interval [−1, 1].
Determine the maximum value of the leading coefficient of f .

15.4. A k-coloring of a graph G is a coloring of its vertices using k possible colors such that the end
points of any edge have different colors. We say a graph G is uniquely k-colorable if one hand
it has a k-coloring, on the other hand there do not exist vertices u and v such that u and v
have the same color in one k-coloring and u and v have different colors in another k-coloring.
Prove that if a graph G with n vertices (n ≥ 3) is uniquely 3-colorable, then it has at least
2n− 3 edges.
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1. Let ABC be a triangle. Prove that

sin
3A

2
+ sin

3B

2
+ sin

3C

2
≤ cos

A−B

2
+ cos

B − C

2
+ cos

C −A

2
.

2. Let p be a prime number greater than 5. For any integer x, define

fp(x) =
p−1∑

k=1

1
(px + k)2

.

Prove that for all positive integers x and y, the numerator of fp(x)− fp(y), when written in
lowest terms, is divisible by p3.

3. Let n be an integer greater than 2, and P1, P2, · · · , Pn distinct points in the plane. Let S
denote the union of the segments P1P2, P2P3, . . . , Pn−1Pn. Determine whether it is always
possible to find points A and B in S such that P1Pn ‖ AB (segment AB can lie on line P1Pn)
and P1Pn = kAB, where (1) k = 2.5; (2) k = 3.

4. Let n be a positive integer and let S be a set of 2n +1 elements. Let f be a function from the
set of two-element subsets of S to {0, . . . , 2n−1 − 1}. Assume that for any elements x, y, z of
S, one of f({x, y}), f({y, z}), f({z, x}) is equal to the sum of the other two. Show that there
exist a, b, c in S such that f({a, b}), f({b, c}), f({c, a}) are all equal to 0.

5. Consider the family of non-isosceles triangles ABC satisfying the property AC2 + BC2 =
2AB2. Points M and D lie on side AB such that AM = BM and ∠ACD = ∠BCD. Point
E is in the plane such that D is the incenter of triangle CEM . Prove that exactly one of the
ratios

CE

EM
,

EM

MC
,

MC

CE

is constant (i.e., is the same for all triangles in the family).

6. Find in explicit form all ordered pairs of positive integers (m,n) such that mn − 1 divides
m2 + n2.



Mathematics Olympiad Summer Program 2007 Tests 17

MOSP Black Group
Spring, 2007

TST 2003

1. For a pair of integers a and b, with 0 < a < b < 1000, the set S ⊆ {1, 2, . . . , 2003} is called a
skipping set for (a, b) if for any pair of elements s1, s2 ∈ S, |s1 − s2| 6∈ {a, b}. Let f(a, b) be
the maximum size of a skipping set for (a, b). Determine the maximum and minimum values
of f .

2. Let ABC be a triangle and let P be a point in its interior. Lines PA, PB, and PC intersect
sides BC, CA, and AB at D, E, and F , respectively. Prove that

[PAF ] + [PBD] + [PCE] =
1
2
[ABC]

if and only if P lies on at least one of the medians of triangle ABC. (Here [XY Z] denotes
the area of triangle XY Z.)

3. Find all ordered triples of primes (p, q, r) such that

p | qr + 1, q | rp + 1, r | pq + 1.

4. Let N denote the set of positive integers. Find all functions f : N→ N such that

f(m + n)f(m− n) = f(m2)

for all m, n ∈ N.

5. Let a, b, c be real numbers in the interval (0, π
2 ). Prove that

sin a sin(a− b) sin(a− c)
sin(b + c)

+
sin b sin(b− c) sin(b− a)

sin(c + a)
+

sin c sin(c− a) sin(c− b)
sin(a + b)

≥ 0.

6. Let AH1, BH2, and CH3 be the altitudes of an acute scalene triangle ABC. The incircle of
triangle ABC is tangent to BC,CA, and AB at T1, T2, and T3, respectively. For k = 1, 2, 3,
let Pi be the point on line HiHi+1 (where H4 = H1) such that HiTiPi is an acute isosceles
triangle with HiTi = HiPi. Prove that the circumcircles of triangles T1P1T2, T2P2T3, T3P3T1

pass through a common point.
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1. Let a1, a2, . . . , an, b1, b2, . . . , bn be real numbers such that

(a2
1 + a2

2 + · · ·+ a2
n − 1)(b2

1 + b2
2 + · · ·+ b2

n − 1) > (a1b1 + a2b2 + · · ·+ anbn − 1)2.

Show that a2
1 + a2

2 + · · ·+ a2
n > 1 and b2

1 + b2
2 + · · ·+ b2

n > 1.

2. Let n be a positive integer. Consider sequences a0, a1, . . . , an such that ai ∈ {1, 2, . . . , n} for
each i and an = a0.

(a) Call such a sequence good if for all i = 1, 2, . . . , n, ai − ai−1 6≡ i (mod n). Suppose that
n is odd. Find the number of good sequences.

(b) Call such a sequence great if for all i = 1, 2, . . . , n, ai − ai−1 6≡ i, 2i (mod n). Suppose
that n is an odd prime. Find the number of great sequences.

3. A 2004× 2004 array of points is drawn. Find the largest integer n such that it is possible to
draw a convex n-sided polygon whose vertices lie on the points of the array.

4. Let ABC be a triangle and let D be a point in its interior. Construct a circle ω1 passing
through B and D and a circle ω2 passing through C and D such that the point of intersection
of ω1 and ω2 other than D lies on line AD. Denote by E and F the points where ω1 and ω2

intersect side BC, respectively, and by X and Y the intersections of lines DF , AB and DE,
AC, respectively. Prove that XY ‖ BC.

5. Let A = (0, 0, 0) be the origin in the three dimensional coordinate space. The weight of a
point is the sum of the absolute values of its coordinates. A point is a primitive lattice point
if all its coordinates are integers with their greatest common divisor equal to 1. A square
ABCD is called a unbalanced primitive integer square if it has integer side length and the
points B and D are primitive lattice points with different weights.

Show that there are infinitely many unbalanced primitive integer squares ABiCiDi such that
the plane containing the squares are not parallel to each other.

6. Let N+
0 and Q be the set of nonnegative integers and rational numbers, respectively. Define

the function f : N+
0 → Q by f(0) = 0 and

f(3n + k) = −3f(n)
2

+ k, for k = 0, 1, 2.

Prove that f is one-to-one, and determine its range.
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1. Let n be an integer greater than 1. For a positive integer m, let Sm = {1, 2, . . . , mn}. Suppose
that there exists a 2n-element set T such that

(a) each element of T is an m-element subset of Sm;

(b) each pair of elements of T shares at most one common element; and

(c) each element of Sm is contained in exactly two elements of T .

Determine the maximum possible value of m in terms of n.

2. Let A1A2A3 be an acute triangle, and let O and H be its circumcenter and orthocenter,
respectively. For 1 ≤ i ≤ 3, points Pi and Qi lie on lines OAi and Ai+1Ai+2 (where Ai+3 = Ai),
respectively, such that OPiHQi is a parallelogram. Prove that

OQ1

OP1
+

OQ2

OP2
+

OQ3

OP3
≥ 3.

3. For a positive integer n, let S denote the set of polynomials P (x) of degree n with positive
integer coefficients not exceeding n!. A polynomial P (x) in set S is called fine if for any positive
integer k, the sequence P (1), P (2), P (3), . . . contains infinitely many integers relatively prime
to k. Prove that at least 71% of the polynomials in the set S are fine.

4. Consider the polynomials

f(x) =
n∑

k=1

akx
k and g(x) =

n∑

k=1

ak

2k − 1
xk,

where a1, a2, . . . , an are real numbers and n is a positive integer. Show that if 1 and 2n+1 are
zeros of g then f has a positive zero less than 2n.

5. Find all finite sets S of points in the plane with the following property: for any three distinct
points A,B, and C in S, there is a fourth point D in S such that A,B, C, and D are the
vertices of a parallelogram (in some order).

6. Let ABC be a acute scalene triangle with O as its circumcenter. Point P lies inside triangle
ABC with ∠PAB = ∠PBC and ∠PAC = ∠PCB. Point Q lies on line BC with QA = QP .
Prove that ∠AQP = 2∠OQB.
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1. A communications network consisting of some terminals is called a 3-connector if among
any three terminals, some two of them can directly communicate with each other. A com-
munications network contains a windmill with n blades if there exist n pairs of terminals
{x1, y1}, . . . , {xn, yn} such that each xi can directly communicate with the corresponding
yi and there is a hub terminal that can directly communicate with each of the 2n termi-
nals x1, y1, . . . , xn, yn. Determine the minimum value of f(n), in terms of n, such that a
3-connector with f(n) terminals always contains a windmill with n blades.

2. In acute triangle ABC, segments AD, BE, and CF are its altitudes, and H is its orthocenter.
Circle ω, centered at O, passes through A and H and intersects sides AB and AC again at Q
and P (other than A), respectively. The circumcircle of triangle OPQ is tangent to segment
BC at R. Prove that CR/BR = ED/FD.

3. Find the least real number k with the following property: if the real numbers x, y, and z are
not all positive, then

k(x2 − x + 1)(y2 − y + 1)(z2 − z + 1) ≥ (xyz)2 − xyz + 1.

4. Let n be a positive integer. Find, with proof, the least positive integer dn which cannot be
expressed in the form

n∑

i=1

(−1)ai2bi ,

where ai and bi are nonnegative integers for each i.

5. Let n be a given integer with n greater than 7, and let P be a convex polygon with n sides.
Any set of n− 3 diagonals of P that do not intersect in the interior of the polygon determine
a triangulation of P into n − 2 triangles. A triangle in the triangulation of P is an interior
triangle if all of its sides are diagonals of P.

Express, in terms of n, the number of triangulations of P with exactly two interior triangles,
in closed form.

6. Let ABC be a triangle. Triangles PAB and QAC are constructed outside of triangle ABC
such that AP = AB and AQ = AC and ∠BAP = ∠CAQ. Segments BQ and CP meet at
R. Let O be the circumcenter of triangle BCR. Prove that AO ⊥ PQ.


