
Team Selection Test 2006

1. A communications network consisting of some terminals is called a 3-connector if among any three
terminals, some two of them can directly communicate with each other. A communications network
contains a windmill with n blades if there exist n pairs of terminals {x1, y1}, . . . , {xn, yn} such that
each xi can directly communicate with the corresponding yi and there is a hub terminal that can
directly communicate with each of the 2n terminals x1, y1, . . . , xn, yn. Determine the minimum value
of f(n), in terms of n, such that a 3-connector with f(n) terminals always contains a windmill with
n blades.

Solution: The answer is

f(n) =
{

6 if n = 1;
4n + 1 if n ≥ 2.

.

We will use connected as a synonym for directly communicating, call a set of k terminals for which
each of the

(
k
2

)
pairs of terminals is connected complete and call a set of 2k terminals forming k

disjoint connected pairs a k-matching.

We first show that f(n) = 4n + 1 for n > 1. The 4n-terminal network consisting of two disconnected
complete sets of 2n terminals clearly does not contain an n-bladed windmill (henceforth called an n-
mill), since such a windmill requires a set of 2n+1 connected terminals. So we need only demonstrate
that f(n) = 4n + 1 is sufficient.

Note that we can inductively create a k-matching in any subnetwork of 2k + 1 elements, as there
is a connected pair in any set of three or more terminals. Also, the set of terminals that are not
connected to a given terminal x must be complete, as otherwise there would be a set of three
mutually disconnected terminals. We now proceed by contradiction and assume that there is a
(4n + 1)-terminal network without an n-mill. Any terminal x must then be connected to at least
2n terminals, for otherwise there would be a complete set of size at least 2n + 1, which includes
an n-mill. In addition, x cannot be directly connected to more than 2n terminals, for otherwise we
could construct an n-matching among these, and therefore an n-mill. Therefore every terminal is
connected to precisely 2n others.

If we take two terminals u and v that are not connected we can then note that at least one must be
connected to the 2n − 1 remaining terminals, and therefore there must be exactly one, w, to which
both are connected. The rest of the network now consists of two complete sets of terminals A and
B of size 2n − 1, where every terminal in A is connected to u and not connected to v, and every
terminal in B is not connected to u and connected to v. If w were connected to any terminal in A
or B, it would form a blade with this element and hub u or v respectively, and we could fill out the
rest of an n-mill with terminals in A or B respectively. Hence w is only connected to two terminals,
and therefore n = 1.
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Examining the preceding proof, we can find the only 5-terminal network with no 1-mill: With
terminals labeled A,B, C,D, and E, the connected pairs are (A,B), (B, C), (C, D), (D,E), and
(E,A). (As indicated in the figure above, a pair of terminals are connected if and only if the edge
connecting them are darkened.) To show that any 6-terminal network has a 1-mill, we note that any
complete set of three terminals is a 1-mill. We again work by contradiction. Any terminal a would
have to be connected to at least three others, b, c, and d, or the terminals not connected to a would
form a 1-mill. But then one of the pairs (b, c), (c, d), and (b, d) must be connected, and this creates
a 1-mill with that pair and a.

(This problem was proposed by Cecil C Rousseau.)

2. In acute triangle ABC, segments AD, BE, and CF are its altitudes, and H is its orthocenter. Circle
ω, centered at O, passes through A and H and intersects sides AB and AC again at Q and P (other
than A), respectively. The circumcircle of triangle OPQ is tangent to segment BC at R. Prove that
CR/BR = ED/FD.

Note: We present two solutions. We set ∠CAB = x, ∠ABC = y, and ∠BCA = z. Without loss of
generality, we assume that Q is in between A and F . It is not difficult to show that P is in between
C and E. (This is because ∠FQH = ∠APH.)

First Solution: (Based on work by Ryan Ko) Let M be the midpoint of segment AH. Since
∠AEH = ∠AFH = 90◦, quadrilateral AEHF is cyclic with M as its circumcenter. Hence triangle
EFM is isosceles with vertex angle ∠EMF = 2∠CAB = 2x. Likewise, triangle PQO is also an
isosceles angle with vertex angle ∠POQ = 2x. Therefore, triangles EFM and PQO are similar.

A

B C

E

F

H

OM

P

Q

Since AEHF and APHQ are cyclic, we have ∠EFH = ∠EAH = ∠EQH and ∠FEH = ∠FAH =
∠QPH. Consequently, triangles HEF and HPQ are similar. It is not difficult to see that quadri-
laterals EHFM and PHQO are similar. More precisely, if ∠QHF = θ, there is a spiral similarity
S, centered at H with clockwise rotation angle θ and ratio QH/FH, that sends FMEH to QOPH.
Let R1 be the point in between B and D such that ∠R1HD = θ. Then triangles QHF and R1HD
are similar. Hence S(D) = R1. It follows that

S(DFME) = R1QOP.

It is well known that points D, E, F , and M lie on a circle (the nine-point circle of triangle ABC).
(This fact can be established easily by noting that ABDE and ACDF are cyclic, implying that
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∠FDB = ∠CAF = x, ∠EDC = ∠BAE = x, and ∠EDF = 180◦ − 2x = 180◦ − ∠EMF .) Since
DFME is cyclic, R1QOP must also be cyclic. By the given conditions of the problem, we conclude
that R1 = R, implying that

S(DEF ) = RPQ,

or triangles DEF and RPQ are similar. It follows that

ED

FD
=

PR

QR
.
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Now we are ready to finish our proof. Since ACDF and ABDE are cyclic, ∠BFD = ∠AFE =
∠ACB = z. Thus ∠DFE = 180◦ − 2z. Since triangles DEF and RPQ are similar, ∠RQP =
180◦−2z. Because CR is tangent to the circumcircle of triangle PQR, ∠CRP = ∠RQP = 180◦−2z.
Thus, in triangle CPR, ∠CPR = z, and so it is isosceles with CR = PR. Likewise, we have
BR = QR. Therefore, we have

ED

FD
=

PR

QR
=

CR

BR
.

Second Solution: (Based on work by Brady Zarathustra) Let the circumcircle of triangle BQH
meet line BC at R3 (other than B).
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Since APHQ and BQHR3 are cyclic, ∠PHQ = 180◦ − ∠PAQ and ∠QHR3 = 180◦ − ∠QBR3,
implying that ∠PHR3 = 360◦ − ∠PHQ− ∠QHR3 = 180◦ − ∠ACB. Hence CPHR3 is also cyclic.

29



(We just established a special case of Miquel’s Theorem.) Because BQHR3 and CR3HP are
cyclic, we have ∠QR3H = ∠QBH = 90◦ − ∠BAC and ∠HPR3 = ∠HCP = 90◦ − ∠BAC. Hence
∠QR3P = 180◦−∠BAC = 180◦−2x. Likewise, we have ∠PQR = 180◦−2z and ∠R3PQ = 180◦−2y.
As we have shown in the first solution, triangle DEF have the same angles. Hence triangle R3PQ is
similar to triangle DEF . Also note that ∠POQ + ∠PR3Q = 2x + 180◦ − 2x = 180◦, implying that
R3 lies on the circumcircle of triangle OPQ. By the given condition, have R3 = R. We can then
finish our proof as we did in the first solution.

Note: As we have seen, the first solution is related to the 9-point circle of the triangle, and the
second is related to the Miquel’s Theorem. Indeed, it is the special case (for R1 = R2) of the following
interesting facts:

A
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R2D

In acute triangle ABC, segments AD, BE, and CF are its altitudes, and H is its ortho-
center. Circle ω, centered at O, passes through A and H and intersects sides AB and AC
again at Q and P (other than A), respectively.

(a) The perpendicular bisectors of segments BQ and CP meet at a point R1 lying on line
BC.

(b) There is a point R2 on line BC such that triangle PQR2 is similar to triangle EFD.
(c) Points O, P,Q, R1, and R2 are cyclic.

(This problem was proposed by Zuming Feng and Zhonghao Ye.)

3. Find the least real number k with the following property: if the real numbers x, y, and z are not all
positive, then

k(x2 − x + 1)(y2 − y + 1)(z2 − z + 1) ≥ (xyz)2 − xyz + 1.

First Solution: The answer is k = 16
9 .

We start with a lemma.
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Lemma 1. If real numbers s and t are not all positive, then

4
3
(s2 − s + 1)(t2 − t + 1) ≥ (st)2 − st + 1. (∗)

Proof: Without loss of generality, we assume that s ≥ t.

We first assume that s ≥ 0 ≥ t. Setting u = −t, (∗) reads

4
3
(s2 − s + 1)(u2 + u + 1) ≥ (su)2 + su + 1,

or
4(s2 − s + 1)(u2 + u + 1) ≥ 3s2u2 + 3su + 3.

Expanding the left-hand side gives

4s2u2 + 4s2u− 4su2 − 4su + 4s2 + 4u2 − 4s + 4u + 4 ≥ 3s2u2 + 3su + 3,

or
s2u2 + 4u2 + 4s2 + 1 + 4s2u + 4u ≥ 4su2 + 4s + 7su

which is evident as s2u2 + 4u2 ≥ 4su2, 4s2 + 1 ≥ 4s, and 4s2u + 4u ≥ 8su ≥ 7su.

We second assume that 0 ≥ s ≥ t. Let v = −s. By our previous argument, we have

4
3
(v2 − v + 1)(t2 − t + 1) ≥ (vt)2 − vt + 1.

It is clear that t2 − t + 1 > 0, s2 − s + 1 ≥ v2 − v + 1, and (vt)2 − vt + 1 ≥ (st)2 − st + 1. Combining
the last four inequalities gives (∗), and this completes the proof of the lemma.

Now we show that if x, y, z are not all positive real numbers, then

16
9

(x2 − x + 1)(y2 − y + 1)(z2 − z + 1) ≥ (xyz)2 − xyz + 1. (∗∗)

We consider three cases.

(a) We assume that y ≥ 0. Setting (s, t) = (y, z) and then (s, t) = (x, yz) in the lemma gives the
desired result.

(b) We assume that 0 ≥ y. Setting (s, t) = (x, y) and then (s, t) = (xy, z) in the lemma gives the
desired result.

Finally, we confirm that the minimum value of k is 16
9 by noting that the equality holds in (∗∗) when

(x, y, z) =
(

1
2 , 1

2 , 0
)
.

Second Solution: We establish (∗∗) by showing

g(z) =
16
9

(x2 − x + 1)(y2 − y + 1)(z2 − z + 1)− (xyz)2 + xyz − 1 ≥ 0.

Note that g(z) is a quadratic in z whose axis of symmetry (found by comparing the linear and
quadratic terms) is at

z =
1
2
− 9

32
· xy

(x2 − x + 1)(y2 − y + 1)

=
1
2
− 9

32
· 1
(
x + 1

x − 1
) (

y + 1
y − 1

) .
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For any t, we have
∣∣x + 1

x − 1
∣∣ ≥ 1, so the absolute value of the second quantity on the right-hand

side of the above equation is at most 9
32 , which is less than 1

2 . That is, the axis of symmetry occurs
to the right side of the y-axis, so we only decrease the difference between the sides by replacing z by
0. But when z = 0, we only need to show

g(0) =
16
9

(x2 − x + 1)(y2 − y + 1)− 1 ≥ 0,

which is evident as t2 − t + 1 =
(
t− 1

2

)2 + 3
4 ≥ 3

4 .

Third Solution: This is the Calculus version of the second solution. We maintain the same
notation as in the second solution. We have

dg

dz
=

16
9

(2z − 1)(x2 − x + 1)(y2 − y + 1)− 2zx2y2 + xy

or
dg

dz
= 2z

[
4
3
(x2 − x + 1)

4
3
(y2 − y + 1)− x2y2

]
+

[
xy − 4

3
(x2 − x + 1)

4
3
(y2 − y + 1)

]
. (†)

It is evident that
4
3
(t2 − t + 1) ≥ t2 ≥ 0

as it is equivalent to t2 − 4t + 4 = (t− 2)2 ≥ 0. It follows that

2z

[
4
3
(x2 − x + 1)

4
3
(y2 − y + 1)− x2y2

]
≤ 0;

that is, the first summand on the right-hand side of (†) is not positive. It is also evident that

4
3
(t2 − t + 1) ≥ t

as it is equivalent to 4t2 − 7t + 4 = 4
(
t− 7

8

)2 + 15
16 > 0. If y ≥ 0, then multiplying the inequalities

4
3
(x2 − x + 1) ≥ x ≥ 0 and

4
3
(y2 − y + 1) ≥ y ≥ 0

gives
4
3
(x2 − x + 1)

4
3
(y2 − y + 1)− xy ≥ 0.

If y < 0, then xy < 0, and so

4
3
(x2 − x + 1)

4
3
(y2 − y + 1) ≥ 0 ≥ xy.

In either case, we have shown that the second summand in (†) is also negative. We conclude that
dg
dz ≤ 0 for z ≤ 0. Hence g(z) reaches minimum when z = 0, and we can finish as we did in the second
solution.

(This problem was proposed by Titu Andreescu and Gabriel Dospinescu.)
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4. Let n be a positive integer. Find, with proof, the least positive integer dn which cannot be expressed
in the form

n∑

i=1

(−1)ai2bi ,

where ai and bi are nonnegative integers for each i.

Solution: The answer is dn = (22n+1)/3. We first show that dn cannot be obtained. For any p
let t(p) be the minimum n required to express p in the desired form and call any realization of this
minimum a minimal representation. If p is even, any sequence of bi that can produce p must contain
an even number of zeros. If this number is nonzero, then canceling one against another or replacing
two with a bi = 1 term would reduce the number of terms in the sum. Thus a minimal representation
cannot contain a bi = 0 term, and by dividing each term by two we see that t(2m) = t(m). If p is
odd, there must be at least one bi = 0 and removing it gives a sequence that produces either p − 1
or p + 1. Hence

t(2m− 1) = 1 + min(t(2m− 2), t(2m) = 1 + min(t(m− 1), t(m)).

With dn as defined above and cn = (22n − 1)/3, we have d0 = c1 = 1, so t(d0) = t(c1) = 1 and

t(dn) = 1 + min(t(dn−1), t(cn)) and t(cn) = 1 + min(t(dn−1), t(cn−1)).

Hence, by induction, t(cn) = n and t(dn) = n + 1 and dn cannot be obtained by a sum with n terms.

Next we show by induction on n that any positive integer less than dn can be obtained with n
terms. By the inductive hypothesis and symmetry about zero, it suffices to show that by adding
one summand we can reach every p in the range dn−1 ≤ p < dn from an integer q in the range
−dn−1 < q < dn−1. Suppose that cn + 1 ≤ p ≤ dn − 1. By using a term 22n−1, we see that
t(p) ≤ 1 + t(|p − 22n−1|). Since dn − 1 − 22n−1 = 22n−1 − (cn + 1) = dn−1 − 1, it follows from the
inductive hypothesis that t(p) ≤ n. Now suppose that dn−1 ≤ p ≤ cn. By using a term 22n−2, we see
that t(p) ≤ 1 + t(|p− 22n−2|). Since cn − 22n−2 = 22n−2 − dn−1 = cn−1 < dn−1, it again follows that
t(p) ≤ n.

(This problem was proposed by Richard Stong.)

5. Let n be a given integer with n greater than 7, and let P be a convex polygon with n sides. Any set
of n− 3 diagonals of P that do not intersect in the interior of the polygon determine a triangulation
of P into n− 2 triangles. A triangle in the triangulation of P is an interior triangle if all of its sides
are diagonals of P.

Express, in terms of n, the number of triangulations of P with exactly two interior triangles, in closed
form.

Solution: The answer is

n2n−9

(
n− 4

4

)
.

Denote the vertices of P counter-clockwise by A0, A1 . . . , An−1. We will count first the number of
triangulations of P with two interior triangles positioned as in the following figure. We say that such
a triangulation starts at A0.
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N3

N4

N1

N2

M

A0

An1

An n1+ 2

n1

n2

n3

n4

m1

m2

An n m1+ 2+ 1

An n m n1+ 2+ 1+ 3

An n m n n1+ 2+ 1+ 3+ 4

The numbers m1, m2, n1, n2, n3, n4 in the figure denote the number of sides of P determining the
regions N1, N2, N3, N4 and M that consist of exterior triangles (triangles that are not interior). The
two interior triangles are

A0An1An1+n2 and An1+n2+m1An1+n2+m1+n3An1+n2+m1+n3+n4 ,

respectively.

We will show that triangulations starting at A0 are in bijective correspondence to 7-tuples

(m, n1, n2, n3, n4, wM , wN ),

where m ≥ 0, n1, n2, n3, n4 ≥ 2 are integers,

m + n1 + n2 + n3 + n4 = n, (†)

wM is a binary sequence (sequence of 0’s and 1’s) of length m and wN is a binary sequence of length
n−m− 8.

Indeed, given a triangulation as in the figure, the numbers m = m1 + m2 and n1, n2, n3, n4 satisfy
(†) and the associated constraints.

Further, the triangulation of the outside region N1 determines a binary sequence of length n1 − 2
as follows. Denote the exterior triangle in N1 using the diagonal A0An1 by T1. If n1 ≥ 3, T1 has
a unique neighboring exterior triangle in N1, denoted T2. If n1 ≥ 4, the triangle T2 has another
neighbor in N1 denoted T3, etc. Thus we have a sequence of n1 − 1 exterior triangles in N1. We
encode this sequence as follows. If T1 uses the vertex A1 as its third vertex we encode this by 0 and
if it uses An1−1 we encode this by 1. In each case there are two possible choices for the third vertex
in T2. If the one with smaller index is used we encode this by 0 and if the one with larger index is
used we encode this by 1. Eventually, a sequence of n1 − 2 0’s and 1’s is constructed describing the
choice of the third vertex in the triangles T1, . . . , Tn1−2. Finally, there is only one choice for the third
vertex in the triangle Tn1−1 (this triangle is uniquely determined by the previous one), so we get
2n1−2 possible triangulations of N1 encoded in a binary sequence of length n1 − 2. Similarly, there
are 2ni−2 triangulations of the region Ni, i = 1, 2, 3, 4, encoded by binary sequences of length ni − 2.
Thus a binary sequence wN of length n1−2+n2−2+n3−2+n4−2 = n−m−8, uniquely determines
the triangulations of the regions N1, N2, N3, N4 (once the regions are precisely determined within P ,
which is done once m1,m2,n1,n2,n3 and n4 are known).
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It remains to uniquely encode the triangulation of the middle region M . Denote by M1 the unique
exterior triangle in M using the diagonal A0An1+n2 . If m ≥ 2. M1 has a unique neighboring exterior
triangle M2 in M . If m ≥ 3, the triangle M2 has another neighbor in M denoted M3, etc. Thus we
have a sequence of m exterior triangles in M . We encode this sequence as follows. If M1 uses the
vertex An1+n2+1 as its third vertex we encode this by 0 and if it uses An−1 we encode this by 1. In
each case there are two possible choices for the third vertex in M2. If the one with smaller index is
used we encode this by 0 and if the one with larger index is used we encode this by 1. Eventually,
a sequence of m 0’s and 1’s is constructed describing the choice of the third vertex in the triangles
M1, . . . , Mm. Thus a binary sequence wM of length m uniquely determines the triangulation of the
region M . In addition such a sequence wM uniquely determines m1 and m2 as the number of 0’s
and 1’s respectively in wM and therefore also the exact position of the middle region M within P
(once n1 and n2 are known), which in turn then exactly determines the position of all the regions
considered in the figure.

The number of solutions of the equation (†) subject to the given constraints is equal to the number
of positive integer solutions to the equation

x1 + x2 + x3 + x4 + x5 = n− 3,

which is
(
n−4

4

)
(a sequence of n−3 objects is split into 5 nonempty groups by placing 4 separators in the

n−4 available positions between the objects). Thus the number of 7-tuples (m,n1, n2, n3, n4, wM , wN )
describing triangulations as in the figure is

2m · 2n−m−8

(
n− 4

4

)
= 2n−8

(
n− 4

4

)
.

Finally, in order to get the total number of triangulations we multiply the above number by n (since
we could start building the triangulation at any vertex rather than at A0) and divide by 2 (since
every triangulation is now counted twice, once as starting at one of the interior triangles and once as
starting at the other).

Note: The problem is more tricky than it might seem. In particular, the idea of choosing m first
and then letting the bits in wM split it into m1 and m2 while, in the same time, determining the
triangulation of M is not that obvious. If one does the “more natural thing” and chooses all the
the numbers m1, m2, n1, n2, n3, n4 first and then tries to encode the triangulations of the obtained
regions one gets into more complicated considerations involving the middle region M (and most likely
has to resort to messy summations over different pairs m1,m2).

As an quick exercise, one can compute number of triangulations of P (n ≥ 6) with exactly one interior
region. This is much easier since there is no middle region M to worry about and the number of
triangulations is

n

3
2n−6

(
n− 4

2

)
.

(This problem was proposed by Zoran Sunik.)

6. Let ABC be a triangle. Triangles PAB and QAC are constructed outside of triangle ABC such that
AP = AB and AQ = AC and ∠BAP = ∠CAQ. Segments BQ and CP meet at R. Let O be the
circumcenter of triangle BCR. Prove that AO ⊥ PQ.
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Note: We present five differen approaches. The first three synthetic solutions are all based on the
following simple observation.

We first note that APBR and AQCR are cyclic quadrilaterals. It is easy to see that triangles APC
and ABQ are congruent to each other, implying that ∠APR = ∠APC = ∠ABQ = ∠ABR. Thus,
APBR is a cyclic quadrilateral. Likewise, we can show that AQCR is also cyclic.

O

A

B

C

P

Q

R

2x2x

4x

Let ∠PAB = 2x. Then in isosceles triangle APB, ∠APB = 90◦− x. In cyclic quadrilateral APBR,
∠ARB = 180◦ − ∠APB = 90◦ + x. Likewise, ∠ARC = 90◦ + x. Hence ∠BRC = 360◦ − ∠ARB −
∠ARC = 180◦ − 2x. It follows that ∠BOC = 4x.

First Solution: Reflect C across line AQ to D. Then ∠BAD = 4x + ∠BAC = ∠BAQ. It is easy
to see that triangles BAD and PAQ are congruent, implying that ∠ADB = ∠AQP = y.
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2x

2x

y

y

z

z

Note also that CAD and COB are two isosceles triangles with the same vertex angle, and so they are
similar to each other. It follows that triangle CAO and CBD are similar by SAS (side-angle-side),
implying that ∠CAO = ∠CDB = z.

The angle formed by lines AO and PQ is equal to

180◦ − ∠OAQ− ∠AQP = 180◦ − ∠OAC − ∠CAQ− ∠AQP = 180◦ − z − 2x− y.
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Since AQ is perpendicular to the base CD in isosceles triangle ACD, we have

90◦ = ∠QAD + ∠CDA = ∠QAD + ∠ADB + ∠BDC = 2x + y + z.

Combining the last two equations yields that fact the angle formed by lines AO and PQ is equal to
90◦; that is, AO ⊥ PQ.

Second Solution: We maintain the same notations as in the first solution. Let M be the midpoint
of arc B̂C on the circumcircle of triangle BOC. Then BM = CM . Since triangles APC and ABQ
are congruent, PC = BQ. Since BRMC is cyclic, ∠PCM = ∠RCM = ∠RBM = ∠QBM . Hence
triangles BMQ and CMP are congruent by SAS. It follows triangles MPQ and MBC are similar.
Since ∠BOC = 4x, ∠MBC = ∠MCB = x, and so ∠MPQ = x.

A
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P
Q

R

O

Mx

x2

2x

x
s

s

Note that both triangles PAB and MOB are isosceles triangles with vertex angle 2x; that is, they
are similar to each other. Hence triangles BMP and BOA are also similar by SAS, implying that
∠OAB = MPB = s. We also note that in isosceles triangle APB,

90◦ = ∠APB + ∠PAB/2 = ∠APQ + ∠QPM + ∠MPB + ∠PAB/2 = ∠APQ + 2x + s.

Putting the above together, we conclude that

∠PAO + ∠APQ = ∠PAB + ∠BAO + ∠APQ = 2x + s + ∠APQ = 90◦,

that is AO ⊥ PQ.

Third Solution: We consider two rotations:

R1 : a counterclockwise 2x (degree) rotation centered at A,

R2 : a clockwise 4x (degree) rotation centered at O.

Let T denote the composition R1R2R1. Then T is a counterclockwise 2x − 4x + 2x = 0◦ rotation;
that is, T is translation. Note that

T(P ) = R1(R2(R1(P ))) = R1(R2(B)) = R1(C) = PQ,
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A
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2xx2

x4

or, T is the vector translation
−−→
PQ.

Let A1 = R2(A) and A2 = R1(A1). Then T(A) = A2; that is,
−−→
AA2 =

−−→
PQ, or AA2 ‖ PQ.

By the definitions of R2 and R1, we know that triangles OAA1 and A1AA2 are isosceles triangles with
respect vertex angles ∠AOA1 = 4x and ∠A1AA2 = 2x◦. It is routine to compute that ∠OAA2 = 90◦;
that AO ⊥ AA2, or AO ⊥ PQ.

Fourth Solution: (By Lan Le) In this solutions, let each lowercase letter denote the number
assigned to the point labeled with the corresponding uppercase letter. We further assume that A is
origin; that is, let a = 0. Let ω = e2xi (or ω = cos(2x) + i sin(2x), and ω−1 = cos(2x) − i sin(2x)).
Then because O lies on the perpendicular bisector of BC and ∠BOC = 4x,

o = c +
(b− c)i

2ω sin(2x)
= c +

bi

2ω sin(2x)
− ci

2ω sin(2x)
.

Note that

c− ci

2ω sin(2x)
= c +

cω−1

2i sin(2x)
=

c(ω−1 + 2i sin(2x))
2i sin(2x)

=
cω

2i sin(2x)
,

Combining the last two equations gives

o =
bi

2ω sin(2x)
+

cω

2i sin(2x)
= − b

2iω sin(2x)
+

cω

2i sin(2x)
=

1
2i sin(2x)

(
cω − b

ω

)
.

Now we note that p = b
ω and q = cω. Consequently, we obtain

q − p

o− a
= 2i sin(2x),

which is clearly a pure imaginary number; that is, OA ⊥ PQ.

Fifth Solution: (By Lan Le) In this solutions, we set BC = a, AB = c, CA = b, A = ∠BAC,
B = ∠ABC, and C = ∠BCA. We use the fact that

OA ⊥ PQ if and only if AP 2 −AQ2 = OP 2 −OQ2.

Clearly AP 2 −AQ2 = c2 − b2. It remains to show that

OP 2 −OQ2 = c2 − b2. (∗)
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In isosceles triangles APB and BOC, BP = 2c sinx and BO = a
2 sin(2x) . Note that ∠PBA+∠ABC+

∠CBO = 90◦ − x + B + 90◦ − 2x = 180◦ + B − 3x. Applying the law of cosines to triangle PBO
yields

OP 2 = 4c2 sin2 x +
a2

4 sin2(2x)
+

ac cos(B − 3x)
cosx

.

In exactly the same way, we can show that

OQ2 = 4b2 sin2 x +
a2

4 sin2(2x)
+

ab cos(C − 3x)
cosx

.

Hence
OP 2 −OQ2 = 4(c2 − b2) sin2 x +

a

cosx
(c cos(B − 3x)− b cos(C − 3x)). (†)

Using Addition and Substraction formulas and the law of sines (more precisely, c sinB =
b sinC), we have

c cos(B − 3x)− b cos(C − 3x)
= c cos(3x) cosB + c sin(3x) sinB − b cos(3x) cos C − b sin(3x) sin C

= cos(3x)(c cosB − b cosC).

Substituting the last equation into (†) gives

OP 2 −OQ2 = 4(c2 − b2) sin2 x +
cos 3x

cosx
(ac cosB − ab cosC).

Note that

ac cosB − ab cosC = c(a cosB + b cosA)− b(a cosC + c cosA) = c2 − b2.

Combining the last equations gives

OP 2 −OQ2 = (c2 − b2)
(

4 sin2 x +
cos 3x

cosx

)
.

By the Triple-angle formulas, we have cos 3x = 4 cos3 x− 3 cos x, and so

OP 2 −OQ2 = (c2 − b2)(4 sin2 x + 4 cos2 x− 3) = c2 − b2,

which is (∗).
(This problem was proposed by Zuming Feng and Zhonghao Ye.)
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