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JMO 1. We start by observing that the denominators of the fractions involved in the statement
of the problem are positive. Next, we argue by contradiction and assume that

10a2 − 5a + 1 > abc(b2 − 5b + 10)

and similar inequalities obtained by cyclic permutations. Multiplying these inequalities
yields ∏

[a3(a2 − 5a + 10)] <
∏

(10a2 − 5a + 1).

This is impossible, since

a3(a2 − 5a + 10)− (10a2 − 5a + 1) = (a− 1)5 ≥ 0

and similarly for b and c.

This problem and solution was suggested by Titu Andreescu.

JMO 2. (a): Without loss of generality, we assume that AB > AC. Set β = ∠ABC and
γ = ∠ACB. We have β < 60◦ < γ and β + γ = 120◦.

Note that ∠BAO = 90◦−∠ACB = 90◦− γ < 90◦− β = 90◦−∠ABC = ∠BAH, and
so AO lies inside ∠BAH. Similarly, ∠ABO = 90◦−γ < 30◦ = ∠ABH, and so BO lies
inside ∠ABH. Hence O lies inside 4ABH, and line OH intersects side AB. In the
same way, ∠CAH = 90◦−γ < 90◦−β = ∠CAO and ∠ACH = 30◦ < 90◦−β = ∠ACO;
hence H lies inside 4ACO, and line OH intersects side AC.

(b): The range of s/t is the open interval (4/5, 1).
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Based on (a), we may consider the configuration shown above. Note that ∠BOC =
2∠BAC = 120◦ and ∠BHC = 180◦ − ∠HBC − ∠HCB = 180◦ − (90◦ − γ)− (90◦ −
β) = 120◦, from which it follows that BOHC is cyclic. In particular, ∠POB =
180◦ − ∠HOB = ∠HCB = 90◦ − β, and it follows that

∠APQ = ∠ABO + ∠POB = (90◦ − γ) + (90◦ − β) = 60◦.

Since ∠PAQ = 60◦ as well, we see that 4APQ is equilateral.

Next note that ∠POB = 90◦ − β = ∠ACO = ∠QCO and ∠PBO = 90◦ − γ =
∠HBC = ∠HOC = ∠QOC; since BO = OC, we have congruent triangles 4BPO ∼=
4OQC. Thus

AB + AC = AP + PB + CQ + QA = AP + QO + OP + QA = AP + PQ + QA

and so AP = PQ = QA = b+c
3

, where we write b = AC and c = AB. Therefore we
have

s

s + t
=

Area(4APQ)

Area(4ABC)
=

AP

AB

AQ

AC
=

(
b+c
3

)2

bc
=

2 + m + 1/m

9
,

where m = c/b.

By our assumptions that b < c and 4ABC is acute, it follows that the range of m
is 1 < m < 2. (One can see this, for instance, by having A move along the major
arc BC

_
from one extreme, where ABC is equilateral and c/b = 1, to the other, where

∠ACB = 90◦ and c/b = 2, and noting that c increases and b decreases during this
motion.) For m ∈ (1, 2), the function f(m) = m+1/m is continuous and increasing: if

1 < m < m′ < 2, then f(m′)− f(m) = (m′−m)(mm′−1)
mm′ > 0. Thus the range of f(m) for

m ∈ (1, 2) is (f(1), f(2)) = (2, 5
2
). It follows that the range of s

s+t
= 2+f(m)

9
is (4

9
, 1

2
),

and the range of s
t

is (4
5
, 1).

This problem and the first solution was suggested by Zuming Feng.

OR

(b): We use complex numbers. Let O = 0, B = 1, C = ω = e2πi/3, and A = a with
|a| = 1. Then H = 1 + ω + a = a − ω2. Bearing in mind that the equation for the
line through complex numbers w1 and w2 is z−w1

w2−w1
= z−w1

w2−w1
(i.e., the quotient z−w1

w2−w1
is

purely real), we see that P , which is the intersection of AB and OH, lies at the point
z satisfying

z − 1

a− 1
=

z − 1

a− 1
and

z

a− ω2
=

z

a− ω
.

Substituting a = 1/a, eliminating z, and solving for z yields z = a+1
1−ω

. Thus the vector
−→
AP is given by the complex number a+1

1−ω
− a = aω+1

1−ω
. Similarly Q lies at the point

aω+ω2

ω−1
and the vector

−→
AQ is a+ω2

ω−1
. It follows that AP = 1√

3
|ωa+1| = 1√

3
|a+ω2| = AQ.
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Now
−→
AB = 1 − a is collinear with

−→
AP = aω+1

1−ω
, and the ratio of the lengths of these

vectors is AB
AP

= (1 − a)/
(

aω+1
1−ω

)
= (1−a)(1−ω)

aω+1
; similarly

−→
AC = ω − a is collinear with

−→
AQ = a+ω2

ω−1
, and AC

AQ
= (ω−a)(ω−1)

a+ω2 = (ω−a)(ω2−ω)
aω+1

. Thus

AB + AC

AP
=

AB

AP
+

AC

AQ
=

(1− a)(1− ω) + (ω − a)(ω2 − ω)

aω + 1
=

3aω + 3

aω + 1
= 3,

and so
AP

AB

AQ

AC
=

(AB + AC)2

9(AB)(AC)
.

The second solution was suggested by Razvan Gelca.

JMO 3. Let f be a solution of the problem. Let p be a prime. Since p divides f(p)2, p divides

f(p) and so p divides f(p)2

p
. Taking y = 0 and x = p, we deduce that p divides f(0).

As p is arbitrary, we must have f(0) = 0. Next, take y = 0 to obtain xf(−x) = f(x)2

x
.

Replacing x by −x, and combining the two relations yields f(x) = 0 or f(x) = x2 for
all x.

Suppose now that there exists x0 6= 0 such that f(x0) = 0. Taking y = x0, we

obtain xf(−x) + x2
0f(2x) = f(x)2

x
, yielding x2

0f(2x) = 0 for all x and so f vanishes on
even numbers. Assume that there exists an odd number y0 such that f(y0) 6= 0, so
f(y0) = y2

0. Taking y = y0, we obtain

xf(2y2
0 − x) + y2

0f(2x− y2
0) =

f(x)2

x
+ f(y3

0).

Choosing x even, we deduce that y2
0f(2x − y2

0) = f(y3
0). This forces f(y3

0) = 0, as
otherwise we would have f(2x− y2

0) = (2x− y2
0)

2 for all even x and so y2
0(2x− y2

0)
2 =

f(y3
0) for all such x, obviously impossible. Thus f(2x− y2

0) = 0 for all even numbers x,
that is f vanishes on numbers of the form 4k + 3. But since x2f(−x) = f(x)2, f also
vanishes on all x such that −x ≡ −1 (mod 4), that is on 4Z+ 1. Thus f also vanishes
on all odd numbers, contradicting the choice of y0. Hence, if f is not the zero map,
then f does not vanish outside 0 and so f(x) = x2 for all x.

In conclusion, f(x) = 0 for all x ∈ Z and f(x) = x2 for all x ∈ Z are the only possible
solutions. The first function clearly satisfies the given relation, while the second also
satisfies the Sophie Germaine identity

x(2y2 − x)2 + y2(2x− y2)2 = x3 + y6

for all x, y ∈ Z.

OR

f(0) = 0: If f(0) 6= 0, set x = 2f(0) to obtain

2(f(0))2 =
(f(2f(0)))2

2f(0)
+ f(0)
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that is

2(f(0))2(2f(0)− 1) = f(2f(0))2.

But 2(2f(0)− 1) cannot be a perfect square since it is of the form 4k +2. So f(0) = 0.

This problem and the solutions were suggested by Titu Andreescu and Gabriel Dospinescu.

JMO 4. Let f(n) = n + sb(n). For a positive integer m, let k = blogb(m/2)c, so that m ≥ 2bk.
Note that if bm− bk ≤ n < bm, then the base b expansion of n begins with m− k digits
equal to b− 1, and therefore

f(n) > bm − bk + (m− k)(b− 1) ≥ bm − bk + (2bk − k)(b− 1) ≥ bm. (1)

Now consider the set {f(1), f(2), . . . , f(bm)}. Any number that is≤ bm and in the range
of f is in this set. However, we see from (1) that f(n) > bm whenever bm−bk ≤ n < bm.
Therefore, there are at least bk numbers from 1 to bm that are not in the range of f .
Since k goes to infinity as m goes to infinity, the desired result follows.

This problem and solution was suggested by Palmer Mebane.

OR

We first show that there exist infinitely many pairs (n1,m1), (n2,m2), . . . such that
ni + sb(ni) = mi + sb(mi) for all i.

• Case 1 b = 2. Let i be a positive integer, and set j = 2i + 3; note j > i. Then
for ni = 2j − 1, we have s2(ni) = j. If we then consider mi = 2j + j − 3, we have
by the definition of j that mx = 2j + 2i, so s2(mi) = 2. It is easy to see that
ni + s2(ni) = mi + s2(mi).

• Case 2 b > 2. Let i be a positive integer, and set j = bi+b−2
b−1

+ 1; note j > i.

Then for ni = bj − b + 2, we have sb(ni) = (b− 1)(j − 1) + 2. If we then consider
mi = bj − b + (b− 1)(j − 1) + 2, plugging in our definition for j in the third term
gives

mi = bj − b + (b− 1)

(
bi + b− 2

b− 1

)
+ 2 = bj + bi,

so sb(mi) = 2. We can easily compute that ni + sb(ni) = mi + sb(mi).

In both cases, since j grows exponentially with i, it is easy to check that ni < mi <
ni+1 < mi+1, so all of the constructed pairs contain pairwise distinct positive integers.

Now we will show at least k positive integers cannot be represented in the form n+sb(n)
for any k. Take (n1,m1), . . . (nk, mk) and let A be a number greater than any of the 2k
numbers in these pairs. For a positive integer x with x ≤ A, if we have x = n + sb(n)
then we must have n ≤ x ≤ A. So in finding ways to represent the numbers 1, 2, . . . A
in the form n + sb(n), all of them require n ≤ A. However, among numbers at most
A there are at least k pairs ni,mi with ni + sb(ni) = mi + sb(mi). Therefore the set
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{n + sb(n) | n = 1, 2, . . . A} has at most A − k elements, and so at least k of the
numbers 1, 2, . . . A are not members of this set and thus have no representation in the
form n + sb(n). This proves our original claim. Since k is arbitrary there cannot be a
finite amount of positive integers with no representation, so there are infinitely many
as desired.

The second solution was suggested by Palmer Mebane.

JMO 5. The answer is k = 6. First we show that A cannot win for k ≥ 6. Color the grid in
three colors so that no two adjacent spaces have the same color, and arbitrarily pick
one color C. B will play by always removing a counter from a space colored C that A
just played. If there is no such counter, B plays arbitrarily. Because A cannot cover
two spaces colored C simultaneously, it is possible for B to play in this fashion. Now
note that any line of six consecutive squares contains two spaces colored C. For A to
win he must cover both, but B’s strategy ensures at most one space colored C will
have a counter at any time.

Now we show that A can obtain 5 counters in a row. Take a set of cells in the grid
forming the shape shown below. We will have A play counters only in this set of grid
cells until this is no longer possible. Since B only removes one counter for every two
A places, the number of counters in this set will increase each turn, so at some point
it will be impossible for A to play in this set anymore. At that point any two adjacent
grid spaces in the set have at least one counter between them.

Consider only the top row of cells in the set, and take the lengths of each consecutive
run of cells. If there are two adjacent runs that have a combined length of at least
4, then A gets 5 counters in a row by filling the space in between. Otherwise, a bit
of case analysis shows that there exists a run of 1 counter which is neither the first
nor last run. This single counter has an empty space on either side of it on the first
row. As a result, the four spaces of the second row touching these two empty spaces
all must have counters. Then A can play in the 5th cell on either side of these 4 to get
5 counters in a row. So in all cases A can win with k ≤ 5.

This problem and solution was suggested by Palmer Mebane.

JMO 6. Set ∠ABC = 2y and ∠BCA = 2z. First, we start with a known fact that I lies on ray
CV . Let V1 be the foot of the perpendicular from B to ray CI. Then in right triangle
BV1C, V1M = MB = MC and ∠MV1C = ∠MCV1 = z = ∠V1CA, implying that
MV1‖CA; in particular, V1 lies on line MP . Because ∠BV1I = ∠BFI = 90◦, BIFV1

is cyclic, from which it follows that ∠V1FB = ∠V1IB = y + z = ∠AEF = ∠AFE; in
particular, V1 lies on EF . Because V1 lies on both line MP and line EF , V = V1 and
V lies on line CI. Likewise we can prove that U lies on line BI.
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Rays BI and CI intersect again at Y and Z. Note that ∠UV C = ∠EV C = ∠AEV −
∠ECV = ∠AEF−∠ECV = y. Because BCY Z is cyclic, we have ∠Y ZC = ∠Y BC =
y. Therefore, UV ‖Y Z. It suffices to show that IX bisects segment Y Z, which is clearly
true because IY XZ is a parallelogram. (Indeed, ∠Y ZX = XAY

_
= ∠XBC−∠Y BC =

y + z − y = z = ∠ZY B, from which it follows that ZX‖IY . Likewise, we can show
that IZ‖XY .)

OR

First, note that U and V lie on the bisectors BI and CI, respectively. Indeed, let D
be the tangency point of γ with BC and let U ′ be the intersection of BI with EF .
Note that triangles BFU ′ and BDU ′ are congruent (by SAS), so ∠BU ′F = ∠BU ′D. In
addition, the pencil (U ′F, U ′B,U ′D, U ′C) is harmonic; thus, it follows that U ′B ⊥ U ′C,
so, in particular, U ′M = MB, which gives ∠MU ′B = ∠MBU ′ = 1

2
∠B = ∠ABU ′;

thus, MU ′‖AB; hence U ′ = U , which proves the claim that U lies on BI. Similarly, we
get that V is on CI. Also, remember the perpendicularities IB ⊥ CU and IC ⊥ V B,
which we will use soon.
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Next, note that the lines XB and XC are tangent to the circumcircle of triangle IBC;
indeed, observe that

∠XBI = ∠ABI − ∠ABX

=
1

2
∠B − (∠BCX − ∠C)

=
1

2
∠B − 1

2
(180◦ − ∠A) + ∠C

=
1

2
∠C

= ∠BCI.

Similarly, ∠XCI = ∠IBC. This means that X is the intersection of the tangents at
B and C to the circumcircle of IBC; hence, IX is the I−symmedian of triangle IBC.

But we proved before that U and V are on IB and IC, respectively and that IB ⊥ CU
and IC ⊥ V B. In other words, we showed that U and V are the feet of the altitudes
from C and B in triangle IBC - so, in particular, we have that BCUV is cyclic and
that UV is an antiparallel to BC in triangle IBC. This yields the conclusion, since we
know that the I−symmedian of IBC is the locus of the midpoints of the antiparallels
to BC in triangle IBC; hence we showed that IX bisects UV , as claimed. ¥
This problem and and the second solution were suggested by Titu Andreescu and
Cosmin Pohoata. The first solution was suggested by Zuming Feng.
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