
35th United States of America Mathematical Olympiad

1. Let p be a prime number and let s be an integer with 0 < s < p. Prove that there exist

integers m and n with 0 < m < n < p and
{

sm

p

}
<

{
sn

p

}
<

s

p

if and only if s is not a divisor of p− 1.

(For x a real number, let bxc denote the greatest integer less than or equal to x, and let

{x} = x− bxc denote the fractional part of x.)

First Solution. First suppose that s is a divisor of p − 1; write d = (p − 1)/s. As x

varies among 1, 2, . . . , p − 1, {sx/p} takes the values 1/p, 2/p, . . . , (p − 1)/p once each in

some order. The possible values with {sx/p} < s/p are precisely 1/p, . . . , (s− 1)/p. From

the fact that {sd/p} = (p − 1)/p, we realize that the values {sx/p} = (p − 1)/p, (p −
2)/p, . . . , (p− s + 1)/p occur for

x = d, 2d, . . . , (s− 1)d

(which are all between 0 and p), and so the values {sx/p} = 1/p, 2/p, . . . , (s− 1)/p occur

for

x = p− d, p− 2d, . . . , p− (s− 1)d,

respectively. From this it is clear that m and n cannot exist as requested.

Conversely, suppose that s is not a divisor of p−1. Put m = dp/se; then m is the smallest

positive integer such that {ms/p} < s/p, and in fact {ms/p} = (ms− p)/p. However, we

cannot have {ms/p} = (s − 1)/p or else we would have (m − 1)s = p − 1, contradicting

our hypothesis that s does not divide p−1. Hence the unique n ∈ {1, . . . , p−1} for which

{nx/p} = (s − 1)/p has the desired properties (since the fact that {nx/p} < s/p forces

n ≥ m, but m 6= n).

Second Solution. We prove the contrapositive statement:

Let p be a prime number and let s be an integer with 0 < s < p. Prove that the

following statements are equivalent:

(a) s is a divisor of p− 1;
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(b) if integers m and n are such that 0 < m < p, 0 < n < p, and
{

sm

p

}
<

{
sn

p

}
<

s

p
,

then 0 < n < m < p.

Since p is prime and 0 < s < p, s is relatively prime to p and

S = {s, 2s, . . . , (p− 1)s, ps}

is a set of complete residues classes modulo p. In particular,

(1) there is an unique integer d with 0 < d < p such that sd ≡ −1 (mod p); and

(2) for every k with 0 < k < p, there exists a unique pair of integers (mk, ak) with

0 < mk < p such that mks + akp = k.

Now we consider the equations

m1s + a1p = 1, m2s + a2p = 2, . . . , mss + asp = s.

Hence {mks/p} = k/p for 1 ≤ k ≤ s.

Statement (b) holds if and only 0 < ms < ms−1 < · · · < m1 < p. For 1 ≤ k ≤ s − 1,

mks − mk+1s = (ak+1 − ak)p − 1, or (mk − mk+1)s ≡ −1 (mod p). Since 0 < mk+1 <

mk < p, by (1), we have mk − mk+1 = d. We conclude that (b) holds if and only if

ms,ms−1, . . . , m1 form an arithmetic progression with common difference −d. Clearly

ms = 1, so m1 = 1 + (s− 1)d = jp− d + 1 for some j. Then j = 1 because m1 and d are

both positive and less than p, so sd = p− 1. This proves (a).

Conversely, if (a) holds, then sd = p − 1 and mk ≡ −dsmk ≡ −dk (mod p). Hence

mk = p − dk for 1 ≤ k ≤ s. Thus ms,ms−1, . . . ,m1 form an arithmetic progression with

common difference −d. Hence (b) holds.

This problem was proposed by Kiran Kedlaya.

2. For a given positive integer k find, in terms of k, the minimum value of N for which there

is a set of 2k + 1 distinct positive integers that has sum greater than N but every subset

of size k has sum at most N/2.

Solution. The minimum is N = 2k3 + 3k2 + 3k. The set

{k2 + 1, k2 + 2, . . . , k2 + 2k + 1}
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has sum 2k3 +3k2 +3k+1 = N +1 which exceeds N , but the sum of the k largest elements

is only (2k3 + 3k2 + 3k)/2 = N/2. Thus this N is such a value.

Suppose N < 2k3 + 3k2 + 3k and there are positive integers a1 < a2 < · · · < a2k+1 with

a1 + a2 + · · ·+ a2k+1 > N and ak+2 + · · ·+ a2k+1 ≤ N/2. Then

(ak+1 + 1) + (ak+1 + 2) + · · ·+ (ak+1 + k) ≤ ak+2 + · · ·+ a2k+1 ≤ N/2 <
2k3 + 3k2 + 3k

2
.

This rearranges to give 2kak+1 ≤ N − k2− k and ak+1 < k2 + k + 1. Hence ak+1 ≤ k2 + k.

Combining these we get

2(k + 1)ak+1 ≤ N + k2 + k.

We also have

(ak+1 − k) + · · ·+ (ak+1 − 1) + ak+1 ≥ a1 + · · ·+ ak+1 > N/2

or 2(k + 1)ak+1 > N + k2 + k. This contradicts the previous inequality, hence no such set

exists for N < 2k3 + 3k2 + 3k and the stated value is the minimum.

This problem was proposed by Dick Gibbs.

3. For integral m, let p(m) be the greatest prime divisor of m. By convention, we set p(±1) =

1 and p(0) = ∞. Find all polynomials f with integer coefficients such that the sequence

{p(f(n2))− 2n}n≥0 is bounded above. (In particular, this requires f(n2) 6= 0 for n ≥ 0.)

Solution. The polynomial f has the required properties if and only if

f(x) = c(4x− a2
1)(4x− a2

2) · · · (4x− a2
k), (∗)

where a1, a2, . . . , ak are odd positive integers and c is a nonzero integer. It is straightfor-

ward to verify that polynomials given by (∗) have the required property. If p is a prime

divisor of f(n2) but not of c, then p|(2n − aj) or p|(2n + aj) for some j ≤ k. Hence

p − 2n ≤ max{a1, a2, . . . , ak}. The prime divisors of c form a finite set and do affect

whether or not the given sequence is bounded above. The rest of the proof is devoted to

showing that any f for which {p(f(n2))− 2n}n≥0 is bounded above is given by (∗).
Let Z[x] denote the set of all polynomials with integral coefficients. Given f ∈ Z[x], let

P(f) denote the set of those primes that divide at least one of the numbers in the sequence

{f(n)}n≥0. The solution is based on the following lemma.

Lemma. If f ∈ Z[x] is a nonconstant polynomial then P(f) is infinite.
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Proof. Repeated use will be made of the following basic fact: if a and b are distinct

integers and f ∈ Z[x], then a− b divides f(a)− f(b). If f(0) = 0, then p divides f(p) for

every prime p, so P(f) is infinite. If f(0) = 1, then every prime divisor p of f(n!) satisfies

p > n. Otherwise p divides n!, which in turn divides f(n!)− f(0) = f(n!)− 1. This yields

p|1, which is false. Hence f(0) = 1 implies that P(f) is infinite. To complete the proof, set

g(x) = f(f(0)x)/f(0) and observe that g ∈ Z[x] and g(0) = 1. The preceding argument

shows that P(g) is infinite, and it follows that P(f) is infinite.

Suppose f ∈ Z[x] is nonconstant and there exists a number M such that p(f(n2))− 2n ≤
M for all n ≥ 0. Application of the lemma to f(x2) shows that there is an infinite

sequence of distinct primes {pj} and a corresponding infinite sequence of nonnegative

integers {kj} such that pj|f(k2
j ) for all j ≥ 1. Consider the sequence {rj} where rj =

min{kj (mod pj), pj − kj (mod pj)}. Then 0 ≤ rj ≤ (pj − 1)/2 and pj|f(r2
j ). Hence

2rj + 1 ≤ pj ≤ p(f(r2
j )) ≤ M + 2rj, so 1 ≤ pj − 2rj ≤ M for all j ≥ 1. It follows that

there is an integer a1 such that 1 ≤ a1 ≤ M and a1 = pj − 2rj for infinitely many j.

Let m = deg f . Then pj|4mf((pj − a1)/2)2) and 4mf((x− a1)/2)2) ∈ Z[x]. Consequently,

pj|f((a1/2)2) for infinitely many j, which shows that (a1/2)2 is a zero of f . Since f(n2) 6= 0

for n ≥ 0, a1 must be odd. Then f(x) = (4x − a2
1)g(x) where g ∈ Z[x]. (See the note

below.) Observe that {p(g(n2))− 2n}n≥0 must be bounded above. If g is constant, we are

done. If g is nonconstant, the argument can be repeated to show that f is given by (∗).
Note. The step that gives f(x) = (4x − a2

1)g(x) where g ∈ Z[x] follows immediately

using a lemma of Gauss. The use of such an advanced result can be avoided by first

writing f(x) = r(4x − a2
1)g(x) where r is rational and g ∈ Z[x]. Then continuation gives

f(x) = c(4x−a2
1) · · · (4x−a2

k) where c is rational and the ai are odd. Consideration of the

leading coefficient shows that the denominator of c is 2s for some s ≥ 0 and consideration

of the constant term shows that the denominator is odd. Hence c is an integer.

This problem was proposed by Titu Andreescu and Gabriel Dospinescu.

4. Find all positive integers n such that there are k ≥ 2 positive rational numbers a1, a2, . . . , ak

satisfying a1 + a2 + · · ·+ ak = a1 · a2 · · · ak = n.

Solution. The answer is n = 4 or n ≥ 6.

I. First, we prove that each n ∈ {4, 6, 7, 8, 9, . . .} satisfies the condition.
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(1). If n = 2k ≥ 4 is even, we set (a1, a2, . . . , ak) = (k, 2, 1, . . . , 1):

a1 + a2 + . . . + ak = k + 2 + 1 · (k − 2) = 2k = n,

and

a1 · a2 · . . . · ak = 2k = n .

(2). If n = 2k + 3 ≥ 9 is odd, we set (a1, a2, . . . , ak) =
(
k + 3

2
, 1

2
, 4, 1, . . . , 1

)
:

a1 + a2 + . . . + ak = k +
3

2
+

1

2
+ 4 + (k − 3) = 2k + 3 = n,

and

a1 · a2 · . . . · ak =
(
k +

3

2

)
· 1

2
· 4 = 2k + 3 = n .

(3). A very special case is n = 7, in which we set (a1, a2, a3) =
(

4
3
, 7

6
, 9

2

)
. It is also

easy to check that

a1 + a2 + a3 = a1 · a2 · a3 = 7 = n.

II. Second, we prove by contradiction that each n ∈ {1, 2, 3, 5} fails to satisfy the condi-

tion.

Suppose, on the contrary, that there is a set of k ≥ 2 positive rational numbers whose sum

and product are both n ∈ {1, 2, 3, 5}. By the Arithmetic-Geometric Mean inequality, we

have

n1/k = k
√

a1 · a2 · . . . · ak ≤ a1 + a2 + . . . + ak

k
=

n

k
,

which gives

n ≥ k
k

k−1 = k1+ 1
k−1 .

Note that n > 5 whenever k = 3, 4, or k ≥ 5:

k = 3 ⇒ n ≥ 3
√

3 = 5.196... > 5;

k = 4 ⇒ n ≥ 4 3
√

4 = 6.349... > 5;

k ≥ 5 ⇒ n ≥ 51+ 1
k−1 > 5 .

This proves that none of the integers 1, 2, 3, or 5 can be represented as the sum and, at

the same time, as the product of three or more positive numbers a1, a2, . . . , ak, rational

or irrational.
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The remaining case k = 2 also goes to a contradiction. Indeed, a1 + a2 = a1a2 = n implies

that n = a2
1/(a1 − 1) and thus a1 satisfies the quadratic

a2
1 − na1 + n = 0 .

Since a1 is supposed to be rational, the discriminant n2 − 4n must be a perfect square

(a square of a positive integer). However, it can be easily checked that this is not the case

for any n ∈ {1, 2, 3, 5} . This completes the proof.

Remark. Actually, among all positive integers only n = 4 can be represented both as

the sum and product of the same two rational numbers. Indeed, (n − 3)2 < n2 − 4n =

(n− 2)2 − 4 < (n− 2)2 whenever n ≥ 5; and n2 − 4n < 0 for n = 1, 2, 3.

This problem was proposed by Ricky Liu.

5. A mathematical frog jumps along the number line. The frog starts at 1, and jumps

according to the following rule: if the frog is at integer n, then it can jump either to n + 1

or to n + 2mn+1 where 2mn is the largest power of 2 that is a factor of n. Show that if

k ≥ 2 is a positive integer and i is a nonnegative integer, then the minimum number of

jumps needed to reach 2ik is greater than the minimum number of jumps needed to reach

2i.

First Solution. For i ≥ 0 and k ≥ 1, let xi,k denote the minimum number of jumps

needed to reach the integer ni, k = 2ik. We must prove that

xi,k > xi,1 (1)

for all i ≥ 0 and k ≥ 2. We prove this using the method of descent.

First note that (1) holds for i = 0 and all k ≥ 2, because it takes 0 jumps to reach the

starting value n0, 1 = 1, and at least one jump to reach n0,k = k ≥ 2. Now assume that

that (1) is not true for all choices of i and k. Let i0 be the minimal value of i for which

(1) fails for some k, let k0 be the minimal value of k > 1 for which xi0,k ≤ xi0,1. Then it

must be the case that i0 ≥ 1 and k0 ≥ 2.

Let Ji0,k0 be a shortest sequence of xi0, k0 +1 integers that the frog occupies in jumping from

1 to 2i0k0. The length of each jump, that is, the difference between consecutive integers

in Ji0,k0 , is either 1 or a positive integer power of 2. The sequence Ji0,k0 cannot contain

2i0 because it takes more jumps to reach 2i0k0 than it does to reach 2i0 . Let 2M+1, M ≥ 0
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be the length of the longest jump made in generating Ji0,k0 . Such a jump can only be

made from a number that is divisible by 2M (and by no higher power of 2). Thus we must

have M < i0, since otherwise a number divisible by 2i0 is visited before 2i0k0 is reached,

contradicting the definition of k0.

Let 2m+1 be the length of the jump when the frog jumps over 2i0 . If this jump starts at

2m(2t− 1) for some positive integer t, then it will end at 2m(2t− 1) + 2m+1 = 2m(2t + 1).

Since it goes over 2i0 we see 2m(2t − 1) < 2i0 < 2m(2t + 1) or (2i0−m − 1)/2 < t <

(2i0−m + 1)/2. Thus t = 2i0−m−1 and the jump over 2i0 is from 2m(2i0−m − 1) = 2i0 − 2m

to 2m(2i0−m + 1) = 2i0 + 2m.

Considering the jumps that generate Ji0,k0 , let N1 be the number of jumps from 1 to

2i0 +2m, and let N2 be the number of jumps from = 2i0 +2m to 2i0k. By definition of i0, it

follows that 2m can be reached from 1 in less than N1 jumps. On the other hand, because

m < i0, the number 2i0(k0 − 1) can be reached from 2m in exactly N2 jumps by using the

same jump length sequence as in jumping from 2m +2i0 to 2i0k0 = 2i0(k0−1)+2i
0. The key

point here is that the shift by 2i0 does not affect any of divisibility conditions needed to

make jumps of the same length. In particular, with the exception of the last entry, 2i0k0,

all of the elements of Ji0,k0 are of the form 2p(2t + 1) with p < i0, again because of the

definition of k0. Because 2p(2t+1)− 2i0 = 2p(2t− 2i0−p +1) and the number 2t+2i0−p +1

is odd, a jump of size 2p+1 can be made from 2p(2t + 1)− 2i0 just as it can be made from

2p(2t + 1).

Thus the frog can reach 2m from 1 in less than N1 jumps, and can then reach 2i0(k0 − 1)

from 2m in N2 jumps. Hence the frog can reach 2i0(k0 − 1) from 1 in less than N1 + N2

jumps, that is, in fewer jumps than needed to get to 2i0k0 and hence in fewer jumps than

required to get to 2i0 . This contradicts the definition of k0.

Second Solution. Suppose x0 = 1, x1, . . . , xt = 2ik are the integers visited by the frog

on his trip from 1 to 2ik, k ≥ 2. Let sj = xj − xj−1 be the jump sizes. Define a reduced

path yj inductively by

yj =

{
yj−1 + sj if yj−1 + sj ≤ 2i,

yj−1 otherwise.

Say a jump sj is deleted in the second case. We will show that the distinct integers

among the yj give a shorter path from 1 to 2i. Clearly yj ≤ 2i for all j. Suppose

2i − 2r+1 < yj ≤ 2i − 2r for some 0 ≤ r ≤ i− 1. Then every deleted jump before yj must
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have length greater than 2r, hence must be a multiple of 2r+1. Thus yj ≡ xj (mod 2r+1).

If yj+1 > yj, then either sj+1 = 1 (in which case this is a valid jump) or sj+1/2 = 2m is the

exact power of 2 dividing xj. In the second case, since 2r ≥ sj+1 > 2m, the congruence

says 2m is also the exact power of 2 dividing yj, thus again this is a valid jump. Thus the

distinct yj form a valid path for the frog. If j = t the congruence gives yt ≡ xt ≡ 0 (mod

2r+1), but this is impossible for 2i − 2r+1 < yt ≤ 2i − 2r. Hence we see yt = 2i, that is,

the reduced path ends at 2i. Finally since the reduced path ends at 2i < 2ik at least one

jump must have been deleted and it is strictly shorter than the original path.

This problem was proposed by Zoran Sunik.

6. Let ABCD be a quadrilateral, and let E and F be points on sides AD and BC, respec-

tively, such that AE/ED = BF/FC. Ray FE meets rays BA and CD at S and T ,

respectively. Prove that the circumcircles of triangles SAE, SBF , TCF , and TDE pass

through a common point.

First Solution. Let P be the second intersection of the circumcircles of triangles TCF

and TDE. Because the quadrilateral PEDT is cyclic, ∠PET = ∠PDT , or

∠PEF = ∠PDC. (∗)

Because the quadrilateral PFCT is cyclic,

∠PFE = ∠PFT = ∠PCT = ∠PCD. (∗∗)

By equations (∗) and (∗∗), it follows that triangle PEF is similar to triangle PDC. Hence

∠FPE = ∠CPD and PF/PE = PC/PD. Note also that ∠FPC = ∠FPE + ∠EPC =

∠CPD + ∠EPC = ∠EPD. Thus, triangle EPD is similar to triangle FPC. Another

way to say this is that there is a spiral similarity centered at P that sends triangle PFE

to triangle PCD, which implies that there is also a spiral similarity, centered at P , that

sends triangle PFC to triangle PED, and vice versa. In terms of complex numbers, this

amounts to saying that

D − P

E − P
=

C − P

F − P
=⇒ E − P

F − P
=

D − P

C − P
.
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A

B C

D

E

F

S

T

P

Because AE/ED = BF/FC, points A and B are obtained by extending corresponding

segments of two similar triangles PED and PFC, namely, DE and CF , by the identical

proportion. We conclude that triangle PDA is similar to triangle PCB, implying that

triangle PAE is similar to triangle PBF . Therefore, as shown before, we can establish

the similarity between triangles PBA and PFE, implying that

∠PBS = ∠PBA = ∠PFE = ∠PFS and ∠PAB = ∠PEF.

The first equation above shows that PBFS is cyclic. The second equation shows that

∠PAS = 180◦−∠BAP = 180◦−∠FEP = ∠PES; that is, PAES is cyclic. We conclude

that the circumcircles of triangles SAE, SBF , TCF , and TDE pass through point P .

Note. There are two spiral similarities that send segment EF to segment CD. One of

them sends E and F to D and C, respectively; the point P is the center of this spiral

similarity. The other sends E and F to C and D, respectively; the center of this spiral

similarity is the second intersection (other than T ) of the circumcircles of triangles TFD

and TEC.

Second Solution. We will give a solution using complex coordinates. The first step is

the following lemma.

Lemma. Suppose s and t are real numbers and x, y and z are complex. The circle in

the complex plane passing through x, x + ty and x + (s + t)z also passes through the point

x + syz/(y − z), independent of t.

Proof. Four points z1, z2, z3 and z4 in the complex plane lie on a circle if and only if the
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cross-ratio

cr(z1, z2, z3, z4) =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

is real. Since we compute

cr(x, x + ty, x + (s + t)z, x + syz/(y − z)) =
s + t

s

the given points are on a circle.

Lay down complex coordinates with S = 0 and E and F on the positive real axis. Then

there are real r1, r2 and R with B = r1A, F = r2E and D = E + R(A − E) and hence

AE/ED = BF/FC gives

C = F + R(B − F ) = r2(1−R)E + r1RA.

The line CD consists of all points of the form sC +(1−s)D for real s. Since T lies on this

line and has zero imaginary part, we see from Im(sC +(1−s)D) = (sr1R+(1−s)R)Im(A)

that it corresponds to s = −1/(r1 − 1). Thus

T =
r1D − C

r1 − 1
=

(r2 − r1)(R− 1)E

r1 − 1
.

Apply the lemma with x = E, y = A−E, z = (r2−r1)E/(r1−1), and s = (r2−1)(r1−r2).

Setting t = 1 gives

(x, x + y, x + (s + 1)z) = (E, A, S = 0)

and setting t = R gives

(x, x + Ry, x + (s + R)z) = (E, D, T ).

Therefore the circumcircles to SAE and TDE meet at

x +
syz

y − z
=

AE(r1 − r2)

(1− r1)E − (1− r2)A
=

AF −BE

A + F −B − E
.

This last expression is invariant under simultaneously interchanging A and B and inter-

changing E and F . Therefore it is also the intersection of the circumcircles of SBF and

TCF .

This problem was proposed by Zuming Feng and Zhonghao Ye.
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