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1. The answer is n = 1. Clearly, n = 1 is a solution because 2 + 12 + 2011 = 452. Next we

show that there is no other solutions.

Assume that n ≥ 2. If n is odd, then 2n +12n +2011n cannot be a perfect square because

it is congruent to 3 modulo 4. If n is even, we can complete our solution in two ways.

• 2n + 12n + 2011n cannot be a perfect square because it is congruent to 2 modulo 3.

• 2n +12n +2011n cannot be a perfect square because it is in between two consecutive

perfect squares. Indeed, say n = 2k, then

(2011k)2 < 22k+122k+20112k = 4k+144k+20112k < 1+2·2011k+20112k = (2011k+1)2.

2. The given condition is equivalent to a2 + b2 + c2 + ab+ bc+ ca ≤ 2. We will prove that

2ab+ 2

(a+ b)2
+

2bc+ 2

(b+ c)2
+

2ca+ 2

(c+ a)2
≥ 6 .

Indeed, we have

2ab+ 2

(a+ b)2
≥ 2ab+ a2 + b2 + c2 + ab+ bc+ ca

(a+ b)2
= 1 +

(c+ a)(c+ b)

(a+ b)2
.

Adding the last inequality with its cyclic analogous forms yields

2ab+ 2

(a+ b)2
+

2bc+ 2

(b+ c)2
+

2ca+ 2

(c+ a)2
≥ 3 +

(c+ a)(c+ b)

(a+ b)2
+

(a+ b)(a+ c)

(b+ c)2
+

(b+ c)(b+ a)

(c+ a)2

Hence it remains to prove that

(c+ a)(c+ b)

(a+ b)2
+

(a+ b)(a+ c)

(b+ c)2
+

(b+ c)(b+ a)

(c+ a)2
≥ 3.

But this follows directly from the AM–GM inequality. Equality holds if and only if a+b =

b+ c = c+ a, which together with the given condition, shows that it occurs if and only if

a = b = c = 1√
3
.

OR
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Set 2x = a + b, 2y = b + c, and 2z = c + a; that is, a = z + x − y, b = x + y − z, and

c = y + z − x. Hence

ab+ 1

(a+ b)2
=

(z + x− y)(x+ y − z) + 1

4x2
=

x2 − (y − z)2 + 1

4x2
=

x2 + 2yz + 1− y2 − z2

4x2
.

On the other hand, the given condition is equivalent to 2a2+2b2+2c2+2ab+2bc+2ca ≤ 4

or (a+ b)2+(b+ c)2+(c+ a)2 ≤ 4; that is, x2+ y2+ z2 ≤ 1 or 1− y2− z2 ≥ x2. It follows

that
ab+ 1

(a+ b)2
=

x2 + 2yz + 1− y2 − z2

4x2
≥ x2 + 2yz + x2

4x2
=

1

2
+

yz

2x2
.

Likewise, we have

bc+ 1

(b+ c)2
=

1

2
+

zx

2y2
and

ca+ 1

(c+ a)2
=

1

2
+

xy

2z2
.

Adding the last three inequalities gives

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3

2
+

yz

2x2
+

zx

2y2
+

xy

2z2
≥ 3,

by the AM–GM inequality. Equality holds if and only if x = y = z or a = b = c = 1√
3
.

3. For 1 ≤ i < j ≤ 3, solving the system y = 2xix − x2
i = 2xjx − x2

j yields the intersection(xi+xj

2
, xixj

)
of lines ℓi and ℓj. Hence the center of the equilateral triangle is

O = (Ox, Oy) =

(
x1 + x2 + x3

3
,
x1x2 + x2x3 + x3x1

3

)
.

Let 0◦ ≤ αi < 180◦ be the standard angle formed by lines ℓi and the positive x-axis.

Without loss of generality, we may assume that α1 < α2 < α3. By the given condition, we

have α2 − α1 = α3 − α2 = 60◦. By the subtraction formulas, we have

tan 60◦ =
tanα2 − tanα1

1 + tanα1 tanα2

=
tanα3 − tanα2

1 + tanα2 tanα3

and tan 120◦ =
tanα3 − tanα1

1 + tanα3 tanα1

or √
3 =

2x2 − 2x1

1 + 4x1x2

=
2x3 − 2x2

1 + 4x2x3

and −
√
3 =

2x3 − 2x1

1 + 4x3x1

.

Therefore,

1 + 4x1x2 =
2(x2 − x1)√

3
, 1 + 4x2x3 =

2(x3 − x2)√
3

, 1 + 4x3x1 =
2(x1 − x3)√

3
. (1)
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Adding these equations gives 3+ 4(x1x2 + x2x3 + x3x1) = 0, implying that Oy = −1
4
; that

is, O always lie on the directrix ℓ of the parabola y = x2.

Next we show that G can be any point on ℓ. Solving the first and the equations in (1) for

x2 and x3 in terms of x1 gives

x2 =
2x1 +

√
3

2− 4
√
3x1

and x3 =
2x1 −

√
3

2 + 4
√
3x1

,

implying that

x1 + x2 + x3 = x1 +
(2x1 +

√
3)(2 + 4

√
3x1) + (2x1 −

√
3)(2− 4

√
3x1)

4− 48x2
1

= x1 +
8x1

1− 12x2
1

=
12x3

1 − 9x1

12x2
1 − 1

.

Because lines ℓ1, ℓ2, ℓ3 are evenly spaced with 60◦ between each other, slopes 2x1, 2x2, 2x3

are symmetric with each other; that is,

x1 + x2 + x3 =
12x3

i − 9xi

12x2
i − 1

for i = 1, 2, 3.

Therefore,

Ox =
x1 + x2 + x3

3
=

4x3 − 3x

12x2 − 1
,

where −∞ < x < ∞, because x = xi for some i = 1, 2, 3, and the combined ranges of

slopes 2xi are the interval (−∞,∞). Because 4x3−3x = Ox(12x
2−1) is a cubic equation,

it has a real root in x for every real number Ox; that is, the range of Ox is the interval

(−∞,∞). We conclude that the locus of O is line y = −1
4
.

4. According to the statement of the problem we have

W0 = a, W1 = b, W2 = ab, W3 = bab, W4 = abbab,

and so forth. Let Vn = W1W2 · · ·Wn, where we place two or more words next to one

another to denote the single word obtained by writing all their letters in succession. We

find that

V1 = b, V2 = bab, V3 = babbab, V4 = babbababbab.

We wish to show that Vn is a palindrome for all positive integers n. The above list shows

this to be true for 1 ≤ n ≤ 4; these cases will serve as the base cases for a proof by strong

induction.
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We use a bar over a word to indicate writing its letters in the reverse order. Thus W4 =

babba and V3 = V3 since V3 is a palindrome. Now assume that the words V1 through Vn

are all palindromes; we will show that Vn+1 is also a palindrome. By the definition of Vn+1

and Wn+1 we have

Vn+1 = VnWn+1 = VnWn−1Wn,

using the fact that Vn = Vn since Vn is a palindrome. But we know that Vn = Vn−2Wn−1Wn,

so we may write

VnWn−1Wn = Wn Wn−1 Vn−2Wn−1Wn.

The latter word is clearly a palindrome since Vn−2 reads the same forward as backwards.

Hence Vn+1 is a palindrome, thus completing the proof.

5. Let O be the center of circle ω and let M be the midpoint of AC. It is clear that DE

bisects AC if and only if E, M , B are collinear. Consequently, it suffices to show that

∠MED = ∠BED. (2)

The proof is divided into four parts.

1. TriangleMED is isosceles with ∠MED = ∠MDE. (Note that ACDE is an isosceles

trapezoid and M is midpoint of the base AC. The fact that triangle MED is isosceles

then follows by the Pythagorean Theorem if nothing more elegant comes to mind.)

This fact together with Alternate Interior Angles gives

∠AME = ∠MED = ∠MDE = ∠PMD.

2. Claim. The circle ω′ with diameter OP contains points B, D, and M .

Proof. For each of the cases X = B, D, M , it is straightforward to verify that OX is

perpendicular to PX. For X = B it is true that OBP is a right angle because PB

is tangent to the circle at B. The same is true for X = D. For X = M , simply use

the fact that if M is the midpoint of any given chord, then OM is perpendicular to

the chord.

3. Referring to the circle ω′, the Inscribed Angle Theorem gives ∠PBD = ∠PMD.
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4. Because BP is tangent to ω at B,

∠BED =
1

2

⌢

BD= ∠PBD.

Results from step 1 yield

∠BED = ∠PBD = ∠PMD = ∠MED,

establishing 2 and completing the proof.

A

B

C

D

E

O

P

M

6. The assertion is false, and the smallest n for which it fails is n = 25. Given n ≥ 2, let r

be the remainder when 2n is divided by n. Then 2n = kn+ r where k is a positive integer

and 0 ≤ r < n. It follows that

22
n

= 2kn+r ≡ 2r mod 2n − 1,

and 2r < 2n − 1 so 2r is the remainder when 22
n
is divided by 2n − 1. If r is even then

2r is power of 4. Hence to disprove the assertion, it is enough to find an n for which the

corresponding r is odd.

If n is even then so is r = 2n − kn.
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If n is an odd prime then 2n ≡ 2 (mod n) by Fermat’s Little Theorem; hence r ≡ 2n ≡ 2

mod n and r = 2.

There remains the case in which n is odd and composite. In the first three instances n = 9,

15, 21 there is no contradiction to the assertion:

n = 9 :26 ≡ 1 mod 9 ⇒ 29 ≡ 26 · 23 ≡ 8 mod 9

n = 15 :24 ≡ 1 mod 15 ⇒ 215 ≡ (24)3 · 23 ≡ 8 mod 15

n = 21 :26 ≡ 1 mod 21 ⇒ 221 ≡ (26)3 · 23 ≡ 8 mod 21

However,

210 = 1024 ≡ −1 ⇒ 220 ≡ 1 ⇒ 225 ≡ 25 ≡ 7 mod 25,

so 7 is the remainder when 225 is divided by 25 and 27 is the remainder when 22
25
is divided

by 225 − 1.
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