
37th United States of America Mathematical Olympiad

1. Prove that for each positive integer n, there are pairwise relatively prime integers k0, k1, . . . , kn,

all strictly greater than 1, such that k0k1 · · · kn − 1 is the product of two consecutive inte-

gers.

First solution: We proceed by induction. The case n = 1 is clear, since we may pick

k0 = 3 and k1 = 7.

Let us assume now that for a certain n there are pairwise relatively prime integers 1 <

k0 < k1 < · · · < kn such that k0k1 · · · kn − 1 = an(an − 1), for some positive integer an.

Then choosing kn+1 = a2
n + an + 1 yields

k0k1 · · · kn+1 = (a2
n − an + 1)(a2

n + an + 1) = a4
n + a2

n + 1,

so k0k1 · · · kn+1−1 is the product of the two consecutive integers a2
n and a2

n +1. Moreover,

gcd(k0k1 · · · kn, kn+1) = gcd(a2
n − an + 1, a2

n + an + 1) = 1,

hence k0, k1, . . . , kn+1 are pairwise relatively prime. This completes the proof.

Second solution: Write the relation to be proved as

4k0k1 · · · kn = 4a(a + 1) + 4 = (2a + 1)2 + 3.

There are infinitely many primes for which −3 is a quadratic residue. Let 2 < p0 < p1 <

. . . < pn be such primes. Using the Chinese Remainder Theorem to specify a modulo pn,

we can find an integer a such that (2a+1)2+3 = 4p0p1 · · · pnm for some positive integer m.

Grouping the factors of m appropriately with the pi’s, we obtain (2a+1)2+3 = 4k0k1 · · · kn

with ki pairwise relatively prime. We then have k0k1 · · · kn − 1 = a(a + 1), as desired.

Third solution: We are supposed to show that for every positive integer n, there is a

positive integer x such that x(x+1)+1 = x2 +x+1 has at least n distinct prime divisors.

We can actually prove a more general statement.

Claim. Let P (x) = adx
d + · · · + a1x + 1 be a polynomial of degree d ≥ 1 with integer

coefficients. Then for every positive integer n, there is a positive integer x such that P (x)

has at least n distinct prime divisors.

1



The proof follows from the following two lemmas.

Lemma 1. The set

Q = {p | p a prime for which there is an integer x such that p divides P (x)}

is infinite.

Proof. The proof is analogous to Euclid’s proof that there are infinitely many primes.

Namely, if we assume that there are only finitely many primes p1, p2, . . . , pk in Q, then for

each integer m, P (mp1p2 · · · pk) is an integer with no prime factors, which must equal 1

or −1. However, since P has degree d ≥ 1, it takes each of the values 1 and −1 at most d

times, a contradiction.

Lemma 2. Let p1, p2, . . . , pn, n ≥ 1 be primes in Q. Then there is a positive integer x

such that P (x) is divisible by p1p2 · · · pn.

Proof. For i = 1, 2, . . . , n, since pi ∈ Q we can find an integer ci such that P (x) is

divisible by pi whenever x ≡ ci(mod pi). By the Chinese Remainder Theorem, the system

of n congruences x ≡ ci(mod pi), i = 1, 2, . . . , n has positive integer solutions. For every

positive integer x that solves this system, P (x) is divisible by p1p2 · · · pn.

This problem was suggested by Titu Andreescu.

2. Let ABC be an acute, scalene triangle, and let M, N , and P be the midpoints of BC, CA,

and AB, respectively. Let the perpendicular bisectors of AB and AC intersect ray AM

in points D and E respectively, and let lines BD and CE intersect in point F , inside of

triangle ABC. Prove that points A, N, F , and P all lie on one circle.

First solution: Let O be the circumcenter of triangle ABC. We prove that

∠APO = ∠ANO = ∠AFO = 90◦. (1)

It will then follow that A, P, O, F, N lie on the circle with diameter AO. Indeed, the

fact that the first two angles in (1) are right is immediate because OP and ON are

the perpendicular bisectors of AB and AC, respectively. Thus we need only prove that

∠AFO = 90◦.
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We may assume, without loss of generality, that AB > AC. This leads to configurations

similar to the ones shown above. The proof can be adapted to other configurations.

Because PO is the perpendicular bisector of AB, it follows that triangle ADB is an

isosceles triangle with AD = BD. Likewise, triangle AEC is isosceles with AE = CE.

Let x = ∠ABD = ∠BAD and y = ∠CAE = ∠ACE, so x + y = ∠BAC.
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Applying the Law of Sines to triangles ABM and ACM gives

BM

sin x
=

AB

sin ∠BMA
and

CM

sin y
=

AC

sin ∠CMA
.

Taking the quotient of the two equations and noting that sin ∠BMA = sin ∠CMA we

find
BM

CM

sin y

sin x
=

AB

AC

sin ∠CMA

sin ∠BMA
=

AB

AC
.

Because BM = MC, we have
sin x

sin y
=

AC

AB
. (2)

Applying the law of sines to triangles ABF and ACF we find

AF

sin x
=

AB

sin ∠AFB
and

AF

sin y
=

AC

sin ∠AFC
.

Taking the quotient of the two equations yields

sin x

sin y
=

AC

AB

sin ∠AFB

sin ∠AFC
, so by (2), sin ∠AFB = sin ∠AFC. (3)

Because ∠ADF is an exterior angle to triangle ADB, we have ∠EDF = 2x. Similarly,

∠DEF = 2y. Hence

∠EFD = 180◦ − 2x− 2y = 180◦ − 2∠BAC.

Thus ∠BFC = 2∠BAC = ∠BOC, so BOFC is cyclic. In addition,

∠AFB + ∠AFC = 360◦ − 2∠BAC > 180◦,

and hence, from (3), ∠AFB = ∠AFC = 180◦ − ∠BAC. Because BOFC is cyclic and

4BOC is isosceles with vertex angle ∠BOC = 2∠BAC, we have ∠OFB = ∠OCB =

90◦ − ∠BAC. Therefore,

∠AFO = ∠AFB − ∠OFB = (180◦ − ∠BAC)− (90◦ − ∠BAC) = 90◦.

This completes the proof.

Second solution: Invert the figure about a circle centered at A, and let X ′ denote

the image of the point X under this inversion. Find point F ′
1 so that AB′F ′

1C
′ is a

parallelogram and let Z ′ denote the center of this parallelogram. Note that 4BAC ∼
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4C ′AB′ and 4BAD ∼ 4D′AB′. Because M is the midpoint of BC and Z ′ is the

midpoint of B′C ′, we also have 4BAM ∼ 4C ′AZ ′. Thus

∠AF ′
1B

′ = ∠F ′
1AC ′ = ∠Z ′AC ′ = ∠MAB = ∠DAB = ∠DBA = ∠AD′B′.

Hence quadrilateral AB′D′F ′
1 is cyclic and, by a similar argument, quadrilateral AC ′E ′F ′

1

is also cyclic. Because the images under the inversion of lines BDF and CFE are circles

that intersect in A and F ′, it follows that F ′
1 = F ′.

Next note that B′, Z ′, and C ′ are collinear and are the images of P ′, F ′, and N ′, respec-

tively, under a homothety centered at A and with ratio 1/2. It follows that P ′, F ′ and N ′

are collinear, and then that the points A, P, F and N lie on a circle.
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This problem was suggested by Zuming Feng. The second solution was contributed by

Gabriel Carroll.

3. Let n be a positive integer. Denote by Sn the set of points (x, y) with integer coordinates

such that

|x|+
∣∣∣∣y +

1

2

∣∣∣∣ < n.

A path is a sequence of distinct points (x1, y1), (x2, y2), . . . , (x`, y`) in Sn such that, for

i = 2, . . . , `, the distance between (xi, yi) and (xi−1, yi−1) is 1 (in other words, the points

(xi, yi) and (xi−1, yi−1) are neighbors in the lattice of points with integer coordinates).
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Prove that the points in Sn cannot be partitioned into fewer than n paths (a partition of

Sn into m paths is a set P of m nonempty paths such that each point in Sn appears in

exactly one of the m paths in P).

Solution: Color the points in Sn as follows (see Figure 1):

- if y ≥ 0, color (x, y) white if x + y − n is even and black if x + y − n is odd;

- if y < 0, color (x, y) white if x + y − n is odd and black if x + y − n is even.

•
(0,2)

•
(−1,1)

◦
(0,1)

•
(1,1)

•
(−2,0)

◦
(−1,0)

•
(0,0)

◦
(1,0)

•
(2,0)

•
(−2,−1)

◦
(−1,−1)

•
(0,−1)

◦
(1,−1)

•
(2,−1)

•
(−1,−2)

◦
(0,−2)

•
(1,−2)

•(0,−3)

Figure 1: Coloring of S3

Consider a path (x1, y1), (x2, y2), . . . , (x`, y`) in Sn. A pair of successive points (xi−1, yi−1)

and (xi, yi) in the path is called a pair of successive black points if both points in the pair

are colored black.

Suppose now that the points of Sn are partitioned into m paths and the total number of

successive pairs of black points in all paths is k. By breaking the paths at each pair of

successive black points, we obtain k+m paths in each of which the number of black points

exceeds the number of white points by at most one. Therefore, the total number of black

points in Sn cannot exceed the number of white points by more than k + m. On the other

hand, the total number of black points in Sn exceeds the total number of white points by

exactly 2n (there is exactly one more black point in each row of Sn). Therefore,

2n ≤ k + m.
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There are exactly n adjacent black points in Sn (call two points in Sn adjacent if their

distance is 1), namely the pairs

(x, 0) and (x,−1),

for x = −n+1,−n+3, . . . , n−3, n−1. Therefore k ≤ n (the number of successive pairs of

black points in the paths in the partition of Sn cannot exceed the total number of adjacent

pairs of black points in Sn) and we have 2n ≤ k + m ≤ n + m, yielding

n ≤ m.

This problem was suggested by Gabriel Carroll.

4. Let P be a convex polygon with n sides, n ≥ 3. Any set of n−3 diagonals of P that do not

intersect in the interior of the polygon determine a triangulation of P into n− 2 triangles.

If P is regular and there is a triangulation of P consisting of only isosceles triangles, find

all the possible values of n.

Solution: The answer is n = 2m+1 +2k, where m and k are nonnegative integers. In other

words, n is either a power of 2 (when m + 1 = k) or the sum of two nonequal powers of 2

(with 1 = 20 being considered as a power of 2).

We start with the following observation.

Lemma. Let Q = Q0Q1 . . . Qt be a convex polygon with Q0Q1 = Q1Q2 = · · · = Qt−1Qt.

Suppose that Q is cyclic and its circumcenter does not lie in its interior. If there is a

triangulation of Q consisting only of isosceles triangles, then t = 2a, where a is a positive

integer.

Proof. We call an arc minor if its arc measure is less than or equal to 180◦. By the given

conditions, points Q1, . . . , Qt−1 lie on the minor arc Q̂0Qt of the circumcircle, so none of

the angles QiQjQk (0 ≤ i < j < k ≤ t) is acute. (See the left-hand side diagram shown

below.) It is not difficult to see that Q0Qt is longer than each other side or diagonal of Q.

Thus Q0Qt must be the base of an isosceles triangle in the triangulation of Q. Therefore, t

must be even. We write t = 2s. Then Q0QsQt is an isosceles triangle in the triangulation.

We can apply the same process to polygon Q0Q1 . . . Qs and show that s is even. Repeating

this process leads to the conclusion that t = 2a for some positive integer a.
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The results of the lemma can be generalized by allowing a = 0 if we consider the degenerate

case Q = Q0Q1.

Q0

P1

P1

P9P11 P5

P13

Qs

Q t

We are ready to prove our main result. Let P = P1P2 . . . Pn denote the regular polygon.

There is an isosceles triangle in the triangulation such that the center of P lies within the

boundary of the triangle. Without loss of generality, we may assume that P1PiPj, with

P1Pi = P1Pj (that is, Pj = Pn−i+2), is this triangle. Applying the Lemma to the polygons

P1 . . . Pi, Pi . . . Pj, and Pj . . . P1, we conclude that there are 2m − 1, 2k − 1, 2m − 1 (where

m and k are nonnegative integers) vertices in the interiors of the minor arcs P̂1Pi, P̂iPj,

P̂jP1, respectively. (In other words, i = 2m + 1, j = 2k + i.) Hence

n = 2m − 1 + 2k − 1 + 2m − 1 + 3 = 2m+1 + 2k,

where m and k are nonnegative integers. The above discussion can easily lead to a tri-

angulation consisting of only isosceles triangles for n = 2m+1 + 2k. (The middle diagram

shown above illustrates the case n = 18 = 23+1 + 21. The right-hand side diagram shown

above illustrates the case n = 16 = 22+1 + 23.)

This problem was suggested by Gregory Galperin.

5. Three nonnegative real numbers r1, r2, r3 are written on a blackboard. These numbers have

the property that there exist integers a1, a2, a3, not all zero, satisfying a1r1+a2r2+a3r3 = 0.

We are permitted to perform the following operation: find two numbers x, y on the

blackboard with x ≤ y, then erase y and write y − x in its place. Prove that after a finite

number of such operations, we can end up with at least one 0 on the blackboard.

Solution: If two of the ai vanish, say a2 and a3, then r1 must be zero and we are done.

Assume at most one ai vanishes. If any one ai vanishes, say a3, then r2/r1 = −a1/a2
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is a nonnegative rational number. Write this number in lowest terms as p/q, and put

r = r2/p = r1/q. We can then write r1 = qr and r2 = pr. Performing the Euclidean

algorithm on r1 and r2 will ultimately leave r and 0 on the blackboard. Thus we are done

again.

Thus it suffices to consider the case where none of the ai vanishes. We may also assume

none of the ri vanishes, as otherwise there is nothing to check. In this case we will show

that we can perform an operation to obtain r′1, r′2, r′3 for which either one of r′1, r′2, r′3
vanishes, or there exist integers a′1, a′2, a′3, not all zero, with a′1r

′
1 + a′2r

′
2 + a′3r

′
3 = 0 and

|a′1|+ |a′2|+ |a′3| < |a1|+ |a2|+ |a3|.

After finitely many steps we must arrive at a case where one of the ai vanishes, in which

case we finish as above.

If two of the ri are equal, then we are immediately done by choosing them as x and y.

Hence we may suppose 0 < r1, r2 < r3. Since we are free to negate all the ai, we may

assume a3 > 0. Then either a1 < −1
2
a3 or a2 < −1

2
a3 (otherwise a1r1 +a2r2 +a3r3 > (a1 +

1
2
a3)r1 + (a2 + 1

2
a3)r2 > 0). Without loss of generality, we may assume a1 < −1

2
a3. Then

choosing x = r1 and y = r3 gives the triple (r′1, r
′
2, r

′
3) = (r1, r2, r3 − r1) and (a′1, a

′
2, a

′
3) =

(a1 +a3, a2, a3). Since a1 < a1 +a3 < 1
2
a3 < −a1, we have |a′1| = |a1 +a3| < |a1| and hence

this operation has the desired effect.

This problem was suggested by Kiran Kedlaya.

6. At a certain mathematical conference, every pair of mathematicians are either friends or

strangers. At mealtime, every participant eats in one of two large dining rooms. Each

mathematician insists upon eating in a room which contains an even number of his or her

friends. Prove that the number of ways that the mathematicians may be split between

the two rooms is a power of two (i.e., is of the form 2k for some positive integer k).

Solution: Let n be the number of participants at the conference. We proceed by induction

on n.

If n = 1, then we have one participant who can eat in either room; that gives us total of

2 = 21 options.

Let n ≥ 2. The case in which some participant, P , has no friends is trivial. In this case,

P can eat in either of the two rooms, so the total number of ways to split n participants is
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twice as many as the number of ways to split (n− 1) participants besides the participant

P . By induction, the latter number is a power of two, 2k, hence the number of ways to

split n participants is 2× 2k = 2k+1, also a power of two. So we assume from here on that

every participant has at least one friend.

We consider two different cases separately: the case when some participant has an odd

number of friends, and the case when each participant has an even number of friends.

Case 1: Some participant, Z, has an odd number of friends.

Remove Z from consideration and for each pair (X, Y ) of Z’s friends, reverse the rela-

tionship between X and Y (from friends to strangers or vice versa).

Claim. The number of possible seatings is unchanged after removing Z and reversing the

relationship between X and Y in each pair (X, Y ) of Z’s friends.

Proof of the claim. Suppose we have an arrangement prior to Z’s departure. By assump-

tion, Z has an even number of friends in the room with him.

If this number is 0, the room composition is clearly still valid after Z leaves the room.

If this number is positive, let X be one of Z’s friends in the room with him. By assumption,

person X also has an even number of friends in the same room. Remove Z from the room;

then X will have an odd number of friends left in the room, and there will be an odd

number of Z’s friends in this room besides X. Reversing the relationship between X and

each of Z’s friends in this room will therefore restore the parity to even.

The same reasoning applies to any of Z’s friends in the other dining room. Indeed, there

will be an odd number of them in that room, hence each of them will reverse relationships

with an even number of individuals in that room, preserving the parity of the number of

friends present.

Moreover, a legitimate seating without Z arises from exactly one arrangement including

Z, because in the case under consideration, only one room contains an even number of Z’s

friends.

Thus, we have to double the number of seatings for (n− 1) participants which is, by the

induction hypothesis, a power of 2. Consequently, for n participants we will get again a

power of 2 for the number of different arrangements.

Case 2: Each participant has an even number of friends.
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In this case, each valid split of participants in two rooms gives us an even number of friends

in either room.

Let (A, B) be any pair of friends. Remove this pair from consideration and for each pair

(C, D), where C is a friend of A and D is a friend of B, change the relationship between

C and D to the opposite; do the same if C is a friend of B and D is a friend of A. Note

that if C and D are friends of both A and B, their relationship will be reversed twice,

leaving it unchanged.

Consider now an arbitrary participant X different from A and B and choose one of the two

dining rooms. [Note that in the case under consideration, the total number of participants

is at least 3, so such a triplet (A, B; X) can be chosen.] Let A have m friends in this

room and let B have n friends in this room; both m and n are even. When the pair

(A, B) is removed, X’s relationship will be reversed with either n, or m, or m + n − 2k

(for k the number of mutual friends of A and B in the chosen room), or 0 people within

the chosen room (depending on whether he/she is a friend of only A, only B, both, or

neither). Since m and n are both even, the parity of the number of X’s friends in that

room will be therefore unchanged in any case.

Again, a legitimate seating without A and B will arise from exactly one arrangement that

includes the pair (A, B): just add each of A and B to the room with an odd number

of the other’s friends, and then reverse all of the relationships between a friend of A and

a friend of B. In this way we create a one-to-one correspondence between all possible

seatings before and after the (A, B) removal.

Since the number of arrangements for n participants is twice as many as that for (n− 2)

participants, and that number for (n − 2) participants is, by the induction hypothesis, a

power of 2, we get in turn a power of 2 for the number of arrangements for n participants.

The problem is completely solved.

This problem was suggested by Sam Vandervelde.
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