
36th United States of America Mathematical Olympiad

1. Let n be a positive integer. Define a sequence by setting a1 = n and, for each k > 1,

letting ak be the unique integer in the range 0 ≤ ak ≤ k − 1 for which a1 + a2 + · · · + ak

is divisible by k. For instance, when n = 9 the obtained sequence is 9, 1, 2, 0, 3, 3, 3, . . . .

Prove that for any n the sequence a1, a2, a3, . . . eventually becomes constant.

First Solution: For k ≥ 1, let

sk = a1 + a2 + · · · + ak.

We have
sk+1

k + 1
<

sk+1

k
=

sk + ak+1

k
≤ sk + k

k
=

sk

k
+ 1.

On the other hand, for each k, sk/k is a positive integer. Therefore

sk+1

k + 1
≤ sk

k
,

and the sequence of quotients sk/k is eventually constant. If sk+1/(k + 1) = sk/k, then

ak+1 = sk+1 − sk =
(k + 1)sk

k
− sk =

sk

k
,

showing that the sequence ak is eventually constant as well.

Second Solution: For k ≥ 1, let

sk = a1 + a2 + · · · + ak and
sk

k
= qk.

Since ak ≤ k − 1, for k ≥ 2, we have

sk = a1 + a2 + a3 + · · · + ak ≤ n + 1 + 2 + · · · + (k − 1) = n +
k(k − 1)

2
.

Let m be a positive integer such that n ≤ m(m+1)
2

(such an integer clearly exists). Then

qm =
sm

m
≤ n

m
+

m − 1

2
≤ m + 1

2
+

m − 1

2
= m.

We claim that

qm = am+1 = am+2 = am+3 = am+4 = . . . .

1



This follows from the fact that the sequence a1, a2, a3, . . . is uniquely determined and

choosing am+i = qm, for i ≥ 1, satisfies the range condition

0 ≤ am+i = qm ≤ m ≤ m + i − 1,

and yields

sm+i = sm + iqm = mqm + iqm = (m + i)qm.

Third Solution: For k ≥ 1, let

sk = a1 + a2 + · · · + ak.

We claim that for some m we have sm = m(m−1). To this end, consider the sequence which

computes the differences between sk and k(k − 1), i.e., whose k-th term is sk − k(k − 1).

Note that the first term of this sequence is positive (it is equal to n) and that its terms

are strictly decreasing since

(sk − k(k − 1)) − (sk+1 − (k + 1)k) = 2k − ak+1 ≥ 2k − k = k ≥ 1.

Further, a negative term cannot immediately follow a positive term. Suppose otherwise,

namely that sk > k(k − 1) and sk+1 < (k + 1)k. Since sk and sk+1 are divisible by

k and k + 1, respectively, we can tighten the above inequalities to sk ≥ k2 and sk+1 ≤
(k+1)(k−1) = k2−1. But this would imply that sk > sk+1, a contradiction. We conclude

that the sequence of differences must eventually include a term equal to zero.

Let m be a positive integer such that sm = m(m − 1). We claim that

m − 1 = am+1 = am+2 = am+3 = am+4 = . . . .

This follows from the fact that the sequence a1, a2, a3, . . . is uniquely determined and

choosing am+i = m − 1, for i ≥ 1, satisfies the range condition

0 ≤ am+i = m − 1 ≤ m + i − 1,

and yields

sm+i = sm + i(m − 1) = m(m − 1) + i(m − 1) = (m + i)(m − 1).

This problem was suggested by Sam Vandervelde.
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2. A square grid on the Euclidean plane consists of all points (m,n), where m and n are

integers. Is it possible to cover all grid points by an infinite family of discs with non-

overlapping interiors if each disc in the family has radius at least 5?

Solution: It is not possible. The proof is by contradiction. Suppose that such a covering

family F exists. Let D(P, ρ) denote the disc with center P and radius ρ. Start with an

arbitrary disc D(O, r) that does not overlap any member of F . Then D(O, r) covers no

grid point. Take the disc D(O, r) to be maximal in the sense that any further enlargement

would cause it to violate the non-overlap condition. Then D(O, r) is tangent to at least

three discs in F . Observe that there must be two of the three tangent discs, say D(A, a)

and D(B, b), such that ∠AOB ≤ 120◦. By the Law of Cosines applied to triangle ABO,

(a + b)2 ≤ (a + r)2 + (b + r)2 + (a + r)(b + r),

which yields

ab ≤ 3(a + b)r + 3r2, and thus 12r2 ≥ (a − 3r)(b − 3r).

Note that r < 1/
√

2 because D(O, r) covers no grid point, and (a−3r)(b−3r) ≥ (5−3r)2

because each disc in F has radius at least 5. Hence 2
√

3r ≥ (5 − 3r), which gives 5 ≤
(3+2

√
3)r < (3+2

√
3)/

√
2 and thus 5

√
2 < 3+2

√
3. Squaring both sides of this inequality

yields 50 < 21 + 12
√

3 < 21 + 12 · 2 = 45. This contradiction completes the proof.

Remark: The above argument shows that no covering family exists where each disc has

radius greater than (3 + 2
√

3)/
√

2 ≈ 4.571. In the other direction, there exists a covering

family in which each disc has radius
√

13/2 ≈ 1.802. Take discs with this radius centered

at points of the form (2m + 4n + 1
2
, 3m + 1

2
), where m and n are integers. Then any grid

point is within
√

13/2 of one of the centers and the distance between any two centers is

at least
√

13. The extremal radius of a covering family is unknown.

This problem was suggested by Gregory Galperin.

3. Let S be a set containing n2 + n − 1 elements, for some positive integer n. Suppose that

the n-element subsets of S are partitioned into two classes. Prove that there are at least

n pairwise disjoint sets in the same class.

Solution: In order to apply induction, we generalize the result to be proved so that it

reads as follows:
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Proposition. If the n-element subsets of a set S with (n+1)m−1 elements are partitioned

into two classes, then there are at least m pairwise disjoint sets in the same class.

Proof. Fix n and proceed by induction on m. The case of m = 1 is trivial. Assume

m > 1 and that the proposition is true for m − 1. Let P be the partition of the n-

element subsets into two classes. If all the n-element subsets belong to the same class, the

result is obvious. Otherwise select two n-element subsets A and B from different classes

so that their intersection has maximal size. It is easy to see that |A ∩ B| = n − 1. (If

|A∩B| = k < n−1, then build C from B by replacing some element not in A∩B with an

element of A not already in B. Then |A∩C| = k+1 and |B∩C| = n−1 and either A and

C or B and C are in different classes.) Removing A∪B from S, there are (n+1)(m−1)−1

elements left. On this set the partition induced by P has, by the inductive hypothesis,

m − 1 pairwise disjoint sets in the same class. Adding either A or B as appropriate gives

m pairwise disjoint sets in the same class.

Remark: The value n2 + n − 1 is sharp. A set S with n2 + n − 2 elements can be split

into a set A with n2 − 1 elements and a set B of n − 1 elements. Let one class consist of

all n-element subsets of A and the other consist of all n-element subsets that intersect B.

Then neither class contains n pairwise disjoint sets.

This problem was suggested by András Gyárfás.

4. An animal with n cells is a connected figure consisting of n equal-sized square cells.1 The

figure below shows an 8-cell animal.

A dinosaur is an animal with at least 2007 cells. It is said to be primitive if its cells cannot

be partitioned into two or more dinosaurs. Find with proof the maximum number of cells

in a primitive dinosaur.

1Animals are also called polyominoes. They can be defined inductively. Two cells are adjacent if they share a

complete edge. A single cell is an animal, and given an animal with n-cells, one with n + 1 cells is obtained by

adjoining a new cell by making it adjacent to one or more existing cells.
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Solution: Let s denote the minimum number of cells in a dinosaur; the number this year

is s = 2007.

Claim: The maximum number of cells in a primitive dinosaur is 4(s − 1) + 1.

First, a primitive dinosaur can contain up to 4(s − 1) + 1 cells. To see this, consider a

dinosaur in the form of a cross consisting of a central cell and four arms with s − 1 cells

apiece. No connected figure with at least s cells can be removed without disconnecting

the dinosaur.

The proof that no dinosaur with at least 4(s−1)+2 cells is primitive relies on the following

result.

Lemma. Let D be a dinosaur having at least 4(s − 1) + 2 cells, and let R (red) and B

(black) be two complementary animals in D, i.e., R ∩ B = ∅ and R ∪ B = D. Suppose

|R| ≤ s − 1. Then R can be augmented to produce animals R̃ ⊃ R and B̃ = D \ R̃ such

that at least one of the following holds:

(i) |R̃| ≥ s and |B̃| ≥ s,

(ii) |R̃| = |R| + 1,

(iii) |R| < |R̃| ≤ s − 1.

Proof. If there is a black cell adjacent to R that can be made red without disconnecting B,

then (ii) holds. Otherwise, there is a black cell c adjacent to R whose removal disconnects

B. Of the squares adjacent to c, at least one is red, and at least one is black, otherwise

B would be disconnected. Then there are at most three resulting components C1, C2, C3

of B after the removal of c. Without loss of generality, C3 is the largest of the remaining

components. (Note that C1 or C2 may be empty.) Now C3 has at least ⌈(3s − 2)/3⌉ = s

cells. Let B̃ = C3. Then |R̃| = |R| + |C1| + |C2| + 1. If |B̃| ≤ 3s − 2, then |R̃| ≥ s and

(i) holds. If |B̃| ≥ 3s − 1 then either (ii) or (iii) holds, depending on whether |R̃| ≥ s or

not.

Starting with |R| = 1, repeatedly apply the Lemma. Because in alternatives (ii) and (iii)

|R| increases but remains less than s, alternative (i) eventually must occur. This shows

that no dinosaur with at least 4(s − 1) + 2 cells is primitive.

This problem was suggested by Reid Barton.
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5. Prove that for every nonnegative integer n, the number 77n

+ 1 is the product of at least

2n + 3 (not necessarily distinct) primes.

Solution: The proof is by induction. The base is provided by the n = 0 case, where

770

+ 1 = 71 + 1 = 23. To prove the inductive step, it suffices to show that if x = 72m−1

for some positive integer m then (x7 + 1)/(x + 1) is composite. As a consequence, x7 + 1

has at least two more prime factors than does x + 1. To confirm that (x7 + 1)/(x + 1) is

composite, observe that

x7 + 1

x + 1
=

(x + 1)7 − ((x + 1)7 − (x7 + 1))

x + 1

= (x + 1)6 − 7x(x5 + 3x4 + 5x3 + 5x2 + 3x + 1)

x + 1

= (x + 1)6 − 7x(x4 + 2x3 + 3x2 + 2x + 1)

= (x + 1)6 − 72m(x2 + x + 1)2

= {(x + 1)3 − 7m(x2 + x + 1)}{(x + 1)3 + 7m(x2 + x + 1)}

Also each factor exceeds 1. It suffices to check the smaller one;
√

7x ≤ x gives

(x + 1)3 − 7m(x2 + x + 1) = (x + 1)3 −
√

7x(x2 + x + 1)

≥ x3 + 3x2 + 3x + 1 − x(x2 + x + 1)

= 2x2 + 2x + 1 ≥ 113 > 1.

Hence (x7 + 1)/(x + 1) is composite and the proof is complete.

This problem was suggested by Titu Andreescu.

6. Let ABC be an acute triangle with ω, Ω, and R being its incircle, circumcircle, and cir-

cumradius, respectively. Circle ωA is tangent internally to Ω at A and tangent externally

to ω. Circle ΩA is tangent internally to Ω at A and tangent internally to ω. Let PA and QA

denote the centers of ωA and ΩA, respectively. Define points PB, QB, PC , QC analogously.

Prove that

8PAQA · PBQB · PCQC ≤ R3,
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with equality if and only if triangle ABC is equilateral.

Solution: Let the incircle touch the sides AB,BC, and CA at C1, A1, and B1, respectively.

Set AB = c, BC = a, CA = b. By equal tangents, we may assume that AB1 = AC1 = x,

BC1 = BA1 = y, and CA1 = CB1 = z. Then a = y + z, b = z + x, c = x + y. By the

AM-GM inequality, we have a ≥ 2
√

yz, b ≥ 2
√

zx, and c ≥ 2
√

xy. Multiplying the last

three inequalities yields

abc ≥ 8xyz, (†),

with equality if and only if x = y = z; that is, triangle ABC is equilateral.

Let k denote the area of triangle ABC. By the Extended Law of Sines, c = 2R sin ∠C.

Hence

k =
ab sin ∠C

2
=

abc

4R
or R =

abc

4k
. (‡)

We are going to show that

PAQA =
xa2

4k
. (∗)

In exactly the same way, we can also establish its cyclic analogous forms

PBQB =
yb2

4k
and PCQC =

zc2

4k
.

Multiplying the last three equations together gives

PAQA · PBQB · PCQC =
xyza2b2c2

64k3
.

Further considering (†) and (‡), we have

8PAQA · PBQB · PCQC =
8xyza2b2c2

64k3
≤ a3b3c3

64k3
= R3,

with equality if and only if triangle ABC is equilateral.

Hence it suffices to show (∗). Let r, rA, r′A denote the radii of ω, ωA, ΩA, respectively. We

consider the inversion I with center A and radius x. Clearly, I(B1) = B1, I(C1) = C1, and

I(ω) = ω. Let ray AO intersect ωA and ΩA at S and T , respectively. It is not difficult to see

that AT > AS, because ω is tangent to ωA and ΩA externally and internally, respectively.

Set S1 = I(S) and T1 = I(T ). Let ℓ denote the line tangent to Ω at A. Then the image

of ωA (under the inversion) is the line (denoted by ℓ1) passing through S1 and parallel

to ℓ, and the image of ΩA is the line (denoted by ℓ2) passing through T1 and parallel to
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ℓ. Furthermore, since ω is tangent to both ωA and ΩA, ℓ1 and ℓ2 are also tangent to the

image of ω, which is ω itself. Thus the distance between these two lines is 2r; that is,

S1T1 = 2r. Hence we can consider the following configuration. (The darkened circle is ωA,

and its image is the darkened line ℓ1.)

A

B C

PA

QA

I

HA

A1

B1

C1

O

S

T

S1

T1

l

l1

l2

By the definition of inversion, we have AS1 · AS = AT1 · AT = x2. Note that AS = 2rA,

AT = 2r′A, and S1T1 = 2r. We have

rA =
x2

2AS1

. and r′A =
x2

2AT1

=
x2

2(AS1 − 2r)
.

Hence

PAQA = AQA − APA = r′A − rA =
x2

2

(

1

AS1 − 2r
+

1

AS1

)

.

Let HA be the foot of the perpendicular from A to side BC. It is well known that

∠BAS1 = ∠BAO = 90◦ − ∠C = ∠CAHA. Since ray AI bisects ∠BAC, it follows that

rays AS1 and AHA are symmetric with respect to ray AI. Further note that both line ℓ1
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(passing through S1) and line BC (passing through HA) are tangent to ω. We conclude

that AS1 = AHA. In light of this observation and using the fact 2k = AHA · BC =

(AB + BC + CA)r, we can compute PAQA as follows:

PAQA =
x2

2

(

1

AHA − 2r
− 1

AHA

)

=
x2

4k

(

2k

AHA − 2r
− 2k

AHA

)

=
x2

4k

(

1
1

BC
− 2

AB+BC+CA

− BC

)

=
x2

4k

(

1
1

y+z
− 1

x+y+z

− (y + z)

)

=
x2

4k

(

(y + z)(x + y + z)

x
− (y + z)

)

=
x(y + z)2

4k
=

xa2

4k
,

establishing (∗). Our proof is complete.

Note: Trigonometric solutions of (∗) are also possible.

Query: For a given triangle, how can one construct ωA and ΩA by ruler and compass?

This problem was suggested by Kiran Kedlaya and Sungyoon Kim.
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