
8th United States of America Junior Mathematical Olympiad

Solutions

USAJMO 1. (Proposed by Gregory Galperin)

Let n be an odd positive integer, and take a = 2n − 1, b = 2n + 1. Then ab + ba ≡ 1 + 3 ≡ 0
(mod 4), and ab + ba ≡ −1 + 1 ≡ 0 (mod n). Therefore a + b = 4n divides ab + ba.

Alternate solution: Let p > 5 be a prime and let p 6≡ 1 (mod 5). For each such prime p we
construct a pair of relatively prime numbers (a, b) that satisfy the conclusion of the problem. Thus,
we will get infinitely many distinct pairs (a, b) as required.

Let a = 3p + 2, b = 7p − 2. Then a + b = 10p. We have ϕ(10p) = 4(p − 1) = b − a, where ϕ is
Euler’s function.

Obviously, a and b are odd and not divisible by p. They are not divisible by 5 because p 6≡ 1 (mod 5).
Thus, a and b are relatively prime to 10p = a + b, and therefore relatively prime to each other.

Therefore, using Euler’s theorem,

ab = aa+ϕ(10p) = aa · aϕ(10p) ≡ aa (mod 10p) ,

and since 10p = a + b,
ab + ba ≡ aa + ba (mod a + b) .

However, since a is odd, aa + ba is divisible by a + b. Hence, ab + ba is divisible by a + b.

USAJMO 2. (Proposed by Titu Andreescu)

For x > 0 and y > 0, the left-hand side of the equation is positive, implying that x > y.

(a) Set
x

y
= k + 1, for some positive rational number k. Then the equation is equivalent to

(k + 1)(3k2 + 6k + 4)(k2 + 2k + 4) = (k7)y.

Take any positive integer n. Letting k = 1
n yields an infinite family of solutions

(x, y) = (n(n + 1)2(4n2 + 6n + 3)(4n2 + 2n + 1), n2(n + 1)(4n2 + 6n + 3)(4n2 + 2n + 1))

to the given equation.

(b) Write the equation as
x(3x2 + y2)y(x2 + 3y2) = (x− y)7,

which is equivalent to
(x3 + 3xy2)(3x2y + y3) = (x− y)7.
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Let x3 +3xy2 = a and 3x2y+y3 = b. Then a+b = (x+y)3, a−b = (x−y)3 and the equation
becomes

(ab)3 = (a− b)7.

Let d = gcd(a, b). Then a = du and b = dv for some relatively prime positive integers u and
v. Hence

(uv)3 = d(u− v)7.

Because gcd(u, v) = 1, we have gcd(u− v, u) = 1, gcd(u− v, v) = 1, hence gcd(u− v, uv) = 1.
It follows that u − v = 1 and d = (uv)3. Hence u = k + 1 and v = k, where k is a positive
integer, and so a = (k + 1)4k3 and b = k4(k + 1)3. Then

(x− y)3 = a− b = [k(k + 1)]3

and
(x + y)3 = a + b = [k(k + 1)]3(2k + 1).

It follows that 2k + 1 = n3 for some odd integer n > 1 and that x + y = nk(k + 1) and
x− y = k(k + 1). Hence

(x, y) =

Ç
(n + 1)k(k + 1)

2
,

(n− 1)k(k + 1)

2

å
where k = n3−1

2 . Thus

(x, y) =

Ç
(n + 1)(n6 − 1)

8
,

(n− 1)(n6 − 1)

8

å
where n is an odd integer greater than 1, and it is easy to check that these are solutions to
the given equation. Hence these pairs describe all the solutions to the equation.

USAJMO 3. (Proposed by Titu Andreescu, Luis Gonzalez, and Cosmin Pohoata)

We offer several solutions. Throughout, we use bracket notation for areas: for example, [ABC]
means the area of triangle ABC.

We first present three down-to-earth approaches. One of them is a coordinate geometry approach.
The other two approaches utilize the fact of many pairs of similar triangles in this configuration:

• BPC, FPA, FBC, APE, and BCE;

• FBP and FCA;

• ECP and EBA.

In these solutions, we assume the points are configured so that P is on minor arc B̄C of the circle,
as shown in the figure.
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Solution 1. (By USA(J)MO packet reviewers.) We may assume that AB = 1. Then [ABC] =√
3/4. Set b = PB, c = PC, e = PE, and f = PF . Note that ∠FBD = ∠ECD = ∠BPC = 120◦.

Hence

[DEF ] = [BCEF ]− [FBD]− [ECD] =
1

2
sin 120◦(BE · CF −BF ·BD − CE · CD).

It suffices to show that [DEF ] =
√

3/2 or

2 = (BE · CF −BF ·BD − CE · CD) = (b + e)(c + f)−BF ·BD − CE · CD.

Because ∠FBC = ∠BPC and ∠FCB = ∠PCB, triangles FCB and BCP are similar to each
other, implying that

FC

BC
=

CB

CP
=

BF

PB
or

c + f

1
=

1

c
=

BF

b
.

Thus, c+ f = 1/c and BF = b/c. Analogously, b+ e = 1/b and CE = c/b. It remains to show that

2 = (b + e)(c + f)−BF ·BD − CE · CD =
1

bc
− b

c
·BD − c

b
· CD.

Note that ∠BPD = ∠CPD = 60◦, so we have BD/CD = BP/CP by the Angle-Bisector theorem.
Consequently, we have BD = b/(b + c) and CD = c/(b + c). Thus, we want to show that

2 =
1

bc
− b

c
·BD − c

b
· CD =

1

bc
− b2

c(b + c)
− c2

b(b + c)
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=
1

bc
− b3 + c3

bc(b + c)
=

1− b2 − c2 + bc

bc
,

or b2 + c2 + bc = 1, which is true by applying the Law of Cosines in triangle BPC.

Solution 2. (By USA(J)MO packet reviewers.) Note that ∠DPF = ∠DPE = ∠EPF = 120◦.
We have

[DEF ] =
1

2
· sin 120◦ (PD · PE + PE · PF + PF · PD) .

To show that [DEF ] = 2[ABC], it suffices to show that

PD · PE + PE · PF + PF · PD = 2BC2.

Set b = PB and c = PC. We will express the lengths of BC, PD, PE, and PF in terms of b and c.
Note that ∠BPC = 120◦. Applying the Law of Cosines in triangle BPC gives BC2 = b2 + bc+ c2.
Applying Ptolemy’s theorem to cyclic quadrilateral ABCP yields AP ·BC = BP ·AC + CP ·AB
or AP = b + c. Because ∠ACB = ∠ABC = ∠APC = 60◦, triangles ACD and APC are similar,
and so

AC

AP
=

CD

PC
=

DA

CA
,

or b2 + bc + c2 = AC2 = AP ·AD = (b + c) ·AD. We conclude that

AD =
b2 + bc + c2

b + c
and PD = AP −AD = b + c− b2 + bc + c2

b + c
=

bc

b + c
.

Finally, because ∠FBP = 180◦ − ∠ABP = ∠ACP and ∠BPF = ∠APC = 60◦, triangles FBP
and ACP are similar. Hence

FB

AC
=

BP

CP
=

PF

PA
,

from which it follows that PF = AP · BP/CP = b(b + c)/c. In exactly the same way, we get
PE = c(b + c)/b. It follows that

PD · PE + PE · PF + PF · PD =
bc

b + c

Ç
c(b + c)

b
+

b(b + c)

c

å
+

c(b + c)

b
· b(b + c)

c

= 2(b2 + bc + c2),

as desired.

Solution 3. (By USA(J)MO packet reviewers.) Without loss of generality, we may assume that
A = (0, 2), B = (−

√
3,−1), and C = (

√
3,−1). Set P = (a, b) with a2 + b2 = 4.

Solving for line equations y = −1 and y =
(b− 2)

a
· x + 2 gives D =

Å
− 3a

b− 2
,−1

ã
.

Solving for line equations y =
√

3x + 2 and y =
(b + 1)

a−
√

3
· (x−

√
3)− 1 gives

F =

Ç
3a +

√
3b− 2

√
3

b + 4−
√

3a
,

√
3a + 5b + 2

b + 4−
√

3a

å
.
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Solving for line equations y = −
√

3x + 2 and y =
(b + 1)

a +
√

3
· (x +

√
3)− 1 gives

E =

Ç
3a−

√
3b + 2

√
3

b + 4 +
√

3a
,
−
√

3a + 5b + 2

b + 4 +
√

3a

å
.

Hence
−−→
DF =

ñ
3a +

√
3b− 2

√
3

b + 4−
√

3a
+

3a

b− 2
,

6(b + 1)

b + 4−
√

3a

ô
and

−−→
DE =

ñ
3a−

√
3b + 2

√
3

b + 4 +
√

3a
+

3a

b− 2
,

6(b + 1)

b + 4 +
√

3a

ô
.

Therefore,

2[DEF ] =
6(b + 1)

b + 4 +
√

3a
·
Ç

3a +
√

3b− 2
√

3

b + 4−
√

3a
+

3a

b− 2

å
− 6(b + 1)

b + 4−
√

3a
·
Ç

3a−
√

3b + 2
√

3

b + 4 +
√

3a
+

3a

b− 2

å
=

12
√

3(b + 1)(b− 2)

(b + 4)2 − 3a2
+

18a(b + 1)

b− 2
·
Ç

1

b + 4 +
√

3a
− 1

b + 4−
√

3a

å
=

12
√

3(b + 1)(b− 2)

(b + 4)2 − 3a2
− 36

√
3a2(b + 1)

(b− 2)((b + 4)2 − 3a2)

=
12
√

3(b + 1)(b− 2)

(b + 4)2 − 3(4− b2)
− 36

√
3(4− b2)(b + 1)

(b− 2)((b + 4)2 − 3(4− b2))

=
12
√

3(b + 1)(b− 2)

4b2 + 8b + 4
− 36

√
3(2− b)(2 + b)(b + 1)

(b− 2)(4b2 + 8b + 4)

=
3
√

3(b− 2)

b + 1
+

9
√

3(2 + b)

b + 1
=

3
√

3(b− 2 + 6 + 3b)

b + 1
= 12

√
3,

implying that [DEF ] = 6
√

3 = 2[ABC], as desired.

The next solution is by the problem authors. It uses more advanced tools that USAJMO partici-
pants are not expected to know, but offers some additional insight into the origins of the problem.

Solution 4. (By the posers.) Without loss of generality, let us assume that P lies on the arc AC,
which does not contain vertex B. Because P is on the circumcircle, its isogonal conjugate, say Q,
is a point at infinity. Furthermore, the intersections D′, E′, F ′ of lines QA, QB, QC with lines
BC, CA, AB, respectively, are the reflections of D, E, F across the midpoints of BC, CA, AB.
This essentially follows from the fact that 4ABC is equilateral: isogonal conjugates with respect
to it are also isotomic conjugates. We are thus led to the following lemma.

Lemma 1. Let ABC be a triangle with D, E, F points lying on the lines BC, CA, AB, respectively.
Let D′, E′, F ′ be the reflections of D, E, F with respect to the midpoints of BC, CA, AB,
respectively. Then, triangles DEF and D′E′F ′ have the same area.
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Proof. The statement holds regardless of the position of points D, E, F on lines BC, CA, AB, so,
for convenience, in the computations below we shall assume that these all lie close enough to the
midpoints of the sides so that all points D, E, F , D′, E′, F ′ lie on the sides of 4ABC. The proof
for the other scenarios is similar.

We begin by writing
[CD′E′] = [AD′E] = [AD′C]− [CD′E].

Analogously, [AE′F ′] = [BE′A] − [AE′F ] and [BF ′D′] = [CF ′B] − [BF ′D]. Adding these three
together, we get

[CD′E′] + [AE′F ′] + [BF ′D′]

= [AD′C] + [BE′A] + [CF ′B]− [CD′E]− [AE′F ]− [BF ′D].

Furthermore,
[CDE] = [BD′E] = [BEC]− [CD′E],

and similarly [AEF ] = [CFA]− [AE′F ] and [BFD] = [ADB]− [BF ′D]. Therefore,

[CDE] + [AEF ] + [BFD]

= [BEC] + [CFA] + [ADB]− [CD′E]− [AE′F ]− [BF ′D].

But D′C = DB, E′A = EC, F ′B = FA, so [AD′C] = [ADB], [BE′A] = [BEC], [CF ′B] = [CFA].
Using all of the above, we get

[CD′E′] + [AE′F ′] + [BF ′D′] = [CDE] + [AEF ] + [BFD],

and so [ABC]− [D′E′F ′] = [ABC]− [DEF ], i.e., [DEF ] = [D′E′F ′], establishing the lemma.

Assuming Lemma 1, we just have to check that [D′E′F ′] = 2[ABC]. Because P lies on the small
arc AC, points D and F lie on the extensions of segments BC and AB, respectively, and so D′ and
F ′ do too. Furthermore, B lies in the interior of triangle D′E′F ′, therefore

[D′E′F ′] = [D′BF ′] + [F ′BE′] + [E′BD′].

On the other hand, AD′‖CF ′ implies [D′CF ′] = [ACF ′], which, after subtracting [BCF ′] from
both sides, gives [D′BF ′] = [ABC]. Likewise, BE′‖CF ′ gives [F ′BE′] = [CBE′] and AD′‖BE′

gives [E′BD′] = [E′BA]. Hence, it follows that

[D′E′F ′] = [ABC] + [CBE′] + [E′BA] = 2[ABC],

as claimed.

Note: One can also establish the lemma using barycentric coordinates. Suppose points D, E, F
are dividing the sides BC, CA, AB in the ratios

BD : DC = x : 1− x, CE : EA = y : 1− y, AF : FB = z : 1− z.
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In terms of barycentric coordinates with respect to triangle ABC, we have

D = (1− x)B + xC, E = (1− y)C + yA, F = (1− z)A + zB.

Consequently, by definition, points D′, E′, F ′ satisfy

D′ = xB + (1− x)C, E′ = yC + (1− y)A, F ′ = zA + (1− z)B.

Now, without loss of generality, rescale so that [ABC] = 1. It can then be easily checked that

[DEF ] = [ABC]− ([AEF ] + [BFD] + [CDE])

= (1− ((1− y)z + (1− z)x + (1− x)y))

= (1− (x + y + z) + (xy + yz + zx))

= (1− (y(1− z) + z(1− x) + x(1− y)))

= [ABC]−
(
[AE′F ′] + [BF ′D′] + [CD′E′]

)
= [D′E′F ′].

This proves Lemma 1. The rest of the solution is as before.

USAJMO 4. (Proposed by Titu Andreescu)

Suppose (a, b, c) is such a triple. The prime (a− 2)(b− 2)(c− 2) + 12 also divides

a2 + b2 + c2 + abc− 2017− (a− 2)(b− 2)(c− 2)− 12

= (a + b + c)2 − 4(a + b + c) + 4− 2025

= (a + b + c− 2)2 − 452

= (a + b + c− 47)(a + b + c + 43).

We may assume without loss of generality that a ≤ b ≤ c. If a = b = 1, c + 10 must be a prime
that properly divides c2 + c− 2015, implying c + 10 divides 1925 = 52 · 7 · 11. So c + 10 = 11, and
we obtain the triple (1, 1, 1). However, this does not make a2 + b2 + c2 + abc− 2017 positive.

If a = 1 and b = 2, then (a − 2)(b − 2)(c − 2) + 12 = 12 is not prime. If a = 1 and b = 3, 14 − c
must be a prime. The allowable choices for c are 3, 7, 9, 11 and 12, but none of these work. If a = 1
and b = 4, the prime is even, so must be 2 and hence c = 7, but this doesn’t work either. If a = 1
and b ≥ 5 then c ≥ 5 also, so (a − 2)(b − 2)(c − 2) + 12 ≤ 12 − 9 = 3, and the only possibility is
b = c = 5, but this also doesn’t work. This rules out the cases with a = 1. Also a = 2 is impossible,
again because 12 is not prime.

Now let x = a − 2, y = b − 2, z = c − 2. We now know that 1 ≤ x ≤ y ≤ z and (x + 2) + (y +
2) + (z + 2) > 47. So x + y + z ≥ 41, and therefore z ≥ 14. The prime xyz + 12 cannot divide
(x+ 2) + (y + 2) + (z + 2)− 47 since xyz− 4 > x+ y + z− 41. Indeed, this latter inequality reduces
to x(yz − 1) > y + z − 37, which will follow if we can prove that yz − 1 > y + z − 37 (since x ≥ 1).
The last statement is equivalent to (y − 1)(z − 1) > −36, which is evidently true.
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Hence xyz + 12 divides (x + 2) + (y + 2) + (z + 2) + 43. They cannot be equal: x, y, z must all be
odd, otherwise xyz + 12 is not prime, but then (x + 2) + (y + 2) + (z + 2) + 43 is even and so not
equal to xyz + 12. Thus 2(xyz + 12) ≤ x+ y + z + 49, implying 2yz− 1 ≤ x(2yz− 1) ≤ y + z + 25.
It follows that (2y − 1)(2z − 1) ≤ 53. Earlier we proved that z ≥ 14; since z is odd, we must
in fact have z ≥ 15. Moreover, 2y − 1 ≤ 53/(2z − 1) ≤ 53/29 < 2. Therefore x = y = 1. It
follows that z + 12 is prime and 15 ≤ z ≤ 27; therefore z = 17, 19, or 25. Also, z + 12 divides
(x+ 2) + (y + 2) + (z + 2) + 43 = z + 51. However, this is false for z = 17, 19, or 25. Consequently,
the answer is negative; i.e., the requested triples (a, b, c) do not exist.

USAJMO 5. (Proposed by Ivan Borsenco)

A

B C

O

H

P

D M

N

Set ∠CAB = A, ∠ABC = B, and ∠BCA = C. Because H is the orthocenter, we have ∠HBC =
90◦ − C and ∠HCB = 90◦ −B. In triangle BHC, we have ∠BHC = 180◦ − ∠HBC − ∠HCB =
B + C. Because BHNC is cyclic, we have ∠BNC = ∠BHC = B + C. Extend segment AD
through D to meet the circumcircle (denoted by ω) of triangle ABC at P . It is clear that P is

the midpoint of minor arc B̄C (of ω) and O,M,P all lie on the perpendicular bisector of segment
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BC. In particular, BPCN is a kite with symmetry axis PN . Because ABPC is cyclic, we have
∠BPC = 180◦ − ∠BAC = B + C = ∠BNC. We can further conclude that BPCN is a rhombus,
implying that line BC is the perpendicular bisector of segment NP , and so DN = NP and
∠DPN = ∠DNP .

Set x = ∠HAP . Because AH ‖ OP , we have ∠DNP = ∠DPN = ∠HAP = x. Because O is the
circumcenter of triangle ABC, we have ∠AOC = 2B and ∠CAO = ∠ACO = 90◦−B. Because H is
the orthocenter of triangle ABC, we have ∠BAH = 90◦−B. Because ∠BAH = 90◦−B = ∠CAO,
∠BAC and ∠HAO share common angle bisector AD; that is,

∠DNP = ∠DPN = ∠HAP = ∠OAP = ∠OAD = x.

Consequently, we have

∠ADO = ∠ADN − ∠ODN = ∠DNP + ∠DPN − ∠ODN = 2x− ∠ODN

and
∠HAN = ∠HAO − ∠OAN = ∠HAP + ∠OAP − ∠OAN = 2x− ∠OAN.

It suffices to show that ∠ODN = ∠OAN , which is clearly true because ADNO is cyclic as
∠DNP = ∠OAD = x.

Alternate solution (by Titu Andreescu and Cosmin Pohoata). The key idea is to prove that
ADNO is cyclic. Once this is proven, the problem follows by noticing that ∠ADO = ∠ANO =
∠HAN , where the latter holds due to the fact that ON‖AH.

To prove the concyclicity, one can simply use Power of a Point. First, one has to construct P as
in the first solution, and notice that M is the midpoint of segment PN . This follows from the fact
that the reflection of H across line BC lies on the circumcircle Ω of 4ABC. This implies that the
circumcircle of 4BHC is the reflection of Ω across line BC, so line BC must indeed bisect PN by
symmetry. Next, let O′ denote the orthogonal projection of O on AD. Clearly OO′DM is cyclic,
so Power of a Point yields PM · PO = PD · PO′. But O′ is the midpoint of PA, so PO′ = PA/2.
Since PM = PN/2, this yields

PN · PO = PD · PA,

which by Power of a Point gives the concyclity of ADNO. This completes the proof.

USAJMO 6. (Proposed by Maria Monks Gillespie)

We may assume the points have been labeled as P1, P2, . . . , P2n in order, going counterclockwise
from (1, 0). Now, write out the color of each point in order, and replace each R with a +1 and each
B with a −1, to get a list p1, . . . , p2n of +1’s and −1’s. Consider the partial sums p1 + · · ·+ pk of
this sequence, and choose the index k such that the kth partial sum has as small a value as possible;
if several partial sums are tied for smallest, let k be the lowest index among them. Now, rotate the
circle clockwise so that points P1, . . . , Pk are moved past (1, 0); the resulting sequence of +1’s and
−1’s from the new orientation now has all nonnegative partial sums, and the total sum is 0.

Consider any red point in the rotated diagram and label it R1. The arc R1 → B1 does not
cross (1, 0), for otherwise the sequence ends with a string of +1’s and the partial sums before
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those +1’s would be negative. Furthermore, the sequence of entries from R1 to B1 looks like
+1,+1,+1, . . . ,+1,−1, and so removing R1 and B1 is equivalent to removing a consecutive pair
of a +1 and −1, so the partial sums remain all nonnegative. It follows that the next pairing also
doesn’t cross (1, 0), and so on, so no matter which way we pick the ordering of the red points in
the rotated circle, there are no counterclockwise arcs Ri → Bi containing (1, 0).

Finally, note that in any ordering of the red points, the blue points among P1, . . . , Pk are all paired
with red points, and those red points among P1, . . . , Pk are paired with blue points in this same
subsequence since there are no crossings in the rotated picture. Let m be the difference between
the number of blue and red points among P1, . . . , Pk. Then it follows that exactly m blue points in
P1, . . . , Pk were matched with red points from Pk+1, . . . , P2n. Therefore, when we rotate the circle
back to its original position, there are exactly m crossings, no matter which ordering we pick for
the red points. Since m is independent of the ordering, the proof is complete.

Problems and solutions c© 2017, Mathematical Association of America.

10


