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1. Let S be a set with 2002 elements, and let N be an integer with 0 < N < 2292 Prove
that it is possible to color every subset of S either blue or red so that the following
conditions hold:

(a) the union of any two red subsets is white:
(b) the union of any two blue subsets is black:

(c) there are exactly N red subsets.

First Solution: We prove that this can be done for any n-element set. where n is

an positive integer, S, = {1,2,...,n} and integer N with 0 < N < 2"

We induct on n. The base case n =1 is trivial. Assume that the desired coloving can
be done to the subsets of set S, = {1.2,... . n} and integer .V, with 0 < N <27 \We
show that there is a desired coloring for set S, = {1.2.....n.n+ 1 } and integer \

with 0 < N, o <271 We consider the following cases.

(1) 0 < N,y <27 Applying the induction hypothesis to 5, and N, = N, 4 .we
geet a coloring of all subsets of 5, satisfving conditions (a), (b), (c). All uncolored
subsets of S,41 contains element n + 1. we color all of them blue. It is not hail
to see that this coloring of all the subsets of 5,11 satisfving conditions (a1 (b
(c).

(i) 2% + 1 < N,pp < 2771 Applying the induction hyvpothesis to 5, and \, =
2t N, L we geet a coloring of all subsets of .S, satisfving conditions ta). (b
(c). All uncolored subsets of 5,41 contains element n + 1, we color all of them
blue. Finally, we switch the color of each subset: if it is blue now. we recolor 1t
red: it is red now, we recolor 1t blue. It is not hard to see that this colorine of «ll
the subsets of 5, satisfving conditions (a), (b). (¢).

7t

Thus our induction is complete.

Second Solution: If N = 0, we color every subset black; if N = 2% we color
everv subset white. Now suppose neither of these holds. We may assume that 5 =
{0,1,2,....2001}. Write N in binary representation:

A’.Zzal +2u3+__._+_.)a,k.

Z

where the a; are all distinct; then each a, 1s an element of 5. Color each a; red. and
color all the other elements of 5 blue. Now declare each nonempty subset of 5 to he



the color of its largest element, and color the empty subset blue. If 7. are any two
nonempty subsets of S, then the largest element of T U [" equals the largest element of
T or the largest element of [7, and if 7" 1s empty. then TU " = [, Statements (a) and
(b) readily follow from this. To verify (¢}, notice that. for each i, there are 2% subsets
of S whose largest element is a; (obtained by taking a; in combination with any of the
elements 0, 1,...,a; —1). If we sum over all 7, each red subset is counted exactly once.
and we get 2% 4292 4 ... 4 2% = N\ red subsets.

2. Let ABC be a triangle such that

AN L (e BY 100 E) (65
cojz— + co 5 + .cotg =5 )

where s and r denote its semiperimeter and its inradius, respectivelv. Prove that

triangle A BC' is similar to a triangle T' whose side lengths are all positive integers with
no common divisor and determine these integers.

First Solution: For simplification, let u = cot jf v = cot

vl

L w = cot (—) We start
with a few basic facts.

o Fact 1. Let [R] denote the area region R. Then

[ABC] = \/s(s —a){s — b)(s —c) = rs.

The first equality is the Heron’s formula. The second equality follows from

[ABC) = [AIB]+ [BIC] 4+ [C'IA] = rs. where [ is the incenter of triangle ABC"
o Fact 2. We have

Let « be the excircle of triangle ABC opposite A. and let [4 be its center. Chrcle
w is tangent to side BC'. rays AB and AC and N. Y| Z. respectivelyv. By equal

tangents, AY = AZ, BN = BY and C'X = ('Z. Hence AX = 4Y = s. Then

ro(b+c—a)
D

(ABC] = [ABLi| + [ACL4]) = [BC 4] =

= 7r.(s—a).

where 1, 1s the radius of circle w. Combining with the Heron's lormula. we obrain

/ N

Vls —a)s = 0)(s —c¢) =ru(s —a),

or, Ty = f(s—_}_)(a—sﬂ On the other hand, in right triangle Al4Y",

A AY S
U =0 — = — = —.

2 Y r

@



Putting the above equalities together gives

E s(s—a) B S{s — a)

) L Vsls —a)(s = b)(s — ) a \/ (s =bi(s—c)

Likewise, we have

v = __f&i_ and w = “;(:*CL*
(s —c){s —a) (s —a)(s—b)

e fFuct 3. I'roin fact 2. we obtain

Vlls —a) + (s = b) + (s — ¢)]
\ﬂs —aj(s —b)(s—c¢)
e

= = uvw

V- a5 - o

utvtuw =

Irom fact 1. we obtaln

Hence.
LW = U+ U= = 1
B
; s 92 4 92 4 @2 _ =2 - ; on
By (1). and by noticing that 2% + 37 4+ 6° = 7°, we can rewrite the given relation as

(67 + 3% +29)[u” + (20)° + (3w)*] = (6u + 6v + 6uw)*.

This means that we have equality in the Chauchy-Schwartz inequality. [t follows that

w o 2v 3w
6 3 2
or.
u =36k, v=09k w=4k,
for some positive real number k. Pluging these back into (1) gives b = —. and conse-
p - . > \ = 36 N
quenthv. u = 7. v = L and w = 5. Heuce by the Double angle formulas. sin .1 = 5.
. _ 36 G (= 83 . )
sin 3 = 2. and sin (" = & or,
) 1. ) 40 45
sinA = 5=, sinB =52 sinC = 5.

i 7 7

By the Extanded law of sines, triangle ABC is similar to triangle T with the side

lengths 13. 40, and 45. (The circumradius of T is 222.)



Second Solution: Let D be the point of tangency of the incircle of triangle ABC
and side AB. Then Al = r and AE = s — a, where [ is the incenter of triangle A5

AE — sza [ ikewise, v = £22 ¢. Since
Al r r

§—

and w =

Hence u =

r

‘5— S_bk%’_s“:
:( a) + : )+ ():1L+L’+lt’~,

~ | W»n

we can rewrite the given relation as
49[u? + 4v? + 9w?] = 36(u + v + w)?.
Exapnding the last equality and cancelling the like terms. we obtain
13u? 4+ 16007 +405w? — 72(uv + vw + wu) = 0,
or
(3u — 12v)* + (4v — Yw)* + (18w — 2u)* = 0.

Therefore u:v:w=1:4:9.

Bv the Addition formula, we obtain

, cot 2cot B~ C
cot — cot — cot — = = = —
ol Teot oty oL AzB T eotg
2
t ¢ t - t B 1\ t ¢
= cot — | cot — M cot —
2\ ooty
A B !
= Ccot —c¢ot — cot —,
2 2 27
or. w4 v+ w = wwrw. The rest is the same as the last part of the first solution.

3. Prove that any monic polynomial (a polynomial with leading coefficient 1) of degrec n

with real coefficients is the average of two monic polynomials of degree n with » real

roots.
Solution: Let p(x) be monic real polyvnomial of degree n. If n = 1. then plu) =+ +w
for some real number a. It is easy to see that p() 1s the average of v+ 20 and . cach

of which has 1 real root. Now we assume that n > 1. Let polvnomial
gz) = (2 = 2)(z = 4) -+ (2 = 2n — 1))
The degree of g(z) i1s n — 1. Consider the polvnomials
giry=a" —kgle) and r(a) =2ple) —qgla) = 2pla) — 2" + kgl

We will show that for large enough & these two polynomials have n real roors. Since
thev are monic and their average is clearly p(z), this will solve the problem.



Consider the values of polynomial g(z) at n points = 1,3,5,...,2n 1. These values
alternate in sign and are at least 1 (since at most two of the factors have magnitude
I and the others have magnitude at least 2). On the other hand. there is a constant
¢ > 0 such that for 0 < x < n. we have [2*] < ¢ and 2p(a) — 2" < . Take b > c
Then we see that ¢(z) and r(x) evalnated at n points v = 1,3.5.....2n— L alternate in
sign. Thus polynomials p(z) and r(z) each has at least n — 1 real roots. How ever since
they are polynomials of degree n, they must then each have n real roots, as desived.
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4. Let R be the set of real numbers. Determine all functions f: R — R such that

fa? =y?) = afle) —yfly)

for all pairs of real numbers & and y.

Solution: Setting & =y = 0 in the given condition yields f{0) = 0. Since
—zf(=2) = yfly) = fl(=2)" = 9’| = fle® = y*) = 2 f(2) =y fly),

we have f(x) = —f(z) for 2 # 0. Hence f(z) is odd. From now on, we assume x.y > 0.

Setting y = 0 in the given condition yields f(z?) = zf(z). Hence f(a? — y7) =
Fledy = fly?).or, fla?y = fla® —y?) + f(y?). Since for @ > 0 there is a unique /> 0
such that t? = x. it follows that

)=z —y)+ fly) iy
Setting « = 2t and y =t in (1) gives
F(21) = 2411,
Setting @ =t + [ and y =t in the given condition vields
FRt+1) =+ 1) f(t+ 1) —tf(t). (3
Bv (2) and by setting ¢ = 2t + 1 and y = 1 in (1), the left-hand side of (3) becones
f2e+1) = f(2t) + f(1) = 2f(t) + f(1). (b

On the other hand. by setting @ = ¢t + 1 and y = 1 in (1}, the right-hand side of 131
reads

L+ L) f(t+ 1) —tf(t) =+ L)+ AT =tf) = £+ ¢+ 0L 0
Putting (3), (4), and (3) together leads to 2f(t) + f(1) = f(t)+ (¢t + 1) /(1) o
Jit) =1f(1)

for t > 0. Recall that f{x)1s odd, we conclude that [(—i) = —f(t) = —(f(1) for ¢ > 0.
Hence [(x) = ka for all z, where k= f(1} 1s a constant. It is not difficult to see that
all such functions indeed satisfy the conditions of the problem.



3.

Let «.b be integers greater than 2. Prove that there exists a positive integer & and a
finite sequence ny, na, ... ,ng of positive integers such that n; = a.ny = b, and n,n ..,
is divisible by n; + n;qy for each ¢ (1 <1 < k).

First Solution: We write a ¢ b if the desired sequence exists. Note that for positive
integer n with n > 3, n < 2n as the sequence

np=n. na=n{n—1). ny=nln—-1)(n-=2), ny=n{n—2). ns =2n

satisfies the conditions of the problem. I'or positive integer n > 4, n’ = (n—1j(n—2) >
3. hence n' & 2n’ by the above argument. It follows that n & n — 1 for n > 4 by
n' « 2n’ and by the sequences

ny =n. na=nln—=1.ny=nn—10(0=2), ng=nln—1)n-2)0n-=3)
ns =2(n — 1(n—2) =2

and i =n' = (n—1)(n—2). n), =n — 1. [terating this, we connect all integers larger
than 2.

Second Solution: We write a < b if the desired sequence exists. Note that this
relation is symmetric (@ <> bimplies b ¢+ a) and transitive (a ¢ b. b «» ¢ imply « e ¢
Our crucial observation will be the following: If d > 2 and n is a multiple of . then
n e (d—1n. Indeed, n+ (d—=1n=dn [ n? | (d=1n? =n-(d— 1.

Let us call a positive integer k safe if n < kn for all n > 2. Notice by transitivity that
any product of safe numbers is safe. Now, we claim that 2 is safe. To prove this. define
f(n}, for n > 2, to be the smallest divisor of n which is greater than 2. We show rhat
n < 2n by strong induction on f(n). In case f(n) = 3, we immediately have n — 2u
by our earlier observation. Otherwise, notice that fin) — 1 is a divisor of ({11 — iy
which is greater than 2 and less than f{n): thus f({(fin) — Ljn) < fln). and the
induction hvpothesis gives (f(n)— 1)n = 2(f(n)— L)n. We also have n < (f(n)— 1
(bv our earlier observation) and 2(f(n) — 1)n < 2n (by the same observation. since
f{ny | n | 2n). Thus, by transitivity, n < 2n. This completes the induction step and
proves the claim.

Next, we show that any prime p is safe, again by strong induction. The base case p =2
has alreadyv been done. If p is an odd prime, then p + 1 is a product of primes strictly
less than p. which are safe by the induction hypothesis; hence, p + 1 is safe. Thus. for
anv n > 2.
ne (p+Lin < plp+ Lin < pn.

This completes the induction step. Thus, all primes are safe, and hence every mteeoer
> 2 is safe. In particular, our given numbers a, b are safe, so we have a < ab < b. as
needed.

[ have an n x n sheet of stamps, from which ['ve been asked to tear out blocks of three
adjacent stamps in a single row or column. ([ can only tear along the perforations



separating adjacent stamps. and each block must come out of a sheet in one picce.
Let b(n) be the sinallest number of blocks [ can tear out and make it impossible to
tear out anyv more blocks. Prove that there are constants ¢ and d such that

1 1
—n* —cn < b(n) < =n* 4+ dn
{ )

for all n > 0.

Solution: The upper bound requires an example of a set of 1;71') + dn blocks whose
removal makes it impossible to remove any further blocks. It suffices to show that we
can tile the plane by tiles containing one block for every five stamps so that no move
blocks can be chosen. Two such tilings are shown below with one tile outlined in heavy
lines. Given an n x n section of the tiling take all blocks lying entirely within that
section and add as many additional blocks as possible. If the basic tile is contained
in an m + 1 x m + 1 square, then the n x n section is covered by tiles contained in a
concentric {(n + 2m) x (n 4 2m) square. Hence there are at most 2(n + 2m)* blocks
entirely within the section. For an n x n section of the tiling. there are at most 4
blocks which lie partially in and partially out of that section (hence these block contain
at most 3n stamps in the n x n square) and each of the additional blocks must contain
one of these stamps. Thus there are at most 8n additional blocks. Thus there are at
most

2

4m? 4+ dm + 40
n® + +m+n

| o

)

hlocks total.

The lower bound requires an argument. Suppose that we have a set of b(n) blocks
whose removal makes removing any further blocks impossible.

1) There are 2n(n — 2) potential blocks of three consecutive stamps in a row or
column. Each of these must meet at least one of the b(n) blocks removed. Con-
versely, each of the b(n) blocks removed meets at most 14 of these potential blocks



(5 oriented the same way, including itself, and 9 oriented the orthogonal wayv).
Therefore 14b(n) > 2n(n — 2) or

Call a stamp used if it belongs to onc of the b(n) removed blocks. Consider the
(n — 2)? five-stamp crosses centered at each stamp not on an edge of the sheet.
Each cross must contain two used stamps. (One stamp not in the center is not
enough to prevent another block from being torn out, and it is impossible to use
one stamp in the center and use no other stamps in the cross.) In addition, each
block not lying along an edge of the sheet lies entirely inside one cross. which
thus contains three used stamps. There are at most 4n/3 of the b(n) blocks lving
along the edges, hence there are at least b(n) —4n/3 crosses containing three nsed
stamps.

Now count the number of pairs of a used stamp and a cross containing that
stamp, in two ways. First counting block by block, we get 3b(n) used stamps.
and each used stamp is contained in at most five crosses (exactly five if it is not
on an edge), for a total of at most 156(n) pairs. Next, counting cross by cross.
each of the (n — 2)? crosses coutains at least two used stamps and we have at
least b(n) — 4n/3 crosses containing three used stamps, for a total of ar leas
2(n — 2)? + b(n) — 4n/3 pairs. Therefore

156(n) > 2(n —2)* + b(n) — :L—;l,
or
b(n) > inQ — EES~n
{ 21

Call a stamp used if it belongs to one of the b(n) removed blocks. Conut the
number of pairs consisting of a used stamp and an adjacent unused stamp. 1 two
Ways.

There are at least (n —2)? —3b(n) unused stamps which are not on an edge. Since
no more blocks can be torn out, etther the stamp to the left or right and either
the stamp above or below such an unused stamp must be used. Thus we have at
least 2n? — 8n — 6b(n) such pairs.

Each block removed is adjacent to at most eight other stamps. However these
eight stamps contain two blocks of three consecutive stamps. Hence at most six
of these eight stamps can be unused. Thus each of the b(n) block removed is
involved in at most six pairs. Thus there are at most 6b(n) pairs.

Combining these we have

6b(n) > 2n* — 8n — 6b(n),
or

1, 2
b{n) > 671‘ -3
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