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USAMO 1. Using Vieta’s identities we have:

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 − x1x2x3x4 ≥ 5

and so

x1(x2 + x3 + x4 − x2x3x4) + 1(x2x3 + x2x4 + x3x4 − 1) ≥ 4.

It follows that

42 ≤ [x1(x2 + x3 + x4 − x2x3x4) + 1(x2x3 + x2x4 + x3x4 − 1)]2,

and by the Cauchy-Schwarz Inequality,

42 ≤ (x2
1 + 1)[(x2 + x3 + x4 − x2x3x4)

2 + (x2x3 + x2x4 + x3x4 − 1)2]

= (x2
1 + 1)(x2

2 + 1)(x2
3 + 1)(x2

4 + 1).

The equality holds if and only if

x1(x2x3 + x2x4 + x3x4 − 1) = 1(x2 + x3 + x4 − x2x3x4),

which is equivalent to

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = x1 + x2 + x3 + x4,

that is, a = c. Taking x1 = ... = x4 = 1 we obtain b − d = 5 and that the smallest value
of the product in question is 16.
An alternative, shorter argument runs as follows: we have

(x2
1 + 1)(x2

2 + 1)(x2
3 + 1)(x2

4 + 1) = P (i)P (−i) =

((1− b + d) + i(c− a))(1− b + d− i(c− a)) = (b− d− 1)2 + (c− a)2 ≥ 16,

with equality if and only if b− d = 5 and a = c, both attained if x1 = ... = x4 = 1.

This problem and solutions were suggested by Titu Andreescu.
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USAMO 2. Let f be a solution of the problem. Let p be a prime. Since p divides f(p)2, p divides f(p)

and so p divides f(p)2

p
. Taking y = 0 and x = p, we deduce that p divides f(0). As p is

arbitrary, we must have f(0) = 0. Next, take y = 0 to obtain xf(−x) = f(x)2

x
. Replacing

x by −x, and combining the two relations yields f(x) = 0 or f(x) = x2 for all x.

Suppose now that there exists x0 6= 0 such that f(x0) = 0. Taking y = x0, we obtain

xf(−x) + x2
0f(2x) = f(x)2

x
, yielding x2

0f(2x) = 0 for all x and so f vanishes on even
numbers. Assume that there exists an odd number y0 such that f(y0) 6= 0, so f(y0) = y2

0.
Taking y = y0, we obtain

xf(2y2
0 − x) + y2

0f(2x− y2
0) =

f(x)2

x
+ f(y3

0).

Choosing x even, we deduce that y2
0f(2x−y2

0) = f(y3
0). This forces f(y3

0) = 0, as otherwise
we would have f(2x − y2

0) = (2x − y2
0)

2 for all even x and so y2
0(2x − y2

0)
2 = f(y3

0) for
all such x, obviously impossible. Thus f(2x − y2

0) = 0 for all even numbers x, that is f
vanishes on numbers of the form 4k + 3. But since x2f(−x) = f(x)2, f also vanishes on
all x such that −x ≡ −1 (mod 4), that is on 4Z + 1. Thus f also vanishes on all odd
numbers, contradicting the choice of y0. Hence, if f is not the zero map, then f does not
vanish outside 0 and so f(x) = x2 for all x.

In conclusion, f(x) = 0 for all x ∈ Z and f(x) = x2 for all x ∈ Z are the only possible
solutions. The first function clearly satisfies the given relation, while the second also
satisfies the Sophie Germaine identity

x(2y2 − x)2 + y2(2x− y2)2 = x3 + y6

for all x, y ∈ Z.

OR

f(0) = 0: If f(0) 6= 0, set x = 2f(0) to obtain

2(f(0))2 =
(f(2f(0)))2

2f(0)
+ f(0)

that is

2(f(0))2(2f(0)− 1) = f(2f(0))2.

But 2(2f(0)− 1) cannot be a perfect square since it is of the form 4k + 2. So f(0) = 0.

This problem and the solutions were suggested by Titu Andreescu and Gabriel Dospinescu.

USAMO 3. We claim that defining Pn to be the point with coordinates (n, n3 − 2014n2) will satisfy
the conditions of the problem. Recall that points (x1, y1), (x2, y2) and (x3, y3) are collinear
if and only if ∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
= 0.
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Therefore we examine the determinant∣∣∣∣∣∣

a a3 − 2014a2 1
b b3 − 2014b2 1
c c3 − 2014c2 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

a a3 1
b b3 1
c c3 1

∣∣∣∣∣∣
− 2014

∣∣∣∣∣∣

a a2 1
b b2 1
c c2 1

∣∣∣∣∣∣
.

The first determinant on the right is a homogenous polynomial of degree four divisible by
(a− b)(b− c)(c− a). The remaining factor has degree one, is symmetric, and yields an ab3

term when the product is expanded, hence must be (a+ b+ c). The second determinant is
a homogenous polynomial of degree three divisible by (a− b)(b− c)(c− a), and comparing
coefficients of the ab2 term we see that this is the desired polynomial. Thus

∣∣∣∣∣∣

a a3 − 2014a2 1
b b3 − 2014b2 1
c c3 − 2014c2 1

∣∣∣∣∣∣
= (a− b)(b− c)(c− a)(a + b + c− 2014).

It follows that for distinct a, b and c this expression will equal zero if and only if a+b+c =
2014, as desired.

This solution was suggested by Razvan Gelca.

OR

First, note that the translation x 7→ x − 671 in the indices allows us to replace 2014 in
the statement by 1. Now it comes natural to look for a polynomial pattern (P (x), Q(x))
in the coordinates of a point. The collinearity condition translates, in coordinates, into

P (a)Q(b) + P (b)Q(c) + P (c)Q(a)− P (a)Q(c)− P (b)Q(a)− P (c)Q(b) = 0.

This should happen only when a + b + c − 1 = 0 or when two of a, b, c are equal. Hence
the left-hand side should be of the form (a + b + c− 1)(b− a)(c− b)(a− c)R(a, b, c). We
can try the simplest case R = 1 so that the dominant coefficients of both P (x) and Q(x)
are 1. P (x) and Q(x) cannot both have even degree because then the 4th degree terms
on the left cancel out, while on the right there are clearly 4th degree terms. Hence one of
the polynomials P (x) and Q(x) has degree 3, the other has degree 1. By a translation we
can turn the degree 1 polynomial into x, thus we may assume that P (x) = x. Thus we
should have

(c− b)Q(a) + (a− c)Q(b) + (b− a)Q(c)

= (a + b + c− 1)(b− a)(c− b)(a− c).

So we let Q(x) = x3 + αx2 + βx + γ. Note that we are free to choose β and γ any way we
want, since they cancel out. So we let Q(x) = x3 + αx2.

For a = 0, b = −1, c = 1 the above identity yields −2Q(0)−Q(−1)−Q(1) = 2, and hence
α = −1.

Returning to the case of the problem with 2014 instead of 1, we have the points Pn =
(n− 671, (n− 671)3 − (n− 671)2). But we can simplify this since we can replace P (x) by
x and ignore the linear part of Q(x). We thus obtain the simpler infinite family of points

Pn = (n, n3 − 3 · 671n2 − n2) = (n, n3 − 2014n2)
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satisfying the conditions of the problem.

This problem and the second solution was suggested by Sam Vandervelde.

USAMO 4. The answer is k = 6. First we show that A cannot win for k ≥ 6. Color the grid in three
colors so that no two adjacent spaces have the same color, and arbitrarily pick one color
C. B will play by always removing a counter from a space colored C that A just played.
If there is no such counter, B plays arbitrarily. Because A cannot cover two spaces colored
C simultaneously, it is possible for B to play in this fashion. Now note that any line of
six consecutive squares contains two spaces colored C. For A to win he must cover both,
but B’s strategy ensures at most one space colored C will have a counter at any time.

Now we show that A can obtain 5 counters in a row. Take a set of cells in the grid forming
the shape shown below. We will have A play counters only in this set of grid cells until
this is no longer possible. Since B only removes one counter for every two A places, the
number of counters in this set will increase each turn, so at some point it will be impossible
for A to play in this set anymore. At that point any two adjacent grid spaces in the set
have at least one counter between them.

Consider only the top row of cells in the set, and take the lengths of each consecutive run
of cells. If there are two adjacent runs that have a combined length of at least 4, then A
gets 5 counters in a row by filling the space in between. Otherwise, a bit of case analysis
shows that there exists a run of 1 counter which is neither the first nor last run. This
single counter has an empty space on either side of it on the first row. As a result, the four
spaces of the second row touching these two empty spaces all must have counters. Then
A can play in the 5th cell on either side of these 4 to get 5 counters in a row. So in all
cases A can win with k ≤ 5.

This problem and solution was suggested by Palmer Mebane.

USAMO 5. It is well-known that the reflection H ′ of the orthocenter H in the line AC lies on the
circumcircle of triangle ABC. Hence, the circumcenter of triangle CAH ′ coincides with
the circumcenter of triangle ABC. But since H ′ is the reflection of H in the line AC, the
triangles ACH and CAH ′ are symmetric with respect to BC, and the circumcenter O′ of
triangle ACH must be the reflection of the circumcenter of triangle CAH ′ in the line BC,
i. e. the reflection of the circumcenter of triangle ABC in the line CA.

Now since the quadrilateral AHPC is cyclic and since H, Y are the orthocenters of
triangles ABC, and APC, respectively, we have that

∠ABC = 180◦ − ∠AHC = 180◦ − ∠APC = ∠AY C.

Hence the point Y lies on the circumcircle of triangle ABC, and therefore OC = OY = R,
where R denotes the circumradius of triangle ABC.
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On the other hand, note that the lines OX, XO′, O′O are the perpendicular bisectors of
the segments AB, AP , and AC, respectively, we get

∠OXO′ = ∠BAP = ∠PAC = m(∠XO′O.

Thus OO′ = OX. Combining this with OC = OY and with the parallelism of the lines
XO′ and Y C (note that these two lines are both perpendicular to AP ), we conclude that
the trapezoid XY CO′ is isosceles, and therefore XY = O′C = OC = R. This completes
our proof. ¤

Remark. If ABC is right-angled at A, then the statement is trivially true if we convene
that the circumcenter of AB is the midpoint of AB and that the orthocenter of AC is the
midpoint of AC. Then, we have that XY = 1

2
BC = R.

OR

A

B

C

H

O

X

Y

Z

P

Q

Because ABC is acute, H lies inside the triangle. We consider the configuration show
above. (For other possible configurations, it is not difficult to adjust our proof properly.)

Let O and Z denote the circumcenters of triangles ABC and APC respectively. Let ω
and r denote the circumcircle and the circumradius of triangle ABC respectively. We will
show that

XY CZ is an isoscelees trapezoid with XY = CZ = r. (1)

Because X and Z are the circumcenters of triangle APB and APC, line XZ is the perpen-
dicular bisector of segment AP . Because Y is the orthocenter of triangle APC, CY ⊥ AP .
Hence both lines XZ and CY are perpendicular to line AP , implying that XY ZC is a
trapezoid with XZ ‖ CY .
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Because X and O are the circumcenters of triangles APB and ABC, line XO is the
perpendicular bisector of segment AB. Because XO ⊥ AB and XZ ⊥ AP , the acute
angles formed by lines XO and XZ is equal to the acute angle formed by lines AP and
AB; that is, ∠OXZ = ∠BAP . Likewise, we can can show that ∠OZX = ∠CAP .
Therefore, we have ∠OXZ = ∠BAP = ∠CAP = ∠OZX, implying that OX = OZ; that
is, O lies on the perpendicular bisector of segment XZ.

Because H is the orthocenter of acute triangle ABC, ∠AHC = 180◦ − ∠ABC. Because
APHC is cyclic, we have ∠APC = ∠AHC = 180◦ − ∠ABC. Now in obtuse triangle
APC, ∠AY C = 180◦ − ∠APC = ∠ABC. (This relates to the fact of orthocenter group:
if one point is the orthocenter of the triangle formed by the other three points, then any of
the four point is the orthocenter of the triangle formed by the other three.) In particular,
this means that Y lies on ω; that is, OY = OC = r.

Note that in trapezoid XY CZ, the perpendicular bisectors of the bases Y C and XZ share
a common point O. Thus, these two bisectors must coincide; that is, XY CZ is an isosceles
trapezoid with XY = CZ, establishing the first part of (??).

To complete our proof, it suffices to show that CZ = r. Let Q be the reflection of H across
line AC. It is well known that Q lies ω (because ∠ACQ = ∠ACH = 90◦ − ∠BAC =
∠ABH = ∠ABQ.) We note that triangle AQC and its circumcenter O and triangle AHC
and its circumcenter Z are respective images of each other across line AC. In particular,
we conclude that CZ = CO = r, completing our proof.

This problem and solutions were suggested by Titu Andreescu and Cosmin Pohoata.

USAMO 6. Let a, b, n be positive integers as in the statement of the problem. Let Pn be the set of
prime numbers not exceeding n. We will need the following

There is a positive integer n0 such that for all n ≥ n0 we have

∑
p∈Pn

(
n

p
+ 1

)2

<
2

3
n2.

Proof. Expanding and dividing by n2, and observing that |Pn| ≤ n, it suffices to prove the
inequality ∑

p∈Pn

1

p2
+

2

n

∑
p∈Pn

1

p
+

1

n
<

2

3
.

Since
2

n

∑
p∈Pn

1

p
<

2

n

n∑
i=2

1

i
<

2

n
log n,

it suffices to prove the existence of a constant r < 2
3

such that
∑

p∈Pn

1
p2 < r. But

∑
p∈Pn

1

p2
≤ 1

4
+

1

9
+

n∑

k=1

1

(2k + 1)(2k + 3)
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=
1

4
+

1

9
+

n∑

k=1

1

2

(
1

2k + 1
− 1

2k + 3

)

=
1

4
+

1

9
+

1

2

(
1

3
− 1

2n + 3

)
<

1

4
+

1

9
+

1

6
<

1

3

and we can take r = 1
4

+ 1
9

+ 1
6
.

From now on we fix such n0, and we prove the statement assuming n ≥ n0. Note that
for any p ∈ Pn there are at most n

p
+ 1 numbers i ∈ {0, 1, . . . , n − 1} such that p | a + i,

and likewise for j ∈ {0, 1, . . . , n− 1} such that p | b + j. Thus there are at most
(

n
p

+ 1
)2

pairs (i, j) such that p | gcd(a+ i, b+ j). Using the previous lemma, we deduce that there
are less than 2

3
n2 pairs (i, j) with i, j ∈ {0, 1, . . . , n− 1} such that p | gcd(a + i, b + j) for

some p ∈ Pn.

Let N be the least integer greater than or equal to n2

3
. By the above, there are at least N

pairs (i, j) with i, j ∈ {0, 1, . . . , n − 1} such that gcd(a + i, b + j) is not divisible by any
prime in Pn. Call these pairs (is, js) for s = 1, 2, . . . , N . For each pair, choose a prime ps

that divides gcd(a + is, b + js) (since, by hypothesis, gcd(a + is, b + js) > 1); thus ps > n.
The map s 7→ ps is injective, for if ps = ps′ , then ps | is−is′ , implying is = is′ , and similarly
js = js′ , hence s = s′.

We conclude that
∏n−1

i=0 (a + i) is a multiple of
∏N

s=1 ps. Since the ps are distinct prime
numbers greater than n, then,

(a + n)n >

n−1∏
i=0

(a + i) ≥
N∏

s=1

ps ≥
N∏

i=1

(n + 2i− 1).

Let X be this last product. Then

X2 =
N∏

i=1

[(n + 2i− 1)(n + 2(N + 1− i)− 1)] >

N∏
i=1

(2Nn) = (2Nn)N ,

where the inequality holds because

(n + 2i− 1)(n + 2(N + 1− i)− 1) > n(2(N + 1− i)− 1) + (2i− 1)n = 2Nn.

Finally

(a + n)n > (2Nn)
N
2 ≥

(
2n3

3

)n2

6

.

Thus,

a ≥
(

2

3

) 1
6
·n
· nn

2 − n,

which is larger than cn · nn
2 when n is large enough, for any constant c <

(
2
3

) 1
6 . Similarly,

the same inequality holds for b.
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This shows that min{a, b} ≥ cn ·nn
2 as long as n is large enough. By shrinking c sufficiently,

we can ensure the inequality holds for all n.

One can see that the argument is not sharp, so that the factor n
n
2 can be improved to nrn

for some constant r slightly larger than 1
2
. Consequently, for any c > 0, the inequality in

the problem holds if n is large enough.

This problem and solution was suggested by Titu Andreescu and Gabriel Dospinescu.
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