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JMO 1. The answer is negative. Modulo 9, a cube is 0 or ±1. Assuming that one of a5b + 3 and
ab5 + 3 is 0 mod 9, it follows that at least one of the numbers a and b, say a, is divisible
by 3, hence a5b+ 3 is 3 mod 27, not a perfect cube. If a5b+ 3 and ab5 + 3 are both perfect
cubes of the form ±1 mod 9, then a5b and ab5 are both 7 or 5 mod 9, and so their product,
(ab)6, is −1, −2, or 4 mod 9. But (ab)6 is the square of a perfect cube not divisible by 3,
so is precisely 1 mod 9, a contradiction.

This problem and solution were suggested by Titu Andreescu.

JMO 2. Answer: 2mn − 1.

First note that if m = n = 1, then condition (ii) is vacuously satisfied, so the one cell must
contain 0. Henceforth, we assume that m > 1 or n > 1, so that every cell has at least one
adjacent cell.

We define the distance between two cells to be |x1− x2|+ |y1− y2|, where (x1, y1), (x2, y2)
are the centers of the respective cells. In particular, two cells are adjacent if and only if
the distance between them is 1.

By condition (ii), the smallest value among the cells of any given garden must be 0. In
particular, a garden has at least one zero.

We construct an explicit bijection between the set of nonempty subsets of the mn cells
in the array filled with 0 and the set of all possible gardens. Given a subset of the mn
cells filled with zeroes, fill every cell in the array with the value of the distance to the
nearest cell filled with a zero. This filling of the cells is well-defined and satisfies both
properties (i) and (ii). Given two different subsets of cells filled with zeroes, the filling of
all cells with minimum distances must necessarily be different, so the function is injective
(or one-to-one).

Let an arbitrary garden be given and suppose that a cell in that garden contains an integer
k ≥ 1. By condition (ii), it has an adjacent cell with a smaller integer. Since the difference
is either 0 or 1, the difference must be 1. Thus, a cell assigned k will have an adjacent
cell assigned k − 1. We draw a line segment between the two center points of these two
cells. Repeating this procedure, we can find a path from k to a 0-cell. We call such a path
a garden path. There may be more than one garden path from a given cell, but all such
paths will have length k.

Suppose that for some cell C assigned k there is a path of length n < k from C to a 0-cell
D. Let the numbers in the cells the path goes through be a0 = k, a1, . . . , an = 0. Now
ai − ai+1 ≤ 1, so

k =
n−1∑
i=0

(ai − ai+1) ≤ n < k,
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a contradiction. Thus, the nearest 0-cell to C has distance ≥ k from C. By the previous
paragraph, there exists a path from C to a 0-cell with distance k. Therefore, the distance
to the nearest 0-cell is exactly k. The mapping is surjective (or onto).

Therefore, each garden is uniquely determined by the position of zeros. Consequently, we
just need to count the number of ways to put zeros in mn cells, subject to the condition
that there is at least one zero. This is clearly 2mn − 1.

This problem and solution were suggested by Sungyoon Kim.

JMO 3. First Solution: Assume that ωB and ωC intersect again at another point S (other than
P ). (The degenerate case of ωB and ωC being tangent at P can be dealt similarly.) Because
BPSR and CPSQ are cyclic, we have ∠RSP = 180◦−∠PBR and ∠PSQ = 180◦−∠QCP .
Hence, we obtain

∠QSR = 360◦−∠RSP −∠PSQ = ∠PBR+∠QCP = ∠CBA+∠ACB = 180◦−∠BAC;

from which it follows that ARSQ is cyclic; that is, ωA, ωB, ωC meet at S. (This is Miquel’s
theorem.)

Because BPSY is inscribed in ωB, ∠XY S = ∠PY S = ∠PBS. Because ARXS is in-
scribed in ωA, ∠SXY = ∠SXA = ∠SRA. Because BPSR is inscribed in ωB, ∠SRA =
∠SPB. Thus, we have ∠SXY = ∠SRA = ∠SPB. In triangles SY X and SBP , we have
∠XY S = ∠PBS and ∠SXY = ∠SPB. Therefore, triangles SY X and SBP are similar
to each other, and, in particular,

Y X

BP
=

SX

SP
.

Similar, we can show that triangles SXZ and SPC are similar to each other and that

SX

SP
=

XZ

PC
.

Combining the last two equations yields the desired result.
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This problem and solution were suggested by Zuming Feng.

Second Solution: Assume that ωB and ωC intersect again at another point S (other
than P ). (The degenerate case of ωB and ωC being tangent at P can be dealt with
similarly.) Because BPSR and CPSQ are cyclic, we have ∠RSP = 180◦ − ∠PBR and
∠PSQ = 180◦ − ∠QCP . Hence, we obtain

∠QSR = 360◦−∠RSP −∠PSQ = ∠PBR+∠QCP = ∠CBA+∠ACB = 180◦−∠BAC;

from which it follows that ARSQ is cyclic; that is, ωA, ωB, ωC meet at S. (This is Miquel’s
theorem.)

Because BPSY is inscribed in ωB, ∠XY S = ∠PY S = ∠PBS. Because ARXS is in-
scribed in ωA, ∠SXY = ∠SXA = ∠SRA. Because BPSR is inscribed in ωB, ∠SRA =
∠SPB. Thus, we have ∠SXY = ∠SRA = ∠SPB. In triangles SY X and SBP , we have
∠XY S = ∠PBS and ∠SXY = ∠SPB. Therefore, triangles SY X and SBP are similar
to each other, and, in particular,

Y X

BP
=

SX

SP
.

Similar, we can show that triangles SXZ and SPC are similar to each other and that

SX

SP
=

XZ

PC
.

Combining the last two equations yields the desired result.

A

B C
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Q
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Y

Z

S

We consider the configuration shown in the above diagram. (We can adjust the proof
below easily for other configurations. In particular, our proof is carried with directed
angles modulo 180◦.)

Line RY intersects ωA again at TY (other than R). Because BPY R is cyclic, ∠TY Y X =
∠TY Y P = ∠RBP = ∠ABP . Because ARXTY is cyclic, ∠XTY Y = ∠XAR = ∠PAB.
Hence triangles TY Y X and ABP are similar to each other. In particular,

∠Y XTY = ∠BPA and
Y X

BP
=

XTY

PA
. (1)
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Likewise, if line QZ intersect ωA again at TZ (other than R), we can show that triangles
TZZX and ACP are similar to each other and that

∠TZXZ = ∠APC and
XTZ

PA
=

XZ

PC
. (2)

In the light of the second equations (on lengths proportions) in (1) and (2), it suffices to
show that TZ = TY . On the other hand, the first equations (on angles) in (1) and (2)
imply that X,TY , TZ lie on a line. But this line can only intersect ωA twice with X being
one of them. Hence we must have TY = TZ , completing our proof.

Comment: The result remains to be true if segment AP is replaced by line AP . The
current statement is given to simplify the configuration issue. Also, a very common mistake
in attempts following the second solution is assuming line RY and QZ meet at a point on
ωA.

This solution was suggested by Zuming Feng.

JMO 4. Solution 1. The answer is 2047. We shall prove that f(n) is odd iff n = 2k− 1 for k ≥ 1.
It is easy to see that f(1) = 1, f(2) = 2, and f(3) = 3. Assume that the statement holds
true for k ≤ m. We will show that the statement is true for k = m + 1.

Let m ≥ 2 be an integer such that 2m ≤ n ≤ 2m+1 − 1.

If n = 2m we write n = 2s+(n−2s) for 0 ≤ s ≤ m. We see that f(2m) = f(2m−1)+f(2m−
2) + . . .+ f(2m− 2m−1) + 1. By induction hypothesis each of f(2m− 2), . . . , f(2m− 2m−1)
is even, but f(2m − 1) is odd, so f(2m) is even.

If 2m < n ≤ 2m+1 − 1 we have f(n) = f(n− 1) + f(n− 2) + . . . + f(n− 2m).

By induction hypothesis each term on the right hand side is odd iff n−2s = 2r−1 for some
positive integer r. For each n of the form n = 2s + 2r − 1 these odd summands appear in
pairs: n−2s and n−2r. Therefore f(n) is odd iff s = r, that is iff n = 2s+1−1 = 2m+1−1.

Solution 2. The answer is 2047. We show that f(n) is odd if and only if n is of the form
2k − 1.

We use the method of generating functions. Define the formal power series b(x) =∑∞
j=0 x

2j . The desired statement can be interpreted as

1/(1− b(x)) ≡ b(x)/x (mod 2),

where the congruence means that the difference between the two sides has all coefficients
divisible by 2. It is equivalent to prove the same thing after clearing denominators, in
other words,

b(x)2 − b(x) ≡ x (mod 2).

But this holds because b(x)2 ≡ b(x2) (mod 2) (all the cross terms in the expansion of b(x)2

being even), so
b(x)2 − b(x) ≡ b(x2)− b(x) ≡ x (mod 2).

This problem and solution were suggested by Kiran Kedlaya and David Speyer.
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Solution 3. Consider the operation of reversing the order of the sums. Call a sum a
palindrome if it is invariant under this symmetry and let g(n) be the number of palindromic
decompositions of n. Since non-palindromic sums are paired under reversing order we have

f(n) ≡ g(n) (mod 2).

Now suppose n = 2m + 1 is odd. By parity a palindromic decomposition of n must have
an odd central term (and in particular cannot have even length). Hence the central term
must be 1. Thus any palindromic decomposition of n = 2m + 1 starts with an arbitrary
decomposition of m, followed by a 1 and the reverse of the starting decomposition. Thus

g(2m + 1) = f(m).

Hence f(2m + 1) ≡ f(m) (mod 2).

Now suppose n = 2m is even and positive. Then there are two kinds of palindromic
decompositions of n. The first kind have even length. The second kind have odd length
and a central element that is even, hence 2k for some k ≥ 1. These two kinds occur equally
often since we can add together the two equal terms of a palindrome of equal length into
two equal halves to reverse this operation. Thus f(2m) and g(2m) are even.

These two cases easily imply f(n) is odd if and only if n is 1 less than a power of 2. One
way to see this is to write n in binary. The first rule f(2m + 1) ≡ f(m) (mod 2) says the
parity of f(n) is unchanged if we delete a least significant digit of 1. The second rule says
f(n) is even if its least significant digit is zero. Iterating these we see f(n) is odd if and
only if its binary representation is all 1s, that is, n is 1 less than a power of 2.

This solution was suggested by Steven Blasberg and Richard Stong.

JMO 5. First Solution: Note that ∠XAY = ∠XBY = ∠XCY = ∠PZX = ∠PZY = 90◦. In
right triangles BXY,AXY,AXP , we have

BY = XY cos∠BYX, AX = XY cos∠AXY, XP =
AX

cos∠AXP
=

XY cos∠AXY

cos∠AXP
,

from which it follows that

BY

XP
=

cos∠BYX cos∠AXP

cos∠AXY
.

Likewise, we have
CY

XQ
=

cos∠CYX cos∠AXQ

cos∠AXY
.

Adding the last two equations yields

BY

XP
+

CY

XQ
=

cos∠BYX cos∠AXP + cos∠CYX cos∠AXQ

cos∠AXY
. (3)

Because both CY and AZ are perpendicular to XC, ∠CYX = ∠AZX. Because ∠XAP =
∠XZP = 90◦, quadrilateral AXZP is cyclic, from which it follows that ∠AZX = ∠APX.
Therefore, we have ∠CYX = ∠AZX = ∠APX = 90◦ − ∠AXP or ∠CYX + ∠AXP =
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90◦. Likewise, we can show that ∠BYX + ∠AXQ = 90◦. Consequently, we conclude
that cos∠BYX = sin∠AXQ and sin∠CYX = cos∠AXP . Thus, by the addition and
substraction formula, (4) becomes

BY

XP
+

CY

XQ
=

sin∠AXQ sin∠CYX + cos∠CYX cos∠AXQ

cos∠AXY
=

cos(∠CYX − ∠AXQ)

cos∠AXY
.

Because ACYX is cyclic, ∠AXQ = ∠AXC = ∠CY A, implying that ∠CYX −∠AXQ =
∠CYX − ∠CY A = ∠AYX. Therefore,

BY

XP
+

CY

XQ
=

cos(∠CYX − ∠AXQ)

cos∠AXY
=

cos∠AYX

cos∠AXY
=

sin∠AXY

cos∠AXY
= tan∠AXY =

AY

AX
,

as desired.

A
B

C
P

Q

X Y
Z

This problem and solution were suggested by Zuming Feng.

Second Solution: Note that ∠XAY = ∠XBY = ∠XCY = ∠PZX = ∠PZY = 90◦. In
right triangles BXY,AXY,AXP , we have

BY = XY cos(∠BYX), AX = XY cos(∠AXY ), XP =
AX

cos(∠AXP )
=

XY cos(∠AXY )

cos(∠AXP )
,

from which it follows that

BY

XP
=

cos(∠BYX) cos(∠AXP )

cos(∠AXY )
.

Likewise, we have
CY

XQ
=

cos(∠CYX) cos(∠AXQ)

cos(∠AXY )
.

Adding the last two equations yields

BY

XP
+

CY

XQ
=

cos(∠BYX) cos(∠AXP ) + cos(∠CYX) cos(∠AXQ)

cos(∠AXY )
. (4)

Because both CY and AZ are perpendicular to XC, ∠CYX = ∠AZX. Because ∠XAP =
∠XZP = 90◦, quadrilateral AXZP is cyclic, from which it follows that ∠AZX = ∠APX.
Therefore, we have ∠CYX = ∠AZX = ∠APX = 90◦−∠AXP or ∠CYX+∠AXP = 90◦.
Likewise, we can show that ∠BYX + ∠AXQ = 90◦. Consequently, we conclude that
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cos(∠BYX) = sin(∠AXQ) and sin(∠CYX) = cos(∠AXP ). Thus, by the addition and
substraction formula, (4) becomes

BY

XP
+
CY

XQ
=

sin(∠AXQ) sin(∠CYX) + cos(∠CYX) cos(∠AXQ)

cos(∠AXY )
=

cos(∠CYX − ∠AXQ)

cos(∠AXY )
.

Because ACYX is cyclic, ∠AXQ = ∠AXC = ∠CY A, implying that ∠CYX −∠AXQ =
∠CYX − ∠CY A = ∠AYX. Therefore,

BY

XP
+

CY

XQ
=

cos(∠CYX − ∠AXQ)

cos∠AXY
=

cos∠AYX

cos∠AXY
=

sin∠AXY

cos∠AXY
= tan∠AXY =

AY

AX
,

as desired.

A
B

C
P

Q

X YZ

Rays Y B and Y C meet ray XA at B1 and C1 respectively. Because ∠PAB1 = ∠PBB1 =
90◦, APBB1 is cyclic, in particular, ∠XB1Y = ∠AB1B = ∠APX. Because ∠PAX =
∠PZX = 90◦, APZX is cyclic, in particular, ∠APX = ∠AZX. Note that both AC and
CY are perpendicular to XC, AZ ‖ CY and so ∠AZX = ∠CYX = ∠C1Y X. Therefore,
we have ∠XB1Y = ∠APX = ∠AZX = ∠C1Y X. It follows that triangles XY B1 and
XC1Y are similar to each other, with XB and XC being corresponding altitudes. Hence

BY

XP
=

CC1

XQ
and

BY

XP
+

CY

XQ
=

CC1

XQ
+

CY

XQ
=

C1Y

XQ
.

It remains to show that
C1Y

XQ
=

AY

AX
,

which is true because triangles AY C1 and AXQ are similar to each other (∠C1AY =
∠QAX = 90◦ and ∠AY C1 = ∠AY C = ∠AXC = ∠AXQ.)

This solution was suggested by Zuming Feng.

JMO 6. First Solution: Let a, b, c be nonnegative real numbers such that x = 1 + a2, y = 1 + b2

and z = 1+c2. We may assume that c ≤ a, b, so that the condition of the problem becomes

(1 + c2)(1 + (1 + a2)(1 + b2)) = (a + b + c)2.

The Cauchy-Schwarz inequality yields

(a + b + c)2 ≤ (1 + (a + b)2)(c2 + 1).
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Combined with the previous relation, this shows that

(1 + a2)(1 + b2) ≤ (a + b)2,

which can also be written (ab− 1)2 ≤ 0. Hence ab = 1 and the Cauchy-Schwarz inequality
must be an equality, that is, c(a+ b) = 1. Conversely, if ab = 1 and c(a+ b) = 1, then the
relation in the statement of the problem holds, since c = 1

a+b
< 1

b
= a and similarly c < b.

Thus the solutions of the problem are

x = 1 + a2, y = 1 +
1

a2
, z = 1 +

(
a

a2 + 1

)2

for some a > 0, as well as permutations of this. (Note that we can actually assume a ≥ 1
by switching x and y if necessary.)

This problem and solution were suggested by Titu Andreescu.

Second Solution: We maintain the notations in the first solution and again consider the
equation

(a + b + c)2 = 1 + c2 + (1 + a2)(1 + b2)(1 + c2).

Expanding both sides of the equation yields

a2 + b2 + c2 + 2ab + 2bc + 2ca = 1 + c2 + 1 + a2 + b2 + c2 + a2b2 + b2c2 + c2a2 + a2b2c2

or
a2b2c2 + a2b2 + b2c2 + c2a2 − 2ab− 2bc− 2ca + c2 + 2 = 2(ab + bc + ca).

Setting (u, v, w) = (ab, bc, ca), we can write the above equation as

uvw + u2 + v2 + w2 − 2u− 2v − 2w +
vw

u
+ 2 = 2(u + v + w).

which is the equality case of the sum of the following three special cases of the AM-GM
inequality:

uvw +
vw

u
≥ 2vw, v2 + w2 + 2vw + 1 = 2(v + w) ≥ 0, u2 + 1 ≥ 2u.

Hence we must have the equality cases these AM-GM inequalities; that is, ab = u = 1 and
a(b + c) = v + w = 1. We can then complete our solution as we did in the first solution.

This solution was suggested by Zuming Feng.
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