
44th United States of America Mathematical Olympiad Solutions

Day I, II 12:30 PM – 5 PM EDT

April 28 - April 29, 2015

USAMO 1. Solve in integers the equation

x2 + xy + y2 =

(
x+ y

3
+ 1

)3

.

Solution: Let x+ y = 3k, with k ∈ Z. Then x2 + x(3k− x) + (3k− x)2 = (k+ 1)3, which
reduces to

x2 − (3k)x− (k3 − 6k2 + 3k + 1) = 0.

Its discriminant ∆ is

9k2 + 4(k3 − 6k2 + 3k + 1) = 4k3 − 15k2 + 12k + 4.

We notice the (double) root k = 2, so ∆ = (4k+1)(k−2)2. It follows that 4k+1 = (2t+1)2

for some nonnegative integer t, hence k = t2 + t and

x =
1

2
(3(t2 + t)± (2t+ 1)(t2 + t− 2)).

We obtain (x, y) = (t3 + 3t2 − 1,−t3 + 3t + 1) and (x, y) = (−t3 + 3t + 1, t3 + 3t2 − 1),
t ∈ {0, 1, 2, ...}.

OR

One can also try to simplify the original equation as much as possible. First with k =
x+y
3

+ 1 we get
x2 − 3xk + 3x = k3 − 9k2 + 18k − 9.

But then we recognize terms from the expansion of (k−3)3 so we use s = k−3 and obtain

x2 − 3xs− 6x = s3 − 9s− 9.

So again it becomes natural to use x− 3 = u. The equation becomes

u2 − 3su− s3 = 0.

We view this as a quadratic in u, whose discriminant is s2(9 + 4s), and so 9 + 4s must be
a perfect square, and because it is odd, it must be of the form (2t + 1)2. It follows that
s = t2 + t− 2, and so k = t2 + t+ 1. We obtain the same family of solutions.
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USAMO 2. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ < BP .
Let X be a variable point on segment PQ. Line AX meets ω again at S (other than A).
Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let M denote the
midpoint of chord ST . As X varies on segment PQ, show that M moves along a circle.

Solution: Let O denote the center of ω, and let W denote the midpoint of segment AO.
Denote by Ω the circle centered at W with radius WP . We will show that WM = WP ,
which will imply that M always lies on Ω and so solve the problem.

We present two solutions. The first solution is more computational (in particular, with
extensive applications of the formula for a median of a triangle); the second is more
synthetic.
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Set r to be the radius of circle ω. Applying the median formula in trianglesAPO, SWT,ASO,ATO
gives

4WP 2 = 2AP 2 + 2OP 2 − AO2 = 2AP 2 + r2,

4WM2 = 2WS2 + 2WT 2 − ST 2,

2WS2 = AS2 +OS2 − AO2/2 = AS2 + r2/2,

2WT 2 = AT 2 +OT 2 − AO2/2 = AT 2 + r2/2.

Adding the last three equations yields 4WM2 = AS2 +AT 2−ST 2 +r2. It suffices to show
that

4WP 2 = 4WM2 or AS2 + AT 2 − ST 2 = 2AP 2. (1)

Because XT ⊥ AS,

AT 2 − ST 2 = (AX2 +XT 2)− (SX2 +XT 2)
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= AX2 − SX2

= (AX +XS)(AX −XS)

= AS(AX −XS).

It follows that AS2 + AT 2 − ST 2 = AS2 + AS · (AX −XS) = AS2 + AS(2AX − AS) =
2AS ·AX, and (1) reduces to AP 2 = AS ·AX, which is true because triangle APX is similar
to triangle ASP (as ∠PAX = ∠SAP and ∠APX = arc(AQ)/2 = arc(AP )/2 = ∠ASP ).

OR
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In the following solution, we use directed distances and directed angles in order to avoid
issues with configuration (segments ST and PQ may intersect, or may not as depicted in
the figure.)

Let R be the foot of the perpendicular from A to line ST . Note that OM ⊥ ST , and so
ARMO is a right trapezoid. Let U be the midpoint of segment RM . Then WU is the
midline of the trapezoid. In particular, WU ⊥ RM . Hence line WU is the perpendicular
bisector of segment RM . It is also clear that AW is the perpendicular bisector of segment
PQ. Therefore, W is the intersection of the perpendicular bisectors of segments RM and
PQ. It suffices to show that quadrilateral PQMR is cyclic, since then W must be its
circumcenter, and so WP = WM .

(To be precise, this argument fails when ST and PQ are parallel, because then R = M
and the perpendicular bisector of RM is not defined. However, it is easy to see that this
can happen for only one position of X. Because the argument works for all other X,
continuity then implies that M lies on Ω for this exceptional case as well.)
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Let lines PQ and ST meet in V . By the converse of the power-of-a-point theorem, it
suffices to show that V P · V Q = V R · VM . On the other hand, because PQTS is cyclic,
by the power-of-a-point theorem, we have V P · V Q = V S · V T . Therefore, we only need
to show that

V S · V T = V R · VM. (2)

Note that M is the midpoint of segment ST . Then (2) is equivalent to

2V S · V T = V R · (2VM) = V R · (V S + V T )

or
V S · V T − V S · V R = V T · V R− V T · V S

or equivalently

V S ·RT = V T · SR or
V S

SR
=
V T

RT
. (3)

We claim that XS bisects ∠V XR. Indeed, because AB is the symmetry line of the kite
APBQ, AB ⊥ PQ, and so ∠V XS = ∠QXA = 90◦ −∠XAO = 90◦ −∠SAO. Because O
is the circumcenter of triangle AST ,

∠V XS = 90◦ − ∠SAO = ∠ATS.

On the other hand, because ∠AXT and ∠ART are both right angles, quadrilateral AXRT
is cyclic, implying that ∠SXR = ∠ATR = ∠ATS. Our claim follows from the last two
equations.

Combining our claim and the fact that XS ⊥ XT , we know that XS and XT are the
interior and exterior bisectors of ∠V XR, from which (3) follows, by the angle-bisector
theorem. We saw that (3) was equivalent to (2) and that this was enough to show that
PQMR is cyclic, which completes the solution, so we are done.

USAMO 3. Let S = {1, 2, . . . , n}, where n ≥ 1. Each of the 2n subsets of S is to be colored red or
blue. (The subset itself is assigned a color and not its individual elements.) For any set
T ⊆ S, we then write f(T ) for the number of subsets of T that are blue.

Determine the number of colorings that satisfy the following condition: for any subsets T1
and T2 of S,

f(T1)f(T2) = f(T1 ∪ T2)f(T1 ∩ T2).

Solution: The answer is 3n + 1.

Specifically, the colorings we want are of the following forms: either there are no blue sets;
or for each element x ∈ S we define one of three types of restriction — either x must be
in T , x can’t be in T , or x is unrestricted — and the blue sets T are exactly the ones that
satisfy every restriction. It’s easy to check such a coloring meets the condition, using the
formula

f(T ) =
∏
x∈T

ax
∏
x/∈T

bx,
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where ax = 2 if x is unrestricted and 1 otherwise, and bx = 0 if x is required to be present
and 1 otherwise.

We want to show that if there’s at least one blue set, then the class of blue sets is of this
form.

If some element of S is in every blue set, take it out and induct. If some element of S is
not in any blue set, take it out and induct. Otherwise, every element x has some blue set
containing it and some blue set not containing it. In this case we’ll show that all sets are
blue (i.e. every element is unrestricted).

First show ∅ is blue. To show this, let T be a minimal blue set. If nonempty, take x ∈ T ;
by assumption there’s blue T ′ not containing x. Then the condition is violated with T and
T ′, since f(T ∩ T ′) = 0. Next, show any singleton is blue. Otherwise, let U be a minimal
blue set containing x, and let T = {x} and T ′ = U \{x}. We get 1 ·m = 1 · (1+m) (where
m = f(T ′)), a contradiction. Finally, any set is blue. Otherwise, let U be a minimal
non-blue set and x, y two different elements. Taking T = U \ {x}, T ′ = U \ {y} gives a
contradiction.

USAMO 4. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n × n grid. Each
square can have an arbitrarily high pile of stones. After he is finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider any four
grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for
some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of either removing
one stone from each of (i, k) and (j, l) and moving them to (i, l) and (j, k) respectively,
or removing one stone from each of (i, l) and (j, k) and moving them to (i, k) and (j, l)
respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another by
a sequence of stone moves.

How many different non-equivalent ways can Steve pile the stones on the grid?

Solution: We think of the pilings as assigning a positive integer to each square on the
grid. Now, we restrict ourselves to the types of moves in which we take a lower left and
upper right stone and move them to the upper left and lower right of our chosen rectangle.
Call this a Type 1 stone move. We claim that we can perform a sequence of Type 1 stone
moves on any piling to obtain an equivalent piling for which we cannot perform any Type
1 move, i.e. in which no square that has stones is above and to the right of any other
square that has stones. We call such a piling a “down-right” piling.

To prove that any piling is equivalent to a down-right piling, first consider the squares in
the leftmost column and topmost row of the grid. Let a be the entry (number of stones) in
the upper left corner, and let b and c be the sum of the remaining entries in the leftmost
column and topmost row respectively. If b < c, we can perform a sequence of Type 1 stone
moves to remove all the stones from the leftmost column except for the top entry, and if
c < b we can similarly clear all squares in the top row except for the top left square. In
the former case, we can now ignore the leftmost column and repeat the process on the
second-to-leftmost column and the top row; similarly, in the latter case, we can ignore the
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top row and proceed as before. Since the corner square a cannot be part of any Type 1
move at each step in the process, it follows that we end up with a down-right piling.

We next show that down-right pilings in any size grid (not necessarily n×n) are uniquely
determined by their row-sums and column-sums, given that the row sums and column sums
are nonnegative integers which sum to m both along the rows and the columns. Let the
topmost row sum be R1 and the leftmost column sum be C1. Then the upper left square
must contain min(R1, C1) stones, since otherwise there would be stones both in the first
row and first column that are not in the upper left square. Whichever is smaller indicates
that either the row or the column respectively is empty save for the upper left square; then
we can remove this row or column and are reduced to a smaller grid in which we know
all the row and column sums. Since one-row and one-column pilings are clearly uniquely
determined by their column and row sums, it follows by induction that down-right pilings
are determined uniquely by their row-sums and column sums.

Finally, notice that row sums and column sums are both invariant under stone moves.
Therefore every piling is equivalent to a unique down-right piling. It therefore suffices to
count the number of down-right pilings, which is also equivalent to counting the number
of possibilities for the row-sums and column-sums. As stated above, the row sums and
column sums can be the sums of any two n-tuples of nonnegative integers that each sum
to m. The number of such tuples is

(
n+m−1

m

)
, and so the total number of non-equivalent

pilings is the number of pairs of these tuples, i.e.
((

n+m−1
m

))2
.

USAMO 5. Let a, b, c, d, e be distinct positive integers such that a4 + b4 = c4 + d4 = e5. Show that
ac+ bd is a composite number.

Solution: We approach indirectly by assuming that p = ac+bd is a prime. By symmetry,
we may assume that max{a, b, c, d} = a, then because a4 + b4 = c4 + d4, we infer that
min{a, b, c, d} = b. Note that ac ≡ −bd (mod p), implying that a4c4 ≡ b4d4 (mod p).
Consequently, we have

b4d4 + b4c4 ≡ a4c4 + b4c4 = c8 + c4d4 (mod p),

from which it follows that (c4 + d4)(b4 − c4) ≡ 0 (mod p). Thus, p divides at least one of
b − c, b + c, b2 + c2, c4 + d4. Because p = ac + bd > c2 + b2, and −(b2 + c2) < b − c < 0
(because b and c are distinct), p must divide c4 + d4 = e5. Thus p5 = (ac + bd)5 divides
c4 + d4, which is clearly impossible because it is evident that (ac+ bd)5 > c4 + d4.

OR

A stronger result is possible:

Claim. Suppose a, b, and e are positive integers such that a4 + b4 = e5. Then a and b
have a common prime factor.

Proof. Suppose on the contrary that gcd(a, b) = 1. If e is even, then this forces a and b
to both be odd, so a4 + b4 ≡ 2 (mod 8) and e5 ≡ 0 (mod 8), a contradiction. Thus e is
odd. Note for use below that 5 cannot divide both a and b, so we may assume without
loss that 5 does not divide a (swapping the roles of a and b if necessary).
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Factoring over the Gaussian integers we find a4 + b4 = (a2 + ib2)(a2 − ib2) and gcd(a2 +
ib2, a2− ib2) = gcd(a2 + ib2, 2a2). But gcd(a, b) = 1 implies no prime factor of a can divide
a2 + ib2 and e odd implies no prime factor of 2 divides a2 + ib2. Thus these factors are
relatively prime, and hence both are a unit multiplied by a fifth power. Since every unit
in the Gaussian integers is a fifth power, that means both factors are fifth powers, or

a2 + ib2 = (r + is)5 = r5 + 5ir4s− 10r3s2 − 10ir2s3 + 5rs4 + is5.

Thus

a2 = r(r4 − 10r2s2 + 5s4), and

b2 = s(s4 − 10r2s2 + 5r4).

Note that since gcd(a, b) = 1, gcd(r, s) = 1. Also since 5 does not divide a, it also does
not divide r. Since

gcd(r, r4 − 10r2s2 + 5s4) = gcd(r, 5s4) = gcd(r, 5) = 1,

r must be a perfect square and we have found an integer solution (x, y, z) = (r, a/r, s) to

y2 = x4 − 10x2z2 + 5z4

with gcd(x, z) = 1. The following Lemma will then complete the proof of the claim.

Lemma. There are no nontrivial (z 6= 0) integer solutions to

y2 = x4 − 10x2z2 + 5z4.

Proof. Suppose (x, y, z) is a solution in the positive integers with minimal z. Note that
this implies that x,y,z are pairwise relatively prime. (The only case that takes a little
work is that if a prime p divides x and y, then p2 divides 5z4, hence p also divides z. But
then p4 divides x2 so p2 divides x and (x/p2, y/p, z/p) is a smaller solution.) Rewrite this
as

20z4 = (x4 − 5z2)2 − y2 = (x2 − 5z2 + y)(x2 − 5z2 − y).

The two factors on the right have the same parity and their product is even. Hence both
are even. Any common factor p of x2−5z2+y

2
and x2−5z2−y

2
would have p2|5z4, hence p|z, and

p|x2−5z2+y
2

− x2−5z2−y
2

= y, a contradiction. Thus these factors of 5z4 are relatively prime.
Hence they must be ±v4 and ±5w4 for some relatively prime v and w with vw = z. Then

x2 − 5v2w2 = x2 − 5z2 =
x2 − 5z2 + y

2
+
x2 − 5z2 − y

2
= ±v4 ± 5w4

or
x2 = ±v4 + 5v2w2 ± 5w4.

If v and w both odd, then the right hand side is either 1+5+5 ≡ 3 (mod 8) or−1+5−5 ≡ 7
(mod 8), neither of which is possible for a square like the left hand side. Hence one of v
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and w is even, and in either case we get x2 ≡ ±1 (mod 4). Thus we must have the plus
sign and

x2 = v4 + 5v2w2 + 5w4.

This is not the equation we started with, so we repeat the argument above (with a few
changes). Rewrite this new equation as

5w4 = (2v2 + 5w2)2 − 4x2 = (2v2 + 5w2 + 2x)(2v2 + 5w2 − 2x).

There are two very similar cases depending on whether w is odd or even. These cases can
be forced together, but we prefer to be more clear and keep them separate.

If w is odd, then the two factors on the right are both odd and any common (odd) prime
factor p would have p2|5w4, hence p|w, and p|(2v2 + 5w2 + 2x)− (2v2 + 5w2 − 2x) = 4x,
hence p|x. But then p also divides v and we get a contradiction. Thus these factors of 5w4

are relatively prime and so must be ±t4 and ±5u4 for some relatively prime t and u with
tu = w. Then

4v2 + 10t2u2 = 4v2 + 10w2 = (2v2 + 5w2 + 2x) + (2v2 + 5w2 − 2x) = ±(t4 + 5u4).

The left hand side is positive, so we must have the plus sign, and hence

(2v)2 = t4 − 10t2u2 + 5u4.

Thus (t, 2v, u) is a solution to the original equation. Since u|w and w|z, we either have
u < z (contradicting the minimality of z) or u = z and hence t = v = 1 (giving nonsense
4 = 1− 10u2 + 5u4 ≡ 1 (mod 5)). Thus this case cannot occur.

If w is even, then the two factors are even, congruent mod 4, and their product is divisible
by 16. Hence both are multiples of 4. Any common prime factor p of 2v2+5w2+2x

4
and

2v2+5w2−2x
4

would have p2|5(w/2)4, hence p|w, and p|2v2+5w2+2x
4

− 2v2+5w2−2x
4

= x. But this

would mean p|v, a contradiction. Thus 2v2+5w2+2x
4

and 2v2+5w2−2x
4

must be ±t4 and ±5u4

for some relatively prime t and u with 2tu = w. Then

v2 + 10t2u2 = v2 +
5

2
w2 =

2v2 + 5w2 + 2x

4
+

2v2 + 5w2 − 2x

4
= ±(t4 + 5u4).

Again, the left hand side is positive, so we must have the plus sign, and hence

v2 = t4 − 10t2u2 + 5u4.

Thus (t, v, u) is a solution to the original equation and since 2u|w and w|z, we have u < z.
This contradicts the minimality of z and completes the proof of the lemma.

Remark. One can use essentially the same argument to show that any nontrivial integer
solution to x2+y4 = z5 has gcd(x, y) > 1. In this case one cannot assume 5 does not divide
r so there is a second case where r = 5q2. Then (x, y, z) = (s, a/(5q), q2) is a solution to

y2 = x4 − 50x2z2 + 125z4.

This Diophantine equation also has no nontrivial integer solutions and the proof is nearly
identical to the proof of the Lemma above. This stronger result was (apparently) first
proven by Nils Bruin (1999). This result is at least tangentially related to Beal’s conjecture.

The more general solution is due to Richard Stong.
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USAMO 6. Consider 0 < λ < 1, and let A be a multiset of positive integers. Let An = {a ∈ A : a ≤ n}.
Assume that for every n ∈ N, the set An contains at most nλ numbers. Show that there
are infinitely many n ∈ N for which the sum of the elements in An is at most n(n+1)

2
λ.

(A multiset is a set-like collection of elements in which order is ignored, but repetition
of elements is allowed and multiplicity of elements is significant. For example, multisets
{1, 2, 3} and {2, 1, 3} are equivalent, but {1, 1, 2, 3} and {1, 2, 3} differ.)

Solution: Set bn = |An|, an = nλ − An ≥ 0. There are bi − bi−1 elements equal to i.
Therefore the sum of elements in An is

n∑
i=1

i(bi − bi−1) = nbn −
n∑

i=1

bi.

Now bn = nλ− an, so the sum of elements in An may be written as

Σn = λ
n(n+ 1)

2
− nan +

n−1∑
i=1

ai.

Assume, by way of contradiction, that for all n ≥ n0, the sum of elements in An is greater
than λn(n+1)

2
. Then

nan < an−1 + an−2 + . . .+ a1,

so

an <
an−1 + an−2 + . . .+ a1

n
≤ Mn · (n− 1)

n
(4)

where Mn = max{a1, a2, . . . , an−1}. We deduce that an <
(n−1)Mn

n
, so Mn+1 = Mn = M ,

where M = Mn0 .

Let {x} denote the fractional part of x; i.e., {x} = x−bxc. We note that {ak+1−ak} = λ,
so {(M − ak)− (M − ak+1)} = λ. We claim that

(M − ak) + (M − ak+1) ≥ min(λ, 1− λ). (5)

To see this, we first note that M − ak ≥ 0 and M − ak+1 ≥ 0. If either M − ak ≥ 1
or M − ak+1 ≥ 1, then we are done. Assume that 0 < M − ak,M − ak+1 < 1. Then
−1 < (M − ak)− (M − ak+1) < 1, so either (M − ak)− (M − ak+1) = λ− 1 or (M − ak)−
(M − ak+1) = λ. In the former case, we get M − ak+1 > 1− λ, and in the latter case we
get M − ak > λ. In either case, (5) follows.

We deduce from (5) that ak + ak+1 ≤ 2M − µ, where µ = min(λ, 1 − λ). From this and
(4), we see that

an ≤M − µ

2
(6)

for n ≥ n1 = n0 + 1.

Let δ = µ/3. We will use induction to prove that for any integer k ≥ 1 and n ≥ nk,

an ≤M − kδ. (7)
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We have already proved the base case. Assume that (7) is true for a given fixed k. Using
(6), we see that ak + ak+1 ≤ 2M − 2kδ − µ = 2M − (2k + 3)δ. (Note that δ ≤ 1/6, so
min(δ, 1− δ) = δ.) Now if we take n > (2k + 3)nk, we deduce that

an ≤
nkM + (n− nk)(M − (k + 3

2
)δ)

n
≤M − (k + 1)δ.

Statement (7) then follows by induction. However, it then follows that an < 0 when
k > M/δ, and this is a contradiction.

Copyright c© Committee on the American Mathematics Competitions,
Mathematical Association of America

11


