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1. Solution 1. Let ω denote the circumcircle of P,Q, R, S and let O denote the center of

ω. Line XY is the radical axis of circles ω1 and ω2. It suffices to show that O has equal

power to the two circles; that is, to show that

OO2
1 −O1S

2 = OO2
2 −O2Q

2 or OO2
1 + O2Q

2 = OO2
2 + O1S

2.

Let M and N be the intersections of lines O2O, `1 and O1O, `2. Because circles ω and ω2

intersect at points P and Q, we have PQ ⊥ OO2 (or `1 ⊥ OO2). Hence

OO2
1−OQ2 = (OM2+MO2

1)−(OM2+MQ2) = (O2M
2+MO2

1)−(O2M
2+MQ2) = O2O

2
1−O2Q

2

or

O2O
2
1 + OQ2 = OO2

1 + O2Q
2.

Likewise, we have O2O
2
1 + OS2 = OO2

2 + O1S
2. Because OS = OQ, we obtain that

OO2
1 + O2Q

2 = OO2
2 + O1S

2, which is what to be proved.
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Solution 2. We maintain the notations of the first solution. Three pairs of circles (ω, ω1),

(ω1, ω2), (ω2, ω) meet at three pairs of points (R, S), (X, Y ), (P,Q), respectively; that is,

lines RS, XY, PQ are the respective radical axes of these pairs of circles. We consider two

cases.

In the first case, we assume that these three radical axes are not parallel. They must

be concurrent at the radical center, denoted by H, of these three circles. In particular,

it follows that H, X, Y lie a line, denoted by `, and ` ⊥ O1O2. On the other hand,

O1M ⊥ O2O and O2N ⊥ O1O. Hence H is the orthocenter of triangle OO1O2, from

which it follows that OH ⊥ O1O2. Therefore, O lies on `; that is, X, P,Q are collinear.
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In the second case, we assume that these three radical axes are parallel. We will then

deduce the above configurations. Let O3 be the midpoint of segment XY . From right

triangles O1O3Q,O1O3X,O1O2Q, we have

O3Q
2 = O1Q

2 + O1O
2
3 = O2Q

2 −O1O
2
2 + O1X

2 −XO2
3,

which is a expression symmetric about circles ω1 and ω2. Hence we can easily obtain

that O3Q
2 = O3S

2 and that O3 is the circumcenter of isosceles trapezoid PQSR; that is,

O3 = O, completing the proof.

This problem was suggested by Ian Le. The solutions were contributed by Zuming Feng.

2. The maximum size is n if n is even, and n + 1 if n is odd, achieved by the subset

{−n, . . . ,−
⌊n

2

⌋
− 1,

⌊n

2

⌋
+ 1, . . . , n}.

Lemma. Let A,B be finite nonempty subsets of Z. Then the set A + B = {a + b : a ∈
A, b ∈ B} has cardinality at least |A|+ |B| − 1.

Proof: Write A = {a1, . . . , al} and B = {b1, . . . , bm} with a1 < · · · < al and b1 <

· · · < bm. Then

a1 + b1, . . . , a1 + bm, a2 + bm, . . . , al + bm

is a strictly increasing sequence of l + m− 1 elements of A + B.



Let S be a subset of {−n, . . . , n} with the desired property; clearly 0 /∈ S. Put A =

S ∩ {−n, . . . ,−1} and B = S ∩ {1, . . . , n}. Then A + B and −S = {−s : s ∈ S} are

disjoint subsets of {−n, . . . , n}, so by the lemma,

2n + 1 ≥ |A + B|+ | − S| ≥ |A|+ |B| − 1 + |S| = 2|S| − 1,

or |S| ≤ n + 1. If n is odd, we are done.

If n is even, we must still show that |S| = n + 1 is impossible. Since A + B ⊆ {−n +

1, . . . , n− 1}, we cannot achieve the equality 2n+1 = |A+B|+ |−S| unless −n, n ∈ −S,

or equivalently −n, n ∈ S. Since −n ∈ S, each of the sets {1, n− 1}, . . . , {n/2− 1, n/2 +

1}, {n/2} must contain an element not in B. Thus |B| ≤ n/2, and similarly |A| ≤ n/2,

contradicting the hypothesis |S| = n + 1.

This problem was suggested by Kiran Kedlaya with Tewodros Amdeberhan.

3. a) We prove the first part by induction on the number n of dominoes in the tiling. The

claim is clearly true for n = 1. So suppose we have a chessboard polygon that can be tiled

by n > 1 dominoes. Of all the leftmost squares in the polygon, select the lowest one and

label it L; assume for sake of argument that square L is black. In the given tiling, remove

the domino covering L, leaving a polygon which may be tiled with n − 1 dominoes. By

the induction hypothesis, this chessboard polygon can be tastefully tiled.

Now replace the domino that was removed. If this domino is horizontal, then we are

guaranteed that the augmented tiling is still tasteful, since square L is black and there are

no squares below it. If the domino is vertical the augmented tiling may still be tasteful,

but if not the trouble can only arise because there is another vertical domino directly to its

right. In this case rotate the offending pair of dominoes to get two horizontal dominoes.

We are not done yet, but if we now repeat this process—removing the horizontal domino

covering L, tiling the remainder, and replacing the domino—then we will obtain a tasteful

tiling.

If square L is white we may obtain a tasteful tiling by performing a similar process.

This time we only encounter difficulty if the domino covering L in the original tiling is

horizontal, in which case there must be another horizontal domino directly above it. We

rotate this pair, remove the now vertical domino covering L, tile the remainder tastefully

using the induction hypothesis, and restore the vertical domino to finish.

b) Suppose now that there are two tasteful tilings of a given chessboard polygon. By

overlaying these two tilings we obtain chains of overlapping dominos, since every square



is part of one domino from each tiling. For example, a chain of length one indicates a

domino common to both tilings. A chain of length two cannot occur, since these arise

when a 2× 2 block is covered by horizontal dominos in one tiling and vertical dominos in

the other, and one of these configurations will be distasteful.

Since the tilings are distinct a chain of length three or more must occur; let R be the

region consisting of such a chain along with its interior, if any. (It is possible that such

a chain may completely occupy a region, so that only some of the dominoes in the chain

adjoin squares outside of R.) Note that the chain must include a horizontal domino along

its lowermost row. If there are two or more overlapping horizontal dominos, then one of

them will be a WB domino, i.e. have a white square on the left. Otherwise there are two

adjacent vertical dominos that overlap with the single horizontal domino; since they are

part of a tasteful tiling we again must have a WB domino. We will now focus on the tiling

that includes this WB domino.

The two squares above the WB domino must be part of region R. Furthermore, a single

horizontal domino cannot cover them both, nor can a pair of vertical dominos. (Both

cases yield distasteful configurations.) Hence a horizontal domino must cover at least one

of these squares, extending past the given WB domino either to the left or right. Hence

we can deduce the existence of a horizontal WB domino on the next row up. We may

repeat this argument until we reach a horizontal WB domino in region R for which the

two squares immediately above it are not both in region R. Hence this domino must be

part of the chain that defined R.

Now imagine walking along the chain, starting on the white square of the WB domino

that exists along the lowest row of region R and taking the first step towards the black

square of the same domino. Draw an arrow along each domino in the direction of travel all

the way around the chain. Since the squares must alternate white and black, these arrows

will always point from a white square to a black square. Furthermore, since the interior

of the region was initially to our left when we began the loop, it will always be to our left

whenever the chain follows the boundary of R.

But we now reach a contradiction. We earlier deduced the existence of a horizontal WB

domino that was part of the chain and was adjacent to the boundary of R, having a

square above it that was not part of R. Hence this domino must be traversed from right

to left, since we leave the interior of R to our left as we traverse the loop. Hence it must

contain an arrow pointing to the left, implying that it must be a BW domino instead.

This contradiction completes the proof.



This problem was suggested by Sam Vandervelde.

4. Let m = min(a1, a2, . . . , an) and M = max(a1, a2, . . . , an). Without loss of generality,

a1 = m and an = M . The Cauchy-Schwarz Inequality gives

Remark: Let m = min(a1, a2, . . . , an) and M = max(a1, a2, . . . , an). By symmetry,

we may assume without loss of generality, m = a1 ≤ a2 ≤ · · · ≤ an = M . We present

three solutions. The first solution is a direct application of the Cauchy-Schwarz Inequality.

The second solution bypasses Cauchy-Schwarz by applying one of its proofs. The third

solution applies the AM-GM and AM-HM inequalities. All of them share the same finish,

the case for n = 2.

If n = 2, given condition reads

(m + M)

(
1

m
+

1

M

)
≤ 25

4
.

It follows that

4(m + M)2 ≤ 25Mm or (4M −m)(M − 4m) ≤ 0. (1)

Because 4M −m > 0, it must be that M − 4m ≤ 0 and thus M ≤ 4m.

We may assume from now that n ≥ 3.

Solution 1. The Cauchy-Schwarz Inequality gives
(

n +
1

2

)2

≥ (a1 + a2 + · · ·+ an)

(
1

a1

+
1

a2

+ · · ·+ 1

an

)

= (m + a2 + · · ·+ an−1 + M)

(
1

M
+

1

a2

+ · · ·+ 1

an−1

+
1

m

)

≥



√
m

M
+ 1 + · · ·+ 1︸ ︷︷ ︸

n−2

+

√
M

m




2

.

Hence

n +
1

2
≥

√
m

M
+ n− 2 +

√
M

m
or

√
m

M
+

√
M

m
≤ 5

2
. (2)

It follows that

2(m + M) ≤ 5
√

Mm,

which is (1), completing our proof.



Solution 2. Consider the quadratic polynomial (in x)

p(x) =
1

2

[(√
a1x +

1√
an

)2

+

(√
anx +

1√
a1

)2

+
n−1∑
i=2

(√
aix +

1√
ai

)2

+

(
5− 2

√
m

M
− 2

√
M

m

)
x

]

=

(
1

2

n∑
i=1

ai

)
x2 +

2n + 1

2
· x +

(
1

2

n∑
i=1

1

ai

)

Its discriminant is equal to

∆ =

(
n +

1

2

)2

−
(

n∑
i=1

ai

)(
n∑

i=1

1

ai

)
,

which, by the given condition is nonnegative. Thus p(x) has a real root r, and

0 = 2p(r) ≥
(

5− 2

√
m

M
− 2

√
M

m

)
r.

Because all of the coefficients of p are positive, we must have r < 0, from which (2) follows.

Solution 3. We set a = a2+···+an−1

n−2
. Then m ≤ a2 ≤ a ≤ an−1 ≤ M and a2 + · · ·+ an−1 =

(n− 2)a. By the AM-HM Inequality, we have

1

a2

+ · · ·+ 1

an−1

≥ (n− 2)2

a2 + · · ·+ an−1

=
n− 2

a
.

If follows that
(

n +
1

2

)2

≥ (a1 + a2 + · · ·+ an)

(
1

a1

+
1

a2

+ · · ·+ 1

an

)

≥ (m + (n− 2)a + M)

(
1

m
+

n− 2

a
+

1

M

)

= (m + M)

(
1

m
+

1

M

)
+ (n− 2)2 +

(n− 2)(m + M)

a
+ (n− 2)a

(
1

m
+

1

M

)

=
(m + M)2

mM
+ (n− 2)2 +

(n− 2)(m + M)

mM
·
(

mM

a
+ a

)

By the AM-GM Inequality, we have mM
a

+a ≥ 2
√

mM with equality at m ≤ a =
√

mM ≤
M . We deduce that

(
n +

1

2

)2

≥ (m + M)2

mM
+ (n− 2)2 +

2(n− 2)(m + M)√
mM

.

Setting t = m+M√
mM

in the last inequality yields

(
n +

1

2

)2

≥ t2 + (n− 2)2 + 2(n− 2)t = (t + n− 2)2,



from which it follows that

n +
1

2
≥ t + n− 2.

Hence t ≤ 5/2, which is (1).

This problem was suggested by Titu Andreescu. The second solution was contributed by

Adam Hesterberg, and the third by Zuming Feng.

5.

Solution 1. First, we prove the “if” part by assuming that ray BG bisects ∠CBD; that

is, we assume that D̂Q = ĈQ.

It is easy to see that ABCD is an isosceles trapezoid with AD = BC. In particular,

ÂD = B̂C and ÂC = B̂D.

Because ABCPD is cyclic, it follows that

∠APC =
ÂC

2
=

B̂D

2
= ∠BCD = ∠SCD and ∠APD =

ÂD

2
=

B̂C

2
= ∠BDC = ∠RDC.
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Because RS ‖ DC, it follows that 180◦ = ∠GRD + ∠RDC = ∠GRD + ∠APD and

180◦ = ∠GSC + ∠SCD = ∠GSC + ∠APC; that is, both GSCP and GRDP are cyclic.

Hence, ∠GPR = ∠GDR and ∠GPS = ∠GCS. In particular, we hav

∠RPS = ∠GPR + ∠GPS = ∠GDR + ∠GCS. (3)

Let K be the intersection of segments BQ and CD. We have ∠CBK = ∠QBD and

∠KCB = ∠DCB = ∠DQB; that is, triangles CBK and QBD are similar to each



other. Because RG ‖ CD, we have BG/GK = BR/RD. This means that G and R

are the corresponding points in the similar triangles CBK and QBD. Consequently, we

have ∠BCG = ∠BQR. In exactly the same way, we can show that ∠BDG = ∠BQS.

Combining the last two equations together with (3) yields

∠RQS = ∠BQS + ∠BQR = ∠BDG + ∠BCG = ∠RDG + ∠SCG = ∠RPS;

from which it follows that PQRS is cyclic.

Second, we prove the “only if” part by assuming that PQRS is cyclic. Let γ denote the

circumcircle of PQRS. We approach indirectly by assuming that ray BG does not bisect

∠CBD. Let G1 be the point on segment RS such that ray BG1 bisects ∠CBD. Let rays

AG1 and BG1 meet ω again at P1 and Q1 (other than A and B). By our proof of the “if”

part, P1Q1RS is cyclic, and let γ1 denote its circumcircle.

Hence lines RS, PQ, P1Q1 are the radical axes of pairs of circles γ and γ1, γ and ω, γ1

and ω, respectively. Because segments P1 is the midpoint of arc ĈD (not including A and

B), lines P1Q1 6‖ CD, implying that lines P1Q1 and RS intersect, and let X denote this

intersection. Thus X is the radical center of ω, γ, γ1. In particular, line PQ also passes

through X. We obtain the following configuration.

B

CD

A

R S

G1

P1

Q1

X

P/Q

Q/P

P/Q

Q/P

There are two possibilities for the position of line PQ, namely, (1) both P and Q lie on

minor arc P̂1Q1; (2) one of P and Q lies on minor arc D̂Q1 and the other lies on minor

arc P̂1B. If G lies on segment RG1, then Q lies on minor arc D̂Q, and we must have (2).

But in this case, P must lie on minor arc Q̂1P1, violating (2). If G lies on segment G1S,

then P must lie on minor arc P̂1B, and again we must have (2). But in this case, Q must

lie on minor arc Q̂1C, violating (2). In every case, we have a contradiction. Hence our

assumption was wrong, and ray BG bisects ∠CBD.



Solution 2. We present another approach of the “if” part.
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Let rays CG and DG meet ω again at E and F , respectively. Let R1 denote the intersection

of segments BD and QE, and let S1 denote the intersection of segments BC and QF .

Applying Pascal’s theorem to cyclic hexagon BDFQEC shows that R1, G, S1 are collinear.

Because

∠R1EG = ∠QEC =
ĈQ

2
=

D̂Q

2
= ∠DBQ = ∠R1BG,

we deduce that EBGR1 is cyclic. Because EBGR1 and EBCD are cyclic, we have

∠BR1S1 = ∠BR1G = ∠BEG = ∠BEC = ∠BDC,

from which it follows that R1S1 ‖ CD; that is, R1 = R and S1 = S.

Therefore, (3) becomes

∠RPS = ∠GDR + ∠GCS = ∠FDB + ∠BCE = ∠FQB + ∠BQE = ∠FQE = ∠RQS,

implying that PQRS is cyclic.

This problem was suggested by Zuming Feng.

6. Solution 1. First, we claim there exist i, j such that (si−sj)(ti− tj) 6= 0. Indeed, for any

fixed i, because the sequence s1, s2, . . . is nonconstant, there is some j such that sj 6= si. If

tj 6= ti the claim follows, so suppose tj = ti. Because the sequence t1, t2, . . . is nonconstant,



there exists k such that tk 6= ti. If sk 6= si the claim again follows, so suppose sk = si.

Then (sj − sk)(tj − tk) = (sj − si)(ti − tk) 6= 0, and the claim is proven.

We can reorder the pairs (si, ti) relative to each other without affecting either the hypoth-

esis or the conclusion of the problem. So by a suitable reordering, we may assume that

(s1 − s2)(t1 − t2) 6= 0.

Second, for any constants a and b, we can replace si by si − a and ti by ti − b for all

i without affecting either the hypothesis or the conclusion of the problem (since all the

differences si − sj and ti − tj remain unchanged). In particular, by taking a = s1 and

b = t1, we may assume that s1 = t1 = 0. So we have reduced the problem to the case

s1 = t1 = 0, s2 6= 0, t2 6= 0.

Call a pair of positive rational numbers (A,B) good if AB is an integer, and Asj and Btj

are also integers for all j.

Third, we show that a good pair exists.

We know that for all i ≥ 2, (si − s1)(ti − t1) = siti is an integer; and for all i, j ≥ 2,

(si−sj)(ti− tj) = siti−sitj−sjti +sjtj is an integer, which implies sitj +sjti is an integer.

Write the rational numbers sj, tj in lowest terms as sj = pj/qj and tj = uj/vj. We know

that, for each j, sjtj = pjuj/qjvj is an integer. Because uj is relatively prime to vj, then,

pj is divisible by vj, say pj = djvj for some integer dj. We also know that

s2tj + sjt2 =
p2uj

q2vj

+
pju2

qjv2

=
p2ujqjv2 + pju2q2vj

q2vjqjv2

is an integer. In particular, qj, being a factor of the denominator, must divide the numer-

ator. But qj divides p2ujqjv2, so it also divides the other term, pju2q2vj = dju2q2v
2
j . Since

qj is relatively prime to pj = djvj, it must divide u2q2. Moreover, u2q2 6= 0, because of our

assumption t2 6= 0. So we have a positive integer A = |u2q2| such that Asj is an integer

for all j. Analogously, we can find a positive integer B such that Btj is an integer for all

j. This (A,B) constitute a good pair, and existence is proven.

Now we are ready to complete our proof. We know that some good pair exists. We consider

a good pair for which the product AB is as small as possible. We will show that AB = 1.

Suppose that, for the minimal good pair, AB > 1; then AB has a prime factor p. If the

integer Asi is divisible by p for all i, then we can divide A by p and obtain a new good

pair (A/p, B) having a smaller product than before — a contradiction. So for some i, Asi

is not divisible by p. Then Bti must be divisible by p, because siti is an integer and so

(Asi)(Bti) = (AB)(siti) is an integer divisible by p. Likewise, there exists some j such

that Btj is not divisible by p, but Asj is.



Now write

(AB)(sitj + sjti)− (Asj)(Bti) = (Asi)(Btj).

All the parenthesized factors are integers, and the left-hand side is divisible by p, but the

right-hand side is not. This contradiction completes the proof that the minimal good pair

satisfies AB = 1.

But now take the minimal good pair (A,B), and let r = A. We have that sir = Asi and

ti/r = Bti are integers for all i, from which our desired conclusion follows.

Solution 2. For p a prime, define the p-adic norm ‖ · ‖p on rational numbers as follows:

for r 6= 0, ‖r‖p is the unique integer n for which we can write r = pna/b with a, b

integers not divisible by p. (By convention, ‖0‖p = +∞.) We will repeatedly use the well-

known (or easy to prove) fact that for any rational numbers r1, r2, we have ‖r1 ± r2‖p ≥
min(‖r1‖p, ‖r2‖p), with equality whenever ‖r1‖p 6= ‖r2‖p. The condition of the problem

implies that

‖si − sj‖p ≥ −‖ti − tj‖p (4)

for all i, j and all prime p.

We claim in fact that

‖si − sj‖p ≥ −‖tk − tl‖p

for all i, j, k, l and all prime p. Suppose otherwise; then there exist i, j, k, l, p for which ‖si−
sj‖p < −‖tk− tl‖p. Since ‖si−sj‖p = ‖(si−sk)− (sj−sk)‖p ≥ min(‖si−sk‖p, ‖sj−sk‖p),

at least one of ‖si − sk‖p and ‖sj − sk‖p, say the former, is strictly less than −‖tk − tl‖p.

By (4), it follows that ‖ti− tk‖p > ‖tk− tl‖p, and thus ‖ti− tl‖p = ‖(ti− tk)+ (tk− tl)‖p =

‖tk − tl‖p. Then by (4) again, ‖si − sl‖p ≥ −‖tk − tl‖p and ‖sk − sl‖p ≥ −‖tk − tl‖p,

whence ‖si − sk‖p = ‖(si − sl) − (sk − sl)‖p ≥ −‖tk − tl‖p, contradicting the assumption

that ‖si − sk‖p < −‖tk − tl‖p. This proves the claim.

Now for each prime p, define the integer f(p) = mini,j ‖si − sj‖p. Choose i0, j0, k0, l0 such

that si0 6= sj0 and tk0 6= tl0 ; then f(p) exists since it is bounded below by −‖tk0 − tl0‖p

(by the claim) and above by ‖si0 − sj0‖p. Moreover, if p does not divide the numerator or

denominator of either si0 − sj0 or tk0 − tl0 , then ‖si0 − sj0‖p = ‖tk0 − tl0‖p = 0 and thus

f(p) = 0. It follows that f(p) = 0 for all but finitely many primes.

We can now define r =
∏

p p−f(p), where the product is over all primes. For any i, j, we

have ‖si − sj‖p ≥ f(p) for all p by construction, and so (si − sj)r is an integer. On the

other hand, for any k, l and any prime p, ‖tk − tl‖p ≥ −‖si − sj‖p for all i, j by the claim,

and so ‖tk − tl‖p ≥ −f(p). It follows that (tk − tl)/r is an integer for all k, l, whence r is

the desired rational number.



This problem and the first solution was suggested by Gabriel Carroll. The second solution

was suggested by Lenhard Ng.
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