
46th United States of America Mathematical Olympiad

Solutions

USAMO 1. (Proposed by Gregory Galperin)

Let n be an odd positive integer, and take a = 2n − 1, b = 2n + 1. Then ab + ba ≡ 1 + 3 ≡ 0
(mod 4), and ab + ba ≡ −1 + 1 ≡ 0 (mod n). Therefore a+ b = 4n divides ab + ba.

Alternate solution: Let p > 5 be a prime and let p 6≡ 1 (mod 5). For each such prime p we
construct a pair of relatively prime numbers (a, b) that satisfy the conclusion of the problem. Thus,
we will get infinitely many distinct pairs (a, b) as required.

Let a = 3p + 2, b = 7p − 2. Then a + b = 10p. We have ϕ(10p) = 4(p − 1) = b − a, where ϕ is
Euler’s function.

Obviously, a and b are odd and not divisible by p. They are not divisible by 5 because p 6≡ 1 (mod 5).
Thus, a and b are relatively prime to 10p = a+ b, and therefore relatively prime to each other.

Therefore, using Euler’s theorem,

ab = aa+ϕ(10p) = aa · aϕ(10p) ≡ aa (mod 10p) ,

and since 10p = a+ b,
ab + ba ≡ aa + ba (mod a+ b) .

However, since a is odd, aa + ba is divisible by a+ b. Hence, ab + ba is divisible by a+ b.

USAMO 2. (Proposed by Maria Monks Gillespie)

It suffices to show the result for B = (0, 0, . . . , 0), since then any sequence is equivalent to any other
sequence via B. We first show that the result holds for all sequences of the form A = (a, a, . . . , a)
for some a.

For each positive integer i define the ith lifting map Bi on the permutations of m1, . . . ,mn by
Bi(w1, . . . , wn) = v1, . . . , vn where vj = i if and only if wn+1−j = i, and where the subsequence of v
consisting of all entries not equal to i (taken in order) is equal to the subsequence of w consisting
of all entries not equal to i.

Lemma 1. Let Ai−1 = (i − 1, i − 1, . . . , i − 1) and Ai = (i, i, . . . , i). Then the number of Ai−1-
inversions of w equals the number of Ai-inversions of Bi(w). Moreover, Bi is a bijection on the
permutations of w, showing the result in this case.

Proof. It is easy to see that Bi is a bijection for any i, since we can reverse the map.

Now, note that any Ai−1-inversions between entries not equal to i in w are still Ai-inversions in
Bi(w), and vice-versa. Notice also that there are no Ai−1-inversions in w having i as the left entry.
Similarly there are no Ai-inversions having i as the right entry in Bi(w).

On the other hand, in w, any non-i entry to the left of an i forms an Ai−1-inversion with that i.
And in Bi(w), any non-i entry to the right of an i forms an Ai-inversion with that i. Since the
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positions of the i’s are reversed from w to Bi(w), the number of inversions involving an i are equal
in each case, and the result follows.

For j > i, we denote Bi→j := Bj ◦ Bj−1 ◦ · · · ◦ Bi+2 ◦ Bi+1. Also, for j > i, we denote Bj→i :=
B−1i→j = B−1i+1 ◦B

−1
i+2 ◦ · · · ◦B

−1
j . And we let Bi→i be the identity permutation.

Additionally, for A = (a1, . . . , an) and for a permutation w of m1, . . . ,mn we define φA(w) as
follows. Let w(1) = B0→a1(w) and, inductively, for i > 1 let w(i) be the result of applying Bai−1→ai

to the last n − i + 1 terms of w(i−1) and leaving the first i − 1 terms unchanged. Finally let
φA(w) = w(n).

Lemma 2. The number of A-inversions of φA(w) is equal to the number of B-inversions of w
where B = (0, 0, . . . , 0).

Proof. This is a consequence of the definition of φA: At any step w(i) in the process of computing
φA(w), we consider the sequence A(i) formed by changing the last n− i+ 1 terms of the previous
sequence A(i−1) (starting at A(0) = (0, 0, . . . , 0)) from ai−1 to ai. Then we have A(n) = A, and at
each step the number of A(i)-inversions of w(i) is equal to the number of A(i−1)-inversions of w(i−1)

by Lemma 1. (More precisely, the lemma applies to the number of such inversions among the last
n− i+ 1 terms, but note that the number of inversions involving any of the first i− 1 terms is also
unchanged at each step.) The result follows.

And since φA is a bijection, being a composition of bijections, we are done.

USAMO 3. (Proposed by Evan Chen)
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Let W be the midpoint of BC, and let X be the point on Ω opposite M . Observe that line KD
passes through X, and thus lines BC, MK, XA concur at the orthocenter of 4DMX, which is S.
Denote by IA the A-excenter of ABC.

Next, let E be the foot of the altitude from I to XIA; observe that E lies on the circle ω centered
at M through I, B, C, IA. Then, S is the radical center of ω, Ω, and the circle with diameter IX;
hence line SI passes through E; accordingly I is the orthocenter of 4XSIA; denote by L the foot
of the altitude from X to IAS.

We claim that this L lies on both the circumcircle of4KID and4MAN . It lies on the circumcircle
of 4MAN since this circle is the nine-point circle of 4XSIA. For the other, note that 4MWI ∼
4MIX, since they share the same angle at M and MW ·MX = MB2 = MI2. Consequently,
∠IWM = ∠MIX = 180◦ − ∠LIM = 180◦ − ∠MLI, enough to imply that quadrilateral MWIL
is cyclic. But lines IL, DK, and WM meet at X, so Power of a Point in cyclic quadrilaterals
DKMW and MWIL gives XD ·XK = XM ·XW = XI ·XL, hence KDIL is cyclic as needed.

All that remains to show is that the midpoint T of IL lies on Ω. But this follows from the fact
that TM ‖ IAL =⇒ ∠MTX = 90◦, thus the problem is solved.

Alternate Solution (by Titu Andreescu and Cosmin Pohoata): We refer to the same figure as
in the first solution. Let X be the midpoint of arc BAC of Ω. A first key step in the problem is
to note that D is the orthocenter of triangle XSM . This follows from the fact that DK ⊥ KM ,
which implies that line DK must pass through the antipode of M in Ω, which is precisely the point
X. This together with the fact that MX ⊥ SW implies the claim.
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Next, it is essential to notice that I is also the orthocenter of triangle XSIA, where IA denotes
the A-excenter of triangle ABC. This can be argued as follows: since D is the orthocenter of
4XSM , we have by Power of a Point that AX · AS = AD · AM (we are implicitly using the fact
that the reflection of D across line XS lies on the circumcircle of triangle XSM). However, the
4-tuple (A, I,D, IA) is a harmonic division and M is the midpoint of IIA, which easily implies that
AD · AM = AI · AIA. By Power of a Point once again, this yields that the reflection of I across
line XS lies on the circumcircle of triangle XSIA, so I must indeed be the orthocenter of triangle
XSIA. This is crucial, since then the circumcircle of triangle MAN is nothing but the nine-point
circle of 4XSIA, so the foot of altitude L from X on SIA becomes a good candidate for L1 or L2.

If T denotes the midpoint of segment IL, then TM is a midline in triangle ILIA, so TM ⊥ TX;
therefore T is on the circle of diameter MX, which is precisely Ω. It remains to show that L also
lies on the circumcircle of triangle KID, but this is clear: ASKD is cyclic, so XA ·XS = XD ·XK;
also, ASLI is cyclic, so XA · XS = XI · XL; hence XD · XK = XI · XL, which by Power of a
Point means that ILKD is cyclic, thus completing the proof.

USAMO 4. (Proposed by Maria Monks Gillespie)

We may assume the points have been labeled as P1, P2, . . . , P2n in order, going counterclockwise
from (1, 0). Now, write out the color of each point in order, and replace each R with a +1 and each
B with a −1, to get a list p1, . . . , p2n of +1’s and −1’s. Consider the partial sums p1 + · · ·+ pk of
this sequence, and choose the index k such that the kth partial sum has as small a value as possible;
if several partial sums are tied for smallest, let k be the lowest index among them. Now, rotate the
circle clockwise so that points P1, . . . , Pk are moved past (1, 0); the resulting sequence of +1’s and
−1’s from the new orientation now has all nonnegative partial sums, and the total sum is 0.

Consider any red point in the rotated diagram and label it R1. The arc R1 → B1 does not
cross (1, 0), for otherwise the sequence ends with a string of +1’s and the partial sums before
those +1’s would be negative. Furthermore, the sequence of entries from R1 to B1 looks like
+1,+1,+1, . . . ,+1,−1, and so removing R1 and B1 is equivalent to removing a consecutive pair
of a +1 and −1, so the partial sums remain all nonnegative. It follows that the next pairing also
doesn’t cross (1, 0), and so on, so no matter which way we pick the ordering of the red points in
the rotated circle, there are no counterclockwise arcs Ri → Bi containing (1, 0).

Finally, note that in any ordering of the red points, the blue points among P1, . . . , Pk are all paired
with red points, and those red points among P1, . . . , Pk are paired with blue points in this same
subsequence since there are no crossings in the rotated picture. Let m be the difference between
the number of blue and red points among P1, . . . , Pk. Then it follows that exactly m blue points in
P1, . . . , Pk were matched with red points from Pk+1, . . . , P2n. Therefore, when we rotate the circle
back to its original position, there are exactly m crossings, no matter which ordering we pick for
the red points. Since m is independent of the ordering, the proof is complete.

USAMO 5. (Proposed by Ricky Liu)

The answer is c <
√

2.
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First suppose c <
√

2. We can partition Z2 into two subsets

L1 = {(x, y) | x+ y is odd} and L′1 = {(x, y) | x+ y is even}.

Both L1 and L′1 are square lattices with unit length
√

2 (that is, they are similar to Z2 with a
scaling factor of

√
2). Hence we can similarly partition L′1 into two square lattices L2 and L′2 with

unit length
√

2
2
, then partition L′2 into two square lattices L3 and L′3 with unit length

√
2
3
, and so

forth. Hence for any N ≥ 1, Z2 can be partitioned into N + 1 square lattices L1, L2, . . . , LN , L
′
N

with unit lengths
√

2,
√

2
2
, . . . ,

√
2
N
,
√

2
N

, respectively.

Since
√
2
c > 1, there exists a positive integer N such that (

√
2
c )N+1 ≥

√
2, or equivalently, cN+1 ≤

√
2
N

. For i = 1, . . . , N , label all points in Li by i, and then label all points in L′N by N + 1. Any

two points in Li lie at least
√

2
i
> ci apart, while any two points in L′N lie at least

√
2
N ≥ cN+1

apart, so this is a valid labeling.

Suppose instead that c ≥
√

2. For a nonnegative integer m, define

Rm = {(x, y) | 1 ≤ x ≤ 2a, 1 ≤ y ≤ 2b} ⊆ Z2, where (a, b) =

{
(m2 ,

m
2 ) if m is even,

(m−12 , m+1
2 ) if m is odd.

We will show by induction that Rm does not have a valid labeling using only labels at most m,
which will prove that Z2 has no valid labeling. The case m = 0 is trivial.

Suppose m > 0 is odd and that Rm−1 does not have a valid labeling using only 1, . . . ,m − 1 (the
inductive hypothesis), but that Rm does have a valid labeling using only 1, . . . ,m. Consider this
labeling of Rm. Since Rm ⊇ Rm−1, some point (x0, y0) with y0 ≤ 2(m−1)/2 must be labeled m. But
then (x0, y0) lies directly below a translate R′ of Rm−1 inside Rm. The distance between (x0, y0)
and any point in R′ is at most√

(2
m−1

2 − 1)2 + (2
m−1

2 )2 <
√

2
m ≤ cm,

so no points in R′ can be labeled m. But by the inductive hypothesis, R′ has no valid labeling
using only 1, . . . ,m− 1, which is a contradiction.

Now suppose m > 0 is even and that Rm−1 does not have a valid labeling using only 1, . . . ,m −
1 (the inductive hypothesis), but Rm does have a valid labeling using only 1, . . . ,m. By the
inductive hypothesis, some point (x0, y0) with 1

4 · 2
m/2 < y0 ≤ 3

4 · 2
m/2 must be labeled m (since

the corresponding rows of Rm form a rotated copy of Rm−1). But then (x0, y0) lies either directly
to the left or to the right of a translate R′ of Rm−1 inside Rm. The distance between (x0, y0) and
any point of R′ is less than√

(34 · 2
m
2 )2 + (2

m−2
2 )2 =

√
13
4 ·
√

2
m
<
√

2
m ≤ cm,

so no points in R′ can be labeled m. But by the inductive hypothesis, R′ has no valid labeling
using only 1, . . . ,m− 1, which is a contradiction. This completes the proof.
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USAMO 6. (Proposed by Titu Andreescu)

We will show that the minimum is 2
3 . (In particular, the value 4

5 , obtained by making the natural
guess a = b = c = d = 1, is not the right answer.)

We have
4a

b3 + 4
= a− ab3

b3 + 4
≥ a− ab

3
,

since

b3 + 4 =
b3

2
+
b3

2
+ 4 ≥ 3b2,

by the Arithmetic Mean-Geometric Mean Inequality.

Then

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4
≥ a+ b+ c+ d

4
− ab+ bc+ cd+ da

12
.

But a+ b+ c+ d = 4 and

4(ab+ bc+ cd+ da) = 4(a+ c)(b+ d) ≤ (a+ b+ c+ d)2 = 16.

Hence

a

b3 + 4
+

b

c3 + 4
+

c

d3 + 4
+

d

a3 + 4
≥ 1− 4

12
=

2

3
.

The minimum is realized when, for example, a = b = 2 and c = d = 0.

Problems and solutions c© 2017, Mathematical Association of America.
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