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1. Let ABCD be a quadrilateral circumscribed about a circle, whose interior and exterior
angles are at least 60◦. Prove that

1

3
|AB3 − AD3| ≤ |BC3 − CD3| ≤ 3|AB3 − AD3|.

When does equality hold?

Solution: By symmetry, we only need to prove the first inequality.

Because quadrilateral ABCD has an incircle, we have AB + CD = BC + AD, or AB −
AD = BC − CD. It suffices to prove that

1

3
(AB2 + AB · AD + AD2) ≤ BC2 + BC · CD + CD2.

By the given condition, 60◦ ≤ ∠A, ∠C ≤ 120◦, and so 1

2
≥ cos A, cos C ≥ − 1

2
. Applying

the law of cosines to triangle ABD yields

BD2 = AB2 − 2AB · AD cos A + AD2 ≥ AB2 − AB · AD + AD2

≥
1

3
(AB2 + AB · AD + AD2).

The last inequality is equivalent to the inequality 3AB2 − 3AB · AD + 3AD2 ≥ AB2 +
AB ·AD +AD2, or AB2 −2AB ·AD +AD2 ≥ 0, which is evident. The last equality holds
if and only if AB = AD.

On the other hand, applying the Law of Cosines to triangle BCD yields

BD2 = BC2 − 2BC · CD cos C + CD2 ≤ BC2 + BC · CD + CD2.

Combining the last two inequalities gives the desired result.

For the given inequalities to hold, we must have AB = AD. This condition is also sufficient,
because all the entries in the equalities are 0. Thus, the given inequalities hold if and only
if ABCD is a kite with AB = AD and BC = CD.

Problem originally by Titu Andreescu.

2. Suppose a1, . . . , an are integers whose greatest common divisor is 1. Let S be a set of
integers with the following properties.

(a) For i = 1, . . . , n, ai ∈ S.

(b) For i, j = 1, . . . , n (not necessarily distinct), ai − aj ∈ S.

(c) For any integers x, y ∈ S, if x + y ∈ S, then x − y ∈ S.



Prove that S must be equal to the set of all integers.

Solution: We may as well assume that none of the ai is equal to 0. We start with the
following observations.

(d) 0 = a1 − a1 ∈ S by (b).

(e) −s = 0 − s ∈ S whenever s ∈ S, by (a) and (d).

(f) If x, y ∈ S and x − y ∈ S, then x + y ∈ S by (b) and (e).

By (f) plus strong induction on m, we have that ms ∈ S for any m ≥ 0 whenever s ∈ S.
By (d) and (e), the same holds even if m ≤ 0, and so we have the following.

(g) For i = 1, . . . , n, S contains all multiples of ai.

We next verify that

(h) For i, j ∈ {1, . . . , n} and any integers ci, cj, ciai + cjaj ∈ S.

We do this by induction on |ci| + |cj|. If |ci| ≤ 1 and |cj| ≤ 1, this follows from (b), (d),
(f), so we may assume that max{|ci|, |cj|} ≥ 2. Suppose without loss of generality (by
switching i with j and/or negating both ci and cj) that ci ≥ 2; then

ciai + cjaj = ai + ((ci − 1)ai + cjaj)

and we have ai ∈ S, (ci−1)ai+cjaj ∈ S by the induction hypothesis, and (ci−2)ai+cjaj ∈
S again by the induction hypothesis. So ciai + cjaj ∈ S by (f), and (h) is verified.

Let ei be the largest integer such that 2ei divides ai; without loss of generality we may
assume that e1 ≥ e2 ≥ · · · ≥ en. Let di be the greatest common divisor of a1, . . . , ai. We
prove by induction on i that S contains all multiples of di for i = 1, . . . , n; the case i = n
is the desired result. Our base cases are i = 1 and i = 2, which follow from (g) and (h),
respectively.

Assume that S contains all multiples of di, for some 2 ≤ i < n. Let T be the set of integers
m such that m is divisible by di and m + rai+1 ∈ S for all integers r. Then T contains
nonzero positive and negative numbers, namely any multiple of ai by (h). By (c), if t ∈ T
and s divisible by di (so in S) satisfy t − s ∈ T , then t + s ∈ T . By taking t = s = di,
we deduce that 2di ∈ T ; by induction (as in the proof of (g)), we have 2mdi ∈ T for any
integer m (positive, negative or zero).

From the way we ordered the ai, we see that the highest power of 2 dividing di is greater
than or equal to the highest power of 2 dividing ai+1. In other words, ai+1/di+1 is odd.
We can thus find integers f, g with f even such that fdi + gai+1 = di+1. (Choose such
a pair without any restriction on f , and replace (f, g) with (f − ai+1/di+1, g + di/di+1) if
needed to get an even f .) Then for any integer r, we have rfdi ∈ T and so rdi+1 ∈ S.
This completes the induction and the proof of the desired result.

Problem originally by Kiran Kedlaya.



3. For what real values of k > 0 is it possible to dissect a 1 × k rectangle into two similar,
but noncongruent, polygons?

Solution: We will show that a dissection satisfying the requirements of the problems is
possible if and only if k 6= 1.

We first show by contradiction that such a dissection is not possible when k = 1. Assume
that we have such a dissection. The common boundary of the two dissecting polygons must
be a single broken line connecting two points on the boundary of the square (otherwise
either the square is subdivided in more than two pieces or one of the polygons is inside
the other). The two dissecting polygons must have the same number of vertices. They
share all the vertices on the common boundary, so they have to use the same number of
corners of the square as their own vertices. Therefore, the common boundary must connect
two opposite sides of the square (otherwise one of the polygons will contain at least three
corners of the square, while the other at most two). However, this means that each of the
dissecting polygons must use an entire side of the square as one of its sides, and thus each
polygon has a side of length 1. A side of longest length in one of the polygons is either a
side on the common boundary or, if all those sides have length less than 1, it is a side of
the square. But this is also true of the other polygon, which means that the longest side
length in the two polygons is the same. This is impossible since they are similar but not
congruent, so we have a contradiction.

We now construct a dissection satisfying the requirements of the problem when k 6= 1.
Notice that we may assume that k > 1, because a 1 × k rectangle is similar to a 1 × 1

k

rectangle.

We first construct a dissection of an appropriately chosen rectangle (denoted by ABCD
below) into two similar noncongruent polygons. The construction depends on two pa-
rameters (n and r below). By appropriate choice of these parameters we show that the
constructed rectangle can be made similar to a 1 × k rectangle, for any k > 1. The
construction follows.

Let r > 1 be a real number. For any positive integer n, consider the following sequence of
2n + 2 points:

A0 = (0, 0), A1 = (1, 0), A2 = (1, r), A3 = (1 + r2, r),

A4 = (1 + r2, r + r3), A5 = (1 + r2 + r4, r + r3),

and so on, until

A2n+1 = (1 + r2 + r4 + · · · + r2n, r + r3 + r5 + · · · + r2n−1).

Define a rectangle ABCD by

A = A0, B = (1 + r2 + · · ·+ r2n, 0), C = A2n+1, and D = (0, r + r3 + ... + r2n−1).

The sides of the (2n + 2)-gon A1A2 . . . A2n+1B have lengths

r, r2, r3, . . . , r2n, r + r3 + r5 + · · ·+ r2n−1, r2 + r4 + r6 + · · · + r2n,



and the sides of the (2n + 2)-gon A0A1A2 . . . A2nD have lengths

1, r, r2, . . . , r2n−1, 1 + r2 + r4 + · · ·+ r2n−2, r + r3 + r5 + · · · + r2n−1,

respectively. These two polygons dissect the rectangle ABCD and, apart from orientation,
it is clear that they are similar but noncongruent, with coefficient of similarity r > 1. The
rectangle ABCD and its dissection are thus constructed.

The rectangle ABCD is similar to a rectangle of size 1 × fn(r), where

fn(r) =
1 + r2 + ... + r2n

r + r3 + ... + r2n−1
.

It remains to show that fn(r) can have any value k > 1 for appropriate choices of n and
r. Choose n sufficiently large so that 1 + 1

n
< k. Since

fn(1) = 1 +
1

n
< k < k

1 + k2 + ... + k2n

k2 + k4 + ... + k2n
= fn(k)

and fn(r) is a continuous function for positive r, there exists an r such that 1 < r < k
and fn(r) = k, so we are done.

Problem originally by Ricky Liu.

4. Alice and Bob play a game on a 6 by 6 grid. On his or her turn, a player chooses a rational
number not yet appearing in the grid and writes it in an empty square of the grid. Alice
goes first and then the players alternate. When all squares have numbers written in them,
in each row, the square with the greatest number in that row is colored black. Alice wins
if she can then draw a line from the top of the grid to the bottom of the grid that stays
in black squares, and Bob wins if she can’t. (If two squares share a vertex, Alice can draw
a line from one to the other that stays in those two squares.) Find, with proof, a winning
strategy for one of the players.

Solution: Bob can win as follows.

Claim 1. After each of his moves, Bob can insure that in that maximum number in each

row is a square in A ∪ B, where

A = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3)}

and

B = {(5, 3), (4, 4), (5, 4), (6, 4), (4, 5), (5, 5), (6, 5), (4, 6), (5, 6), (6, 6)}.

Proof. Bob pairs each square of A∪B with a square in the same row that is not in A∪B,
so that each square of the grid is in exactly one pair. Whenever Alice plays in one square
of a pair, Bob will play in the other square of the pair on his next turn. If Alice moves
with x in A ∪B, Bob writes y with y < x in the paired square. If Alice moves with x not
in A ∪ B, Bob writes z with z > x in the paired square in A∪B. So after Bob’s turn, the
maximum of each pair is in A ∪ B, and thus the maximum of each row is in A ∪ B.



So when all the numbers are written, the maximum square in row 6 is in B and the
maximum square in row 1 is in A. Since there is no path from B to A that stays in A∪B,
Bob wins.

Problem originally by Melanie Wood.

5. Let a, b and c be positive real numbers. Prove that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a + b + c)3.

Solution: For any positive number x, the quantities x2−1 and x3−1 have the same sign.
Thus, we have 0 ≤ (x3 − 1)(x2 − 1) = x5 − x3 − x2 + 1, or

x5 − x2 + 3 ≥ x3 + 2.

It follows that

(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a3 + 2)(b3 + 2)(c3 + 2).

It suffices to show that

(a3 + 2)(b3 + 2)(c3 + 2) ≥ (a + b + c)3. (∗)

We finish with two approaches.

• First approach Expanding both sides of inequality (∗) and cancelling like terms gives

a3b3c3+3(a3+b3+c3)+2(a3b3+b3c3+c3a3)+8 ≥ 3(a2b+b2a+b2c+c2b+c2a+ac2)+6abc.
(∗′)

By the AM-GM Inequality, we have a3 + a3b3 + 1 ≥ 3a2b. Combining similar results,
inequality (∗) reduces to

a3b3c3 + a3 + b3 + c3 + 1 + 1 ≥ 6abc,

which is evident by the AM-GM Inequality.

• We rewrite the left-hand-side of inequality (∗) as

(a3 + 1 + 1)(1 + b3 + 1)(1 + 1 + c3).

By Hölder’s Inequality, we have

(a3 + 1 + 1)
1

3 (1 + b3 + 1)
1

3 (1 + 1 + c3)
1

3 ≥ (a + b + c),

from which inequality (∗) follows.

Problem originally by Titu Andreescu.



6. A circle ω is inscribed in a quadrilateral ABCD. Let I be the center of ω. Suppose that

(AI + DI)2 + (BI + CI)2 = (AB + CD)2.

Prove that ABCD is an isosceles trapezoid.

Solution: Our proof is based on the following key Lemma.

Lemma If a circle ω, centered at I, is inscribed in a quadrilateral ABCD, then

BI2 +
AI

DI
· BI · CI = AB · BC. (∗)
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Proof: Since circle ω is inscribed in ABCD, we get m∠DAI = m∠IAB = a, m∠ABI =
m∠IBC = b, m∠BCI = m∠ICD = c, m∠CDI = m∠IDA = d, and a+ b+ c+d = 180◦.
Construct a point P outside of the quadrilateral such that 4ABP is similar to 4DCI.
We obtain

m∠PAI + m∠PBI = m∠PAB + m∠BAI + m∠PBA + m∠ABI

= m∠IDC + a + m∠ICD + b

= a + b + c + d = 180◦,

implying that the quadrilateral PAIB is cyclic. By Ptolemy’s Theorem, we have AI ·
BP + BI · AP = AB · IP , or

BP ·
AI

IP
+ BI ·

AP

IP
= AB. (†)

Because PAIB is cyclic, it is not difficult to see that, as indicated in the figure, m∠IPB =
m∠IAB = a, m∠API = m∠ABI = b, m∠AIP = m∠ABP = c, and m∠PIB =
m∠PAB = d. Note that 4AIP and 4ICB are similar, implying that

AI

IP
=

IC

CB
and

AP

IP
=

IB

CB
.

Substituting the above equalities into the identity (†), we arrive at

BP ·
CI

BC
+

BI2

BC
= AB,



or
BP · CI + BI2 = AB · BC. (†′)

Note also that 4BIP and 4IDA are similar, implying that
BP

BI
=

IA

ID
, or

BP =
AI

ID
· IB.

Substituting the above identity back into (†′) gives the desired relation (∗), establishing
the Lemma.

Now we prove our main result. By the Lemma and symmetry, we have

CI2 +
DI

AI
· BI · CI = CD · BC. (∗′)

Adding the two identities (∗) and (∗′) gives

BI2 + CI2 +

(

AI

DI
+

DI

AI

)

BI · CI = BC(AB + CD).

By the AM-GM Inequality, we have
AI

DI
+

DI

AI
≥ 2. Thus,

BC(AB + CD) ≥ IB2 + IC2 + 2IB · IC = (BI + CI)2,

where the equality holds if and only if AI = DI. Likewise, we have

AD(AB + CD) ≥ (AI + DI)2,

where the equality holds if and only if BI = CI. Adding the last two identities gives

(AI + DI)2 + (BI + CI)2 ≤ (AD + BC)(AB + CD) = (AB + CD)2,

because AD+BC = AB+CD. (The latter equality is true because the circle ω is inscribed
in the quadrilateral ABCD.)

By the given condition in the problem, all the equalities in the above discussion must
hold, that is, AI = DI and BI = CI. Consequently, we have a = d, b = c, and so
∠DAB + ∠ABC = 2a + 2b = 180◦, implying that AD ‖ BC. It is not difficult to see that
4AIB and 4DIC are congruent, implying that AB = CD. Thus, ABCD is an isosceles
trapezoid.

Problem originally by Zuming Feng.
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