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1. The given condition is equivalent to a2 + b2 + c2 + ab+ bc+ ca ≤ 2. We will prove that

2ab+ 2

(a+ b)2
+

2bc+ 2

(b+ c)2
+

2ca+ 2

(c+ a)2
≥ 6 .

Indeed, we have

2ab+ 2

(a+ b)2
≥ 2ab+ a2 + b2 + c2 + ab+ bc+ ca

(a+ b)2
= 1 +

(c+ a)(c+ b)

(a+ b)2
.

Adding the last inequality with its cyclic analogous forms yields

2ab+ 2

(a+ b)2
+

2bc+ 2

(b+ c)2
+

2ca+ 2

(c+ a)2
≥ 3 +

(c+ a)(c+ b)

(a+ b)2
+

(a+ b)(a+ c)

(b+ c)2
+

(b+ c)(b+ a)

(c+ a)2

Hence it remains to prove that

(c+ a)(c+ b)

(a+ b)2
+

(a+ b)(a+ c)

(b+ c)2
+

(b+ c)(b+ a)

(c+ a)2
≥ 3.

But this follows directly from the AM–GM inequality. Equality holds if and only if a+b =

b+ c = c+ a, which together with the given condition, shows that it occurs if and only if

a = b = c = 1√
3
.

OR

Set 2x = a + b, 2y = b + c, and 2z = c + a; that is, a = z + x − y, b = x + y − z, and

c = y + z − x. Hence

ab+ 1

(a+ b)2
=

(z + x− y)(x+ y − z) + 1

4x2
=
x2 − (y − z)2 + 1

4x2
=
x2 + 2yz + 1− y2 − z2

4x2
.

On the other hand, the given condition is equivalent to 2a2+2b2+2c2+2ab+2bc+2ca ≤ 4

or (a+ b)2+(b+ c)2+(c+ a)2 ≤ 4; that is, x2+ y2+ z2 ≤ 1 or 1− y2− z2 ≥ x2. It follows

that
ab+ 1

(a+ b)2
=
x2 + 2yz + 1− y2 − z2

4x2
≥ x2 + 2yz + x2

4x2
=

1

2
+

yz

2x2
.

Likewise, we have

bc+ 1

(b+ c)2
=

1

2
+
zx

2y2
and

ca+ 1

(c+ a)2
=

1

2
+
xy

2z2
.
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Adding the last three inequalities gives

ab+ 1

(a+ b)2
+

bc+ 1

(b+ c)2
+

ca+ 1

(c+ a)2
≥ 3

2
+

yz

2x2
+
zx

2y2
+
xy

2z2
≥ 3,

by the AM–GM inequality. Equality holds if and only if x = y = z or a = b = c = 1√
3
.

2. Let a1, a2, a3, a4 and a5 represent the integers at vertices v1 to v5 (in order around the

pentagon) at the start of the game. We will first show that the game can be won at only

one of the vertices. Observe that the quantity a1 + 2a2 + 3a3 + 4a4 mod 5 is an invariant

of the game. For instance, one move involves replacing a1, a3 and a5 by a1 −m, a3 + 2m

and a5 −m. Thus the quantity a1 + 2a2 + 3a3 + 4a4 becomes

(a1 −m) + 2a2 + 3(a3 + 2m) + 4a4 = a1 + 2a2 + 3a3 + 4a4 + 5m,

which is unchanged mod 5. The other moves may be checked similarly. Now suppose that

the game may be won at vertex vj. The value of the invariant at the winning position is

2011j. If the initial value of the invariant is n, then we must have 2011j ≡ n mod 5, or

j ≡ n mod 5. Hence the game may only be won at vertex vj, where j is the least positive

residue of n mod 5.

By renumbering the vertices, we may assume without loss of generality that the winning

vertex is v5. We will show that the game can be won in four moves by adding a suitable

amount 2mj at vertex vj (and subtracting mj from the opposite vertices) on the jth turn

for j = 1, 2, 3, 4. The net change at vertex v1 after these four moves is 2m1 −m3 −m4,

which must equal −a1 if we are to finish with 0 at v1. In this fashion we find that

2m1 −m3 −m4 = −a1
2m2 −m4 = −a2
2m3 −m1 = −a3
2m4 −m1 −m2 = −a4

−m2 −m3 = −a5 + 2011.

The sum of the first four equations is the negative of the fifth equation, so it is redundant.

Multiplying the first four equations by −1, 3, −3, 1 and adding them yields 5m2 − 5m3 =

a1 − 3a2 + 3a3 − a4. But

a1 − 3a2 + 3a3 − a4 ≡ a1 + 2a2 + 3a3 + 4a4 ≡ n ≡ 5 ≡ 0 mod 5,
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since we are assuming v5 is the winning vertex. Therefore we may divide by 5 to obtain

m2 − m3 = 1
5
(a1 − 3a2 + 3a3 − a4). We also know that m2 + m3 = a1 + a2 + a3 + a4,

and one easily confirms that the right-hand sides of these equations are integers with the

same parity. Hence the system admits an integral solution for m2 and m3. The second

and third equations then quickly give integer values for m1 and m4 as well, so it is indeed

possible to win the game at vertex v5.

3. We first give a recipe for constructing hexagons as in the problem statement. Let ACE

be a triangle, with all angles less than 2π/3. Let D be the reflection of A across CE;

let F be the reflection of C across EA; let B be the reflection of E across AC. Then,

∠BAF = ∠BAC + ∠CAE + ∠EAF = 3∠CAE = 3∠CDE, and similarly for the other

angle equalities. Also, AB = AE = DE, and similarly for the other side equalities. Thus,

the hexagon satisfies the equations in the problem statement. The diagonals AD,BE,CF

are simply the altitudes of the triangle ACE, so they are concurrent at the orthocenter.

Now we show that the only possible hexagons meeting the conditions of the problem

statement are the ones constructed in this manner. This will suffice to complete the

solution.

Given the hexagon ABCDEF as in the problem statement, let β, δ, ϕ be the measures of

its angles B,D, F . Since 4(∠B + ∠D + ∠F ) = ∠A+ ∠B + ∠C + ∠D + ∠E + ∠F = 4π,

we must have β + δ + ϕ = π. Also, the fact that opposite sides are not parallel implies

that π + 2β = ∠D + ∠E + ∠F ̸= 2π, so β ̸= π/2; likewise δ, ϕ ̸= π/2.

We can construct a hexagon A1B1C1D1E1F1 meeting the angle and side equality condi-

tions, with angles ∠B1 = β,∠D1 = δ,∠F1 = ϕ, by taking A1C1E1 to be a triangle with

angles β, δ, ϕ, and reflecting each vertex across the opposite site as above. We wish to

show that ABCDEF ∼ A1B1C1D1E1F1.

Treat the positions of A,B as fixed, and treat β, δ, ϕ as fixed; these are enough to uniquely

determine the orientation of each edge of the hexagon, given the known angles. Let

x = AB = DE, y = BC = EF , z = CD = FA. Our goal is to show that these lengths

are uniquely determined (up to scale) by the given angles.

Let a, b, c, d, e, f be unit vectors in the directions of the edges from A to B, B to C, C to

D, D to E, E to F , and F to A, respectively. Then the vector identity

x(a+ d) + y(b+ e) + z(c+ f) = 0 (1)
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holds. Without loss of generality, assume the vertices of ABCDEF are labeled in coun-

terclockwise order. The respective orientations of vectors b, c, d, e, f , measured counter-

clockwise relative to a, are
b : π − β
c : −β − 3ϕ
d : −2ϕ
e : π + 2δ − β
f : 2δ − ϕ− β

(These angles are given modulo 2π; we have made liberal use of the identity β+δ+ϕ = π.)

Now, whenever two unit vectors point in directions θ and ψ, which do not differ by π, then

their sum is a nonzero vector pointing in direction (θ + ψ)/2 or (θ + ψ)/2 + π. It follows

that vectors a+d, b+e, c+f are all nonzero and point in the following directions (modulo

π):
a+ d : −ϕ
b+ e : δ − β
c+ f : δ − 2ϕ− β

None of the differences between these angles are multiples of π. (This follows from the fact

that β, δ, ϕ ̸= π/2.) Thus, a+d, b+e, c+f are not collinear, nonzero vectors. Consequently,

the equation (1) determines the coefficients x, y, z uniquely up to scale, as required.

It follows that ABCDEF and A1B1C1D1E1F1 are similar to each other, as required, and

this completes the proof.

4. The assertion is false, and the smallest n for which it fails is n = 25. Given n ≥ 2, let r

be the remainder when 2n is divided by n. Then 2n = kn+ r where k is a positive integer

and 0 ≤ r < n. It follows that

22
n

= 2kn+r ≡ 2r mod 2n − 1,

and 2r < 2n − 1 so 2r is the remainder when 22
n
is divided by 2n − 1. If r is even then

2r is power of 4. Hence to disprove the assertion, it is enough to find an n for which the

corresponding r is odd.

If n is even then so is r = 2n − kn.

If n is an odd prime then 2n ≡ 2 (mod n) by Fermat’s Little Theorem; hence r ≡ 2n ≡ 2

mod n and r = 2.
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There remains the case in which n is odd and composite. In the first three instances n = 9,

15, 21 there is no contradiction to the assertion:

n = 9 :26 ≡ 1 mod 9 ⇒ 29 ≡ 26 · 23 ≡ 8 mod 9

n = 15 :24 ≡ 1 mod 15 ⇒ 215 ≡ (24)3 · 23 ≡ 8 mod 15

n = 21 :26 ≡ 1 mod 21 ⇒ 221 ≡ (26)3 · 23 ≡ 8 mod 21

However,

210 = 1024 ≡ −1 ⇒ 220 ≡ 1 ⇒ 225 ≡ 25 ≡ 7 mod 25,

so 7 is the remainder when 225 is divided by 25 and 27 is the remainder when 22
25
is divided

by 225 − 1.

5. We will prove that the lines AB, CD, and Q1Q2 are either concurrent or all parallel. Let

X and Y denote the reflections of P across the lines AB and CD. We first claim that

XQ1 = Y Q1 and XQ2 = Y Q2. Indeed, let Z be the reflection of Q1 across BC. Then

XB = PB, BQ1 = BZ, and

∠XBQ1 = ∠XBA+ ∠ABQ1 = ∠ABC = ∠PBC + ∠CBZ = ∠PBZ,

whence △XBQ1
∼= △PBZ and thus XQ1 = PZ. Similarly Y Q1 = PZ, and so XQ1 =

Y Q1. In exactly the same way, we see that XQ2 = Y Q2, establishing the claim.

We conclude that the line Q1Q2 is the perpendicular bisector of the segment XY . If

AB ∥ CD, then XY ⊥ AB and it follows that Q1Q2 ∥ AB, as desired. If the lines AB

and CD are not parallel, then let R denote their intersection. Since RX = RP = RY , R

lies on the perpendicular bisector of XY and thus R, Q1, Q2 are collinear, as desired.

OR

This solution uses isogonal conjugates. Recall that two points S, T are isogonal conjugates

with respect to △ABC if ∠SAB = ∠CAT , ∠SBC = ∠ABT , and ∠SCA = ∠BCT , with
any two of these equalities implying the third.
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If AB ∥ CD, then there is nothing to prove; thus we assume AB intersects CD in a point R.

ThenQ1 and P are isogonal conjugates with respect to△RBC, whence ∠Q1RB = ∠CRP ,
and Q2 and P are isogonal conjugates with respect to △RAD, whence ∠Q2RA = ∠DRP .
Therefore ∠Q1RB = ∠Q2RA = ∠Q2RB and the lines AB, CD, Q1Q2 all intersect at R.

Remark: Although not needed for the problem as stated, here is an alternate proof that

if AB ∥ CD, then Q1Q2 is parallel to both. Extend BQ1 and BP to meet CD at points

E and F , respectively. Then ∠BCP = ∠Q1CE and ∠PBC = ∠ABQ1 = ∠CEQ1, and

so △PBC ∼ △Q1EC, whence PC/PB = Q1C/Q1E. Similarly △Q1BC ∼ △PFC and

PC/PF = Q1C/Q1B. We conclude that Q1B/Q1E = PF/PB. Similarly, extend AQ2

and AP to meet CD at G and H; then Q2A/Q2G = PH/PA = PF/PB = Q1B/Q1E,

and it follows that Q1Q2 ∥ AB ∥ CD.

6. Let S be the complement of A1 ∪A2 ∪ · · · ∪A11 in A; we wish to prove that |S| ≤ 60. For

ℓ ≥ 0, define

θ(ℓ) =

(
1− ℓ

2

)(
1− ℓ

3

)
= 1− 2

3
ℓ+

1

3

(
ℓ

2

)
.

Note that θ(0) = 1 and θ(ℓ) ≥ 0 for any integer ℓ > 0. Therefore, since S is the intersection

of the complements of the Ai,

|S| ≤
∑
n∈A

θ(ℓ(n)).

On the other hand,∑
n∈A

θ(ℓ(n)) =
∑
n∈A

(
1− 2

3
ℓ(n) +

1

3

(
ℓ(n)

2

))
= |A| − 2

3

∑
i

|Ai|+
1

3

∑
i<j

|Ai ∩ Aj|.

Consequently,

|S| ≤ 225− 2

3
· 11 · 45 + 1

3
·
(
11

2

)
· 5 = 60,

and therefore |A1 ∪ A2 ∪ · · · ∪ A11| ≥ 165.

We construct an example to show that this lower bound is best possible. Let p1, p2, . . . , p11

be a set of 11 distinct primes, and let A′ denote the set of all products of three of these

primes. Furthermore, let A′′ = {q1, q2, q3, . . . , q60} be a set of 60 distinct positive integers

that are all prime to p1, . . . , p11. Set A = A′ ∪ A′′, and define

Ai = {n ∈ A′ : pi |n}.
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Then |Ai| =
(
10
2

)
= 45, |Ai ∩ Aj| =

(
9
1

)
= 9, and

|A1 ∪ A2 ∪ · · · ∪ A11| = |A′| =
(
11

3

)
= 165.

Finally, |A| = |A′|+ |A′′| = 165 + 60 = 225.

Remark: To get an upper bound for |S|, one could replace θ(ℓ) by any function of the

form (
1− ℓ

r

)(
1− ℓ

r + 1

)
for any positive integer r. The choice r = 2 is optimal for the stated problem. The choice

r = 1 yields

|S| ≤ |A| −
∑
i

|Ai|+
∑
i<j

|Ai ∩ Aj|,

which is a familiar truncated inclusion-exclusion inequality, known in number theory as

“Brun’s Pure Sieve” and in probability as “Bonferroni’s Inequality.”
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