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JMO 1. Given a sequence of real numbers, a move consists of choosing two terms and replacing
each by their arithmetic mean. Show that there exists a sequence of 2015 distinct real
numbers such that after one initial move is applied to the sequence – no matter what move
– there is always a way to continue with a finite sequence of moves so as to obtain in the
end a constant sequence.

Solution: The sequence (x1, x2, . . . , x2015) = (1, 2, . . . , 2015) satisfies the required prop-
erty (as does any arithmetic sequence).

Assume that (xm, xn) = (m, n) is replaced by
(
m+n
2

, m+n
2

)
in the first move. We consider

two cases.

In the first case, we assume that none of m and n is equal to 1008. In the second move, we
replace (x2016−m, x2016−n) = (2016−m, 2016− n) by

(
2016− m+n

2
, 2016− m+n

2

)
. Let all

the subsequent moves be applied to the pairs (xj, x2016−j), j = 1, 2, . . . , 1008. This yields
the constant sequence (1008, 1008, . . . , 1008).

In the second case, we assume that one of m and n, say, n is equal to 1008. After the first
move we have xm = x1008 = 1008+m

2
. Choose k different from 1008, m, and 2016−m. We

illustrate our next four moves in the following table. (In each move, we operate on the the
numbers in bold.)

(xk, xm, x1008, x2016−m, x2016−k)

=

(
kkk,

1008 + m

2
,

1008 + m

2
, 2016−m, 2016− k2016− k2016− k

)
→

(
100810081008,

1008 + m

2
,

1008 + m

2
, 2016−m2016−m2016−m, 1008

)
→

(
3024−m

2

3024−m

2

3024−m

2
,

1008 + m

2

1008 + m

2

1008 + m

2
,

1008 + m

2
,

3024−m

2
, 1008

)
→

(
1008, 1008,

1008 + m

2

1008 + m

2

1008 + m

2
,

3024−m

2

3024−m

2

3024−m

2
, 1008

)
→ (1008, 1008, 1008, 1008, 1008)

Finally apply the move to all the pairs (xj, x2016−j) (with j 6= m, k, 2016 −m, 2016 − k)
to obtain the constant sequence (1008, 1008, . . . , 1008).

Query: If the initial sequence is (1, 2, 3, . . . , 2013, 2014, 2016), where “2015” is replaced
by “2016”, is it possible to obtain a constant sequence after a finite sequence of moves?

JMO 2. Solve in integers the equation

x2 + xy + y2 =

(
x + y

3
+ 1

)3

.
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Solution: Let x+ y = 3k, with k ∈ Z. Then x2 + x(3k− x) + (3k− x)2 = (k + 1)3, which
reduces to

x2 − (3k)x− (k3 − 6k2 + 3k + 1) = 0.

Its discriminant ∆ is

9k2 + 4(k3 − 6k2 + 3k + 1) = 4k3 − 15k2 + 12k + 4.

We notice the (double) root k = 2, so ∆ = (4k+1)(k−2)2. It follows that 4k+1 = (2t+1)2

for some nonnegative integer t, hence k = t2 + t and

x =
1

2
(3(t2 + t)± (2t + 1)(t2 + t− 2)).

We obtain (x, y) = (t3 + 3t2 − 1,−t3 + 3t + 1) and (x, y) = (−t3 + 3t + 1, t3 + 3t2 − 1),
t ∈ {0, 1, 2, ...}.

OR

One can also try to simplify the original equation as much as possible. First with k =
x+y
3

+ 1 we get
x2 − 3xk + 3x = k3 − 9k2 + 18k − 9.

But then we recognize terms from the expansion of (k−3)3 so we use s = k−3 and obtain

x2 − 3xs− 6x = s3 − 9s− 9.

So again it becomes natural to use x− 3 = u. The equation becomes

u2 − 3su− s3 = 0.

We view this as a quadratic in u, whose discriminant is s2(9 + 4s), and so 9 + 4s must be
a perfect square, and because it is odd, it must be of the form (2t + 1)2. It follows that
s = t2 + t− 2, and so k = t2 + t + 1. We obtain the same family of solutions.

JMO 3. Quadrilateral APBQ is inscribed in circle ω with ∠P = ∠Q = 90◦ and AP = AQ < BP .
Let X be a variable point on segment PQ. Line AX meets ω again at S (other than A).
Point T lies on arc AQB of ω such that XT is perpendicular to AX. Let M denote the
midpoint of chord ST . As X varies on segment PQ, show that M moves along a circle.

Solution: Let O denote the center of ω, and let W denote the midpoint of segment AO.
Denote by Ω the circle centered at W with radius WP . We will show that WM = WP ,
which will imply that M always lies on Ω and so solve the problem.

We present two solutions. The first solution is more computational (in particular, with
extensive applications of the formula for a median of a triangle); the second is more
synthetic.
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Set r to be the radius of circle ω. Applying the median formula in triangles APO, SWT,ASO,ATO
gives

4WP 2 = 2AP 2 + 2OP 2 − AO2 = 2AP 2 + r2,

4WM2 = 2WS2 + 2WT 2 − ST 2,

2WS2 = AS2 + OS2 − AO2/2 = AS2 + r2/2,

2WT 2 = AT 2 + OT 2 − AO2/2 = AT 2 + r2/2.

Adding the last three equations yields 4WM2 = AS2 +AT 2−ST 2 +r2. It suffices to show
that

4WP 2 = 4WM2 or AS2 + AT 2 − ST 2 = 2AP 2. (1)

Because XT ⊥ AS,

AT 2 − ST 2 = (AX2 + XT 2)− (SX2 + XT 2)

= AX2 − SX2

= (AX + XS)(AX −XS)

= AS(AX −XS).

It follows that AS2 + AT 2 − ST 2 = AS2 + AS · (AX −XS) = AS2 + AS(2AX − AS) =
2AS ·AX, and (1) reduces to AP 2 = AS ·AX, which is true because triangle APX is similar
to triangle ASP (as ∠PAX = ∠SAP and ∠APX = arc(AQ)/2 = arc(AP )/2 = ∠ASP ).

OR
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In the following solution, we use directed distances and directed angles in order to avoid
issues with configuration (segments ST and PQ may intersect, or may not as depicted in
the figure.)

Let R be the foot of the perpendicular from A to line ST . Note that OM ⊥ ST , and so
ARMO is a right trapezoid. Let U be the midpoint of segment RM . Then WU is the
midline of the trapezoid. In particular, WU ⊥ RM . Hence line WU is the perpendicular
bisector of segment RM . It is also clear that AW is the perpendicular bisector of segment
PQ. Therefore, W is the intersection of the perpendicular bisectors of segments RM and
PQ. It suffices to show that quadrilateral PQMR is cyclic, since then W must be its
circumcenter, and so WP = WM .

(To be precise, this argument fails when ST and PQ are parallel, because then R = M
and the perpendicular bisector of RM is not defined. However, it is easy to see that this
can happen for only one position of X. Because the argument works for all other X,
continuity then implies that M lies on Ω for this exceptional case as well.)

Let lines PQ and ST meet in V . By the converse of the power-of-a-point theorem, it
suffices to show that V P · V Q = V R · VM . On the other hand, because PQTS is cyclic,
by the power-of-a-point theorem, we have V P · V Q = V S · V T . Therefore, we only need
to show that

V S · V T = V R · VM. (2)

Note that M is the midpoint of segment ST . Then (2) is equivalent to

2V S · V T = V R · (2VM) = V R · (V S + V T )

or
V S · V T − V S · V R = V T · V R− V T · V S
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or equivalently

V S ·RT = V T · SR or
V S

SR
=

V T

RT
. (3)

We claim that XS bisects ∠V XR. Indeed, because AB is the symmetry line of the kite
APBQ, AB ⊥ PQ, and so ∠V XS = ∠QXA = 90◦ −∠XAO = 90◦ −∠SAO. Because O
is the circumcenter of triangle AST ,

∠V XS = 90◦ − ∠SAO = ∠ATS.

On the other hand, because ∠AXT and ∠ART are both right angles, quadrilateral AXRT
is cyclic, implying that ∠SXR = ∠ATR = ∠ATS. Our claim follows from the last two
equations.

Combining our claim and the fact that XS ⊥ XT , we know that XS and XT are the
interior and exterior bisectors of ∠V XR, from which (3) follows, by the angle-bisector
theorem. We saw that (3) was equivalent to (2) and that this was enough to show that
PQMR is cyclic, which completes the solution, so we are done.

JMO 4. Find all functions f : Q→ Q such that

f(x) + f(t) = f(y) + f(z)

for all rational numbers x < y < z < t that form an arithmetic progression. (Q is the set
of all rational numbers.)

Solution: Choose any n ∈ Z, t ∈ Q. Applying the condition for nt, (n+1)t, (n+2)t, (n+3)t
yields

f((n + 3)t)− f((n + 2)t) = f((n + 1)t)− f(nt)

and similarly
f((n + 4)t)− f((n + 3)t) = f((n + 2)t)− f((n + 1)t).

Adding the two yields

f((n + 4)t)− f((n + 2)t) = f((n + 2)t)− f(nt),

in particular f(2kt + 2t) − f(2kt) is the same for all k ∈ Z, which means f is linear on
2t · Z. Since Q is a nested union of such sets, f is linear and all linear functions work.

JMO 5. Let ABCD be a cyclic quadrilateral. Prove that there exists a point X on segment BD
such that ∠BAC = ∠XAD and ∠BCA = ∠XCD if and only if there exists a point Y on
segment AC such that ∠CBD = ∠Y BA and ∠CDB = ∠Y DA.

Solution. By the symmetry, it suffices to show the “only if” part by assuming that there
exists a point X on segment BD such that ∠BAC = ∠XAD and ∠BCA = ∠XCD.

Because ABCD is cyclic, we have ∠XAD = ∠BAC = ∠BDC = ∠XDC and ∠XDA =
∠BDA = ∠BCA = ∠XCD. Hence triangles AXD and DXC (and ABC) are similar to
each other. In particular,

AX

DX
=

DX

XC
or DX2 = AX · CX
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Because ∠BAC = ∠XAD, we have ∠BAX = ∠CAD. Because ABCD is cyclic, we have
∠CAD = ∠CBD = ∠CBX. Consequently, ∠BAX = ∠CBX. Note that

∠AXB = ∠XAD + ∠ADX = ∠BAC + ∠ACB = ∠BDC + ∠DCX = ∠CXB.

From the above facts, we conclude that triangles ABX and BCX (and ACD) are similar
to each other and so we have BX2 = AX · CX. Thus, BX2 = AX · CX = DX2; that is,
X is the midpoint of the segment BD. Therefore

AB

BC
=

DX

XC
=

BX

XC
=

AD

DC
or

BC

CD
=

BA

AD
.

Construct point Y on segment AC such that ∠CBD = ∠Y BA. From ∠CBD = ∠Y BA
and ∠BAY = ∠BAC = ∠BDC, we conclude that triangles BAY and BDC are similar
to each other, from which it follow that

BY

Y A
=

BC

CD
=

BA

AD
or

BY

BA
=

AY

AD
.

Note also that ∠Y BA = ∠CBD = ∠CAD = ∠Y AD. We conclude that triangles BY A
and AYD are similar to each other, implying that ∠CDB = ∠Y AB = ∠Y DA. This is
the desired point Y .

OR

By symmetry, it suffices to show that there exists X on the segment BD such that
∠BAC = ∠XAD and ∠BCA = ∠XCD if and only if AB · CD = AD ·BC.

There is a unique point X1 on segment BD such that ∠X1AD = ∠BAC. There is a
unique point X2 on segment BD such that ∠BCA = ∠X2CD. Because ABCD is cyclic,
∠BCA = ∠BDA = ∠X1DA. Hence triangles ABC and AX1D are similar to each other,
implying that

AC

BC
=

AD

X1D
.

Likewise, we can show that ABC and DX2C are similar to each other and
AB

AC
=

DX2

DC
.

Multiplying the last two equations together gives

AB

BC
=

AB

AC
· AC
BC

=
DX2

DC
· AD
X1D

,

from which it follows that
AB · CD

AD ·BC
=

DX2

DX1

.

Note that point X exists if and only if X1 = X2, or DX2 = DX1; that is, AB · CD =
AD ·BC.

7



JMO 6. Steve is piling m ≥ 1 indistinguishable stones on the squares of an n × n grid. Each
square can have an arbitrarily high pile of stones. After he is finished piling his stones
in some manner, he can then perform stone moves, defined as follows. Consider any four
grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for
some 1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of either removing
one stone from each of (i, k) and (j, l) and moving them to (i, l) and (j, k) respectively,
or removing one stone from each of (i, l) and (j, k) and moving them to (i, k) and (j, l)
respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another by
a sequence of stone moves.

How many different non-equivalent ways can Steve pile the stones on the grid?

Solution: We think of the pilings as assigning a positive integer to each square on the
grid. Now, we restrict ourselves to the types of moves in which we take a lower left and
upper right stone and move them to the upper left and lower right of our chosen rectangle.
Call this a Type 1 stone move. We claim that we can perform a sequence of Type 1 stone
moves on any piling to obtain an equivalent piling for which we cannot perform any Type
1 move, i.e. in which no square that has stones is above and to the right of any other
square that has stones. We call such a piling a “down-right” piling.

To prove that any piling is equivalent to a down-right piling, first consider the squares in
the leftmost column and topmost row of the grid. Let a be the entry (number of stones) in
the upper left corner, and let b and c be the sum of the remaining entries in the leftmost
column and topmost row respectively. If b < c, we can perform a sequence of Type 1 stone
moves to remove all the stones from the leftmost column except for the top entry, and if
c < b we can similarly clear all squares in the top row except for the top left square. In
the former case, we can now ignore the leftmost column and repeat the process on the
second-to-leftmost column and the top row; similarly, in the latter case, we can ignore the
top row and proceed as before. Since the corner square a cannot be part of any Type 1
move at each step in the process, it follows that we end up with a down-right piling.

We next show that down-right pilings in any size grid (not necessarily n×n) are uniquely
determined by their row-sums and column-sums, given that the row sums and column sums
are nonnegative integers which sum to m both along the rows and the columns. Let the
topmost row sum be R1 and the leftmost column sum be C1. Then the upper left square
must contain min(R1, C1) stones, since otherwise there would be stones both in the first
row and first column that are not in the upper left square. Whichever is smaller indicates
that either the row or the column respectively is empty save for the upper left square; then
we can remove this row or column and are reduced to a smaller grid in which we know
all the row and column sums. Since one-row and one-column pilings are clearly uniquely
determined by their column and row sums, it follows by induction that down-right pilings
are determined uniquely by their row-sums and column sums.

Finally, notice that row sums and column sums are both invariant under stone moves.
Therefore every piling is equivalent to a unique down-right piling. It therefore suffices to
count the number of down-right pilings, which is also equivalent to counting the number
of possibilities for the row-sums and column-sums. As stated above, the row sums and
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column sums can be the sums of any two n-tuples of nonnegative integers that each sum
to m. The number of such tuples is

(
n+m−1

m

)
, and so the total number of non-equivalent

pilings is the number of pairs of these tuples, i.e.
((

n+m−1
m

))2
.
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