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1. Each of eight boxes contains six balls. Each ball has been colored with one of n colors.
such that no two balls in the same box are the same color, and no two colors occur together
in more than one box. Find the smallest integer n for which this is possible.

Solution: The smallest such n is 23.

We first show that n = 22 cannot be achieved. We present two arguments.

e ['irst argument Let m;; be the number of balls which are the same color as the ;™
ball in box i (including that ball). For a fixed box i, 1 < i < 8, consider the sums
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For each fixed i. since no pair of colors is repeated. each of the reamining seven boxes
can contributed at most one ball to S;. Thus S; < 13. It follows by the convexity of
f(x) = 1/x that s; is minimized when one of the m,; is equal to 3 and the other five
equal to 2. Hence s; > 17/6. Note that
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Hence there must be 23 colors.

e Second argument Assume that some color, say red, occurs four times. Then the
first box containing red contains 6 colors. the second contains red and 5 colors not
mentioned so far. and likewise for the third and fourth boxes. A fifth box can contain
at most one color used in each of these four, so must contain 2 colors not mentioned
so far. and a sixth box must contain 1 color not mentioned so far. for a total of
6-+5+5+5+2+1=24. a contradiction.

Next, assume that no color occurs four times: this forces at least four colors to occur
three times. In particular. there are two colors that occur at least three times and
which both oceur in a single box, say red and blue. Now the box containing red
and blue contains 6 colors. the other boxes containing red each contain 5 colors not
mentioned so far. and the other boxes containing blue each contain 3 colors not
mentioned so far (each may contain one color used in each of the boxes containing
red but not blue). A sixth box must contain one color not mentioned so far, for a

total of 64+5+5+3+3+1=23, again a contradiction.




We now give a construction for n = 23, guided by the second argument. We still cannot
have a color occur four times, so at least two colors must occur three times. Call these
red and green. Put one red in each of three boxes. and fill these with 15 other colors. Put
one green in each of three boxes, and fill each of these boxes with one color from each of
the three boxes containing red and two new colors. \We now have used 1 415+ 1+6 = 23
colors, and each box contains two colors that have only been used once so far. Split those
colors between the last two boxes. The resulting arrangement is:

I3 4 5 6 7
L8 9 10 11 12
I3 14 15 16 17
2 3 8 13 I~ 19
2 4 9 11 20 21
2 5 10 Ib 22 23
6 11 16 I8 20 22
o121 19 21023

Note: Thanks to David Savitt for his help in assembling this solution: he also showed
that for 10 boxes of eight balls, the minimum number of colors 1s 39. The general case of
n + 2 boxes of n balls, or even more generally of n = £ boxes of n balls for other small
values of k, may be of interest.



. Let ABC' be a triangle and let w be its incircle. Denote by Dy and I} the points where

w is tangent to sides BC and AC, respectively. Denote by Dy and FE, the points on sides
BC and AC, respectively, such that C'Dy = BD, and CEy = AL, and denote by P the
point of intersection of segments AD; and BE,. Circle w intersects segment ADy at two

points. the closer of which to the vertex 4 is denoted by ). Prove that AQ = D, P.

Solution:
The key observation is the following lemma.

Lemma  Segement D) is o diameter of circle w.

Proof: Let I be the center of circle w, i.e., [ is the incenter of triangle ABC'. Extand
segement Dy [ through [ to intersect circle w again at Q'. and extand segment AQ’ through
() to intersectt segment BC' at D'. We show that Dy = D’ which in turn implies that
()= Q' that is. D1Q is a diameter of w.

Let ¢ be the line tangent to circle w at Q. and let € intersect the segments AB and AC
at B" and ", respectively. Then w is an excircle of triangle AB'C’. Let H, denote
the dialation with its center at A and ratio AD'/AQ’. Since ¢ L D,Q" and BC' L DQ.
¢ L BC. Hence AB/AB = AC/AC" = AD'/AQ'". Thus H{(Q') = D'. H{(B') = B. and
H,(C") = . Tt also follows that an excircle Q of triangle ABC'is tangent to the side BC'
at D'

[t is well known that

('Dy==(BC+C4- AB). (1)
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We compute BD'. Let X and Y denote the points of tangency of circle Q with ravs AB
and AC. respectively. Then by equal tangents. AX = AY . BD' = BX . and D'C' =Y ('

Hence

1 ) .
AX = AY = MX+AW:5MB+BX+YC+UU=%MB+BC+Gﬂ

Mo —



It follows that |
BD'= BX = AX — 4B = ;)—(BC’ =CA—-AB). ; (2]
Combining (1) and (2) yields BD" = C'Dy. Thus

BDy=BD)—DyDy = Doy — DyDy = CDy = B

[N

that 1s, D' = D5, as desired. =
Now we prove our main result. Let M; and M, be the respective midpoints of segments
BC and C'A. Then M, is also the midpoint of segment D, D,. from which it follows that
I'M;y is the midline of triangle D;QD». Hence

D, =21\, (3)
and ADs || My 1. Similarly. we can prove that BEy || Myl
A
M
/ G 2
B
P
Ez
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Let & be the centroid of triangle ABC. Thus segments AN, and BAL intersect at (5.
Define transformation Hy as the dialation with its center at G and ratio —1/2. Then
H>(A) = My and Hy(B) = Ms. Under the dilation. parallel lines go to parallel lines and
the intersection of two lines goes to the intersection of their images. Since AD, || M
and BE, || My[. H maps lines ADy and BE, to lines M [ and M,/ . respectively. It also
follows that Hy (/) = P and

]\[1 . Gj[l 1

AP AG T 2

or

AP = 2[M,. ()
Combining (3) and (1) yields
A0 = AP —QP=2IM, — QP =QDy— OP = PD,,.

as desired.

Note: We used three different diagrams of triangle ABC. Tach dingram was desgined to
assist the reader in understanding a particular part of the proof. We used directed lengths
of segements in our calculations to avoid possible complications caused by the different
shapes of triangle ABC'



3. Let a,b. and ¢ he nonnegative real numbers such that
P 2 2
a? + b 4+ + abe = 4.

Prove that
0 <ab+bec+ ca— abe < 2.

First Solution: From the condition, at least one of ¢, b, and ¢ does not exceed 1, sav
a <1. Then
ab+be+ca —abc = alb+¢) + be(l —a) > 0.

Now we prove the upper bound. Let us note that at least two of the three numbers a. b.
and ¢ are both greater than or equal to 1 or less than or equal to 1. Without loss of

generality. we assumme that the numbers with this property are b and ¢. Then we have

(1 =0)(1-¢)>0. (1)
The given equality a® 4+ b* + ¢ -+ abe = 4 and the inequality b* + ¢ > 2be imply that

a® +2bc+abe < 4, or be(2 4 a) < 4 — o
Dividing both sides of the last inequality by 2 + a vields
be <2 —a. (2

Combining (1) and (2) gives
ab+bct+ac—abe <ab+2—a+ac(l—0)=2—a(l+bc—b—c)=2—a(l —b)(l —¢) <2

as desired.

The last equality holds if and only if b = ¢ and a(1 = b)(1 — ¢) = 0. Hence equality for
the upper bound holds if and only if (. b.¢) is one of the triples (1.1.1). (0.2, \/E)
(v2,0.v2), and (v/2,v2,0). Equality for the lower bound holds if and only if (a.b.c) is

one of the triples (2.0.0). (0,2.0), and (0.0.2).

Second Solution: The proof for the lower bound is the same as in the first solution.
Now we prove the upper bound. It is clear that a.b.c < 2. If abe = 0. then the result is
trivial. Suppose that a.b,c > 0. Solving for a vields

—be+ /PP AP+ 2= 4] —be+ /=01 2)
a = = .
9 o

“ =

This asks for the trigonometric substitution b = 2sinu and ¢ = 2sinv. where 0° < .0 <
90°. Then
a = 2(—sinusinv + cosucosv) = 2 cos (1 + v),



and if we set v = B/2 and v = C/2. then a = 2sin (A/2). b = 2sin (B/2). and ¢ =

2sin (C'/2). where 4, B, and " are the angles of a triangle. We have

A B ) A B ] B A
ab = 4sin 5 s = 24/sin Atan - sin B tan 5 = 2¢/sin 4 tan & sin B tan 5

B A
< sin A tan -+ sin B tan - (by the AM-GM inequality)

<

B+C

A+C
= sin A cot 5— +sin Bcot

Likewise.

B+ A4 O+ A

be < sin B cot s T sin (' cot + ,

A+ B ) '+ B

ca < sin A cot :I; + sin C' cot + .
Therefore

. A+ B , . B+ o 4 C'+ 4
ab + be + ca < (sin A 4 sin B) cot 5— + (sin B +sin C) cot - j; + (sin C' 4 sin A4) cot jL
) A-B A+B B-C B+C C—A C+ A
= 2| cos 5 COS— + cos 5 08 ——— + Co8 COS

5 A B 5 ()
=2(cos A +cosB+cosC)=6—-4 <si11‘) 5 + sin? > + sin” ;)

=6—(a®+ b+ ) =2+ abe.

as desired.
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4. Let PP be a point in the plane of triangle ABC' such that the segments P4, PB. and PC
are the sides of an obtuse triangle. Assume that in this triangle the obtuse angle opposes
the side congruent to PA. Prove that ZBAC is acute.

First Solution: Let A be the origin. For a point Q. denote by ¢ the vector 10. and

4 v

denote by |g| the length of ¢. The given condictions may be written as
ip—b* +p—c? < IpP.
or
p-p+b-b+c-c—=2p-b—2p c<0.

Adding 2b - ¢ on both sides of the last inequality gives

2 9be

p—b—c

Since the left-hand side of the last inequality is nonnegative, the right-hand side is positive.
Hence

cos LBAC = u > ).
|b]]c|

that is., ZBAC is acute.

Second Solution:  For the sake of contradiction. let's assume to the contrary that
ZBAC is not acute. Let AB =c¢. BC' = a. and C 4 = b. Then a® > b +¢2. We claim that
the quadrilateral ABPC is convex. Now applying the generalized Ptolemy’s Theorem to
the convex quadrilateral ABPC yields

- PA<b-PB+c¢ - PC<VD2+VPR2+ P2 < a/PREEPCR,

where the second inequality is by Cauchy-Schwarz. This implies PA? < PB? + PC?. in
contradiction with the facts that PA, PB, and PC are the sides of an obtuse triangle and

PA>max{PB.PC}.

We present two arguments to prove our claim.

o First arqument Without loss of generality, we may assume that A. B. and (' are in
counterclockwise order. Let line ¢; and ¢, be the perpendicular bisectors of segments
AB and AC, respectively. Then ¢; and ¢, meet at O, the circumcenter of triangle
ABC. Lines £; and ¢, cut the plane into four regions and A is in the interior of one
of these regions. Since PA > PB and P4 > PC. P must be in the interior of the



region that opposes A. Since ZBAC is not acute. ray AC' does not meet ¢, and ray
AB does not meet 5. Hence 5 and ¢ must lie in the interiors of the regions adjacent
to A. Let Rx denote the region containing X. Then R,. Ry, Rp. and R are the
four regions in counterclockwise order. Since ZBAC > 90°. either O is on side BC'
or O and A are on opposite sides of line BC'. In either case P and A are on opposite
sides of line BC. Also, since ray AB does not meet €, and rav AC does not meet
¢y, it follows that Rp is entirely in the interior of ZBAC. Hence B and C' are on
opposite sides of AP. Therefore ABPC' is convex.

e Second argument Since PA > PB and P4 > PC'. A cannot be inside or on the
sides of triangle PBC. Since PA > PB, we have ZABP > /ZBAP and hence
ZBAC > 90° > ZBAP. Hence C' cannot be inside or on the sides of triangle BAP.
Symmetrically, B cannot be inside or on the sides of triangle C'AP. Finally since

ZABP > /ZBAP and ZACP > ZC' AP, we have
LABP + ZACP > ZBAC > 90° > ZABC + ZACB.

Therefore P cannot be in inside or on the sides of triangle ABC". Since this covers
all four cases, ABP(C' is convex.



5. Let S be a set of integers (not necessarily positive) such that

(A) there exist a,b € § with ged(a,b) = ged(a — 2.b - 2) = I

(B) if 2 and y are elements of S (possibly equal). then 22 — 3 also belongs to S.

Prove that S is the set of all integers.

Solution: In the solution below we use the expression S is stable under 2 — f(x) to
mean that if z belongs to S then f(z) also belongs to S. If ¢,d € S, then by (B), S is stable

under z — ¢ — x and x — d” — z, hence stable under = +— * — (d® — z) = & + (2 — d?).
. y . ) 9 .

Similarly S is stable under o+ z + (d* — ¢*). Hence S is stable under = — z + n and

x — x — n whenever n is an integer linear combination of numbers of the form ¢? — *

with ¢, d € . In particular, this holds for n = m, where m = ged{c? ~ d* : ¢,d € S}.

Since S # () by (A). it suffices to prove that m = l For the sake of contradiction. assume
that m # 1. Let p be a prime dividing mn. Then ¢ —d* =0 (mod p) for all e.d € S. In
other words. for each c.d € S, either d =¢  (mod p) or d = —¢ (mod p). Given ¢ e S,
—ceSby (Bl.so?—c=c (modp)ore?—c=—c (modp). Hence

For each c € S, either c=0 (mod p)orec=2 (mod p). (%)

By (A), there exist some a and b in S such that ged(a.b) = 1, that is. at least one of a

or b cannot be divisible by p. Denote such an element of S by a: thus. o # 0 (mod p).
Similarly, by (A). ged(a —2,b —2) = 1, so p cannot divide both a — 2 and b — 2. Thus.
there is an element of S, call it 4, such that 72 2 (mod p). By (¥). a =2 (mod p)

and =0 (modp). By (B), 32—« € S. Taking ¢ = 3* — a in (*) vielc ls cither =2 =0
(mod p) or =2 =2 (mod p), so p = 2. Now (%) says that all elements of S arc even,
contradicting (A). Hence our assumption is false and S is the set of all integers.



6. LEach point in the plane is assigned a real number such that, for any triangle. the munber
at the center of its inscribed circle is equal to the arithmetic mean of the three numbers
at its vertices. Prove that all points in the plane are assigned the same number.

Solution: We label each upper case point with the corresponding lower case letter as its
assigned number. The key step is the following lemma.

Lemma [f ABCD is an isosceles trapezoid. then a +c = b+ d.

Proof: Assume without loss of generality that BC' || AD. and that rays 48 and DC'
meet at F. Let I be the incenter of triangle PAC', and let line ¢ bisect ZAPD. Then [

is on £. so reflecting everything across line ¢ shows that [ is also the incenter of ttriangle

PDEB. Therefore.

p+a+c  p+b+d
3 3
Hence a + ¢ = b + d, as desired. -
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For any two distinct points 4; and Ay in the plane. we constrict a regular pentagon
Ardo A 450 Applying the lemma to isosceles trapezoids A, 4,445 and 4,444, .45
yields

ay+ay=as+a; and ay +ay = ay + as.

Hence a; = ay. Since A and Ay were arbitrary. all points in the plane are assigned the
satne number.
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