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JMO 1. Solution 1 We use the following lemma.

Lemma. Given a triangle ABC, X, Y, Z are points on BC, CA, AB respectively. Then
three perpendicular lines of BC, CA, AB which go through X, Y, Z respectively are con-
current if and only if AY 2 + BZ2 + CX2 = AZ2 + BX2 + CY 2.

Proof of Lemma. If the lines are concurrent, let P be the point on the three lines.
From BX2 − CX2 = (PB2 − PX2)− (PC2 − PX2) = PB2 − PC2 and so on, we obtain
the desired result. Conversely, if AY 2 + BZ2 + CX2 = AZ2 + BX2 + CY 2 holds, let Q
be the intersection of perpendicular lines of BC, CA which go through X, Y respectively.
Then as we have seen BX2 − CX2 = QB2 −QC2 and CY 2 − AY 2 = QC2 −QA2 holds.
Summing up these equations, we have AZ2 − BZ2 = QA2 −QB2. This implies that QZ
and AB are perpendicular, as desired. End of the Proof

Let M be the midpoint of SR. We show that AP 2 + BM2 + CQ2 = AQ2 + BP 2 + CM2.
Since AP = AQ, CQ2 = CR · CS, BP 2 = BS · BR, and BM2 − CM2 = (BM +
CM)(BM−CM) = BC(BS−RC), we have (AP 2+BM2+CQ2)−(AQ2+BP 2+CM2) =
BC(BS−RC)−BS ·BR+CR ·CS = BS ·CR−CR ·BC = 0. Thus there exists a point
O such that OP ⊥ BC, OQ ⊥ AC, OM ⊥ BC. Then O is the center of a circimcircle of
PRS, since the circle is tangent to AB at P . Similarly, O is the center of a circumcircle
of QRS, which implies that P, Q, R, S are on a circle.

Solution 2 By the given hypothesis, we have a circle Γ1 which passes through S and R,
and touches AB at P . Similarly, we have a circle Γ2 which passes through S and R, and
touches AC at Q. Suppose that the circles Γ1 and Γ2 are different from each other. Then
the power of A onto Γ1 is AP 2, and the power of A onto Γ2 is AQ2. This implies that A
is on the radical axis of Γ1 and Γ2, namely the line BC, which is a contradiction. Hence,
we have Γ1 = Γ2, so that P, Q, R, S are concyclic, as desired.

Solution 3 We use the same notations as in the Solution 2. Suppose again that Γ1 6= Γ2.
Let l be the perpendicular bisector of SR, and consider a circle γ passing through S and
R whose center is moving on l. Suppose that initially the center of γ is on the half plane
divided by BC in which A does not lie. Moving the center toward A, γ would touch AB
and AC, not simultaneously by the hypothesis. Without loss of generality, suppose that
γ touches AB at P first, and then touches AC at Q. Note that γ of these situations are
Γ1 and Γ2 respectively.

We increases the radius of Γ1, keeping the circle tangent to AB. Then it will touch
AC eventually. Let Γ′

1 be the circle, which is tangent to AB and AC at P and Q re-
spectively and meets BC at two points S ′ and R′. Note that on BC, the points are
ordered as B, S ′, S, R,R′, C. We have ∠BPS = ∠PRS and ∠BPS ′ = ∠PR′S ′, which
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imply ∠SPS ′ = ∠RPR′. Similarly, we have ∠SQS ′ = ∠RQR′. Without loss of gen-
erality, suppose that on the circle Γ′

1, the points are ordered as S ′, P, Q, R′. Let lines
PS, PR, QS,QR meet Γ′

1 again at T1, U1, T2, U2 respectively. Then the points on Γ′
1 are

ordered as S ′, T2, T1, U2, U1, R
′. From ∠SPS ′ = ∠RPR′ we have

_

S ′T1=
_

U1R
′ and from

∠SQS ′ = ∠RQR′, we have
_

S ′T2=
_

U2R
′. However, we have

_

S ′T2<
_

S ′T1=
_

U1R
′<

_

U2R
′, which

leads us to a contradiction. Hence, we have Γ1 = Γ2, as desired.

Solution 4 Let Γ3 be the circle tangent to AB and AC at P and Q respectively. Inverse
the plane around P . We denote by X ′ the image of any point or any set X via the inversion.
A′, P, B′ are collinear in this order, and the image of AC is a circle (AC)′ passing through
A′ and P . Then Γ′

3 is a line which is tangent to (AC)′ and parallel to A′P . Note that the
tangency point is Q′. Γ′

1 is a line parallel to A′P . Finally, B′, S ′, R′ are on a circle passing
through P , and S ′, R′ are on Γ′

1.

Suppose Γ1 6= Γ3. Then clearly we have Γ′
1 6= Γ′

3. Note that Q′ is on the perpendicular
bisector l of A′P . Since PB′R′S ′ is cyclic and PB′ and R′S ′ are parallel, it is an isosceles
trapezoid. Now we consider Γ′

2. This circle should be tangent to Γ′
1 at Q′, so the center

of Γ′
2 must lie on l. However, Since Γ′

2 passes through R′ and S ′, the center must lie on
the perpendicular bisector of R′S ′ which is the same as the one of PB′. Since A′ and B′

lie on the different ray centered on P , this is impossible. Therefore, we have Γ1 = Γ3, on
which P, Q, R, S lie.

Solution 5 In the case that AB = AC, suppose α = ∠BPS > ∠CQR = β. Let R′ be a
point on BC such that BS = R′C. We then have that two triangles BPS and CQR′ are
congruent. Hence, ∠CQR′ = α > β = ∠CQR, so that R lies between R′ and C. However,
then we have β = ∠QSC = ∠PR′S > ∠PRS = α, contradiction. Hence we have α = β,
so the trapezoid PQRS is isosceles, as desired.

Now suppose AB 6= AC, and PQ and BC meet at X. Without loss of generality, suppose
B > C so that B lies between X and C. Let AP = AQ = t,XB = x, BS = y, RC = z.
To deduce x, we apply Menelaus’ theorem to the triangle ABC and a line XPQ to obtain
AQ
QC

CX
XB

BP
PA

= 1. This yields x = c−t
b−c

a.

From the hypothesis, we have (c − t)2 = y(a − z) and (b − t)2 = z(a − y). From these

results, we have (c − t)2 − (b − t)2 = (y − z)a, so that y − z = (c−b)(b+c−2t)
a

. Hence, we
obtain

XS ·XR = (x + y)(x + a− z) = x2 + (a + y − z)x + (c− t)2

= x2 + (a +
(c− b)(b + c− 2t)

a
)x + (c− t)2

=
(c− t)2

(b− c)2
a2 +

c− t

b− c
a2 + (t− c)(b + c− 2t) + (c− t)2

=
(b− t)(c− t)

(b− c)2
a2 + (t− c)(b− t) =

(b− t)(c− t)

(b− c)2
(a2 − (b− c)2)

=
(b− t)(c− t)

(b− c)2
(a− b + c)(a + b− c).
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On the other hand, since ∠APQ = π−A
2

, we have ∠PXB = B−C
2

. Applying the Sine
theorem to the triangle XPB, we have x

sin π−A
2

= XP
sin B

⇔ XP = x sin B
cos A

2

. From Menelaus’

theorem again, we have QX
XP

PB
BA

AC
CQ

= 1, or equivalently XQ = XP c
c−t

b−t
b

. Hence, we have

XP ·XQ = x2 sin2 B

cos2 A
2

c(b− t)

b(c− t)

=
(c− t)2

(b− c)2
a2 ( b

2R
)2

(a+b+c)(−a+b+c)
4bc

c(b− t)

b(c− t)

=
(b− t)(c− t)

(b− c)2

a2b2c2

R2(a + b + c)(−a + b + c)

=
(b− t)(c− t)

(b− c)2

16R2S2

R2(a + b + c)(−a + b + c)

=
(b− t)(c− t)

(b− c)2
(a− b + c)(a + b− c),

where R is the circumradius of the triangle ABC and S is the area of the triangle ABC.
Since we have now that XP ·XQ = XS ·XR, the four points are concyclic, as desired.

Comment. It is a degenerated version of the following statement: if ABCDEF is a con-
vex hexagon and ABCD, CDEF , and EFAB are cyclic quadrilaterals, then ABCDEF
is a cyclic hexagon. This can be easily verified by the similar idea to the First and Second
solution.

This problem and solution were suggested by Sungyoon Kim and Inseok Seo.

JMO 2. First we prove that any n ≥ 13 is a solution of the problem. Suppose that a1, a2, ..., an

satisfy max(a1, a2, ..., an) ≤ n · min(a1, a2, ..., an), and that we cannot find three that are
the side-lengths of an acute triangle. We may assume that a1 ≤ a2 ≤ ... ≤ an. Then
a2

i+2 ≥ a2
i + a2

i+1 for all i ≤ n− 2. Let (Fn) be the Fibonacci sequence, with F1 = F2 = 1
and Fn+1 = Fn +Fn−1. It is easy to check that Fn < n2 for n ≤ 11, F12 = 122 and Fn > n2

for n > 12 (the last inequality follows by an immediate induction, while the first one can
be checked by hand). The inequality a2

i+2 ≥ a2
i + a2

i+1 and the fact that a1 ≤ a2 ≤ ... ≤ an

imply that a2
i ≥ Fi ·a2

1 for all i ≤ n. Hence, if n ≥ 13, we obtain a2
n > n2 ·a2

1, contradicting
the hypothesis. This shows that any n ≥ 13 is a solution of the problem.

By taking ai =
√

Fi for 1 ≤ i ≤ n, we have max(a1, a2, ..., an) ≤ n ·min(a1, a2, ..., an), for
any n < 13, but it is easy to see that no three ai’s can be the side-lengths of an acute
triangle. Hence the answer to the problem is: all n ≥ 13.

This problem and solution were suggested by Titu Andreescu.

JMO 3. Solution 1: Recall the following form of Cauchy-Schwarz inequality,

x2
1

y1

+
x2

2

y2

+ . . . +
x2

n

yn

≥ (x1 + x2 + . . . + xn)2

y1 + y2 + . . . + yn

.
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It also follows from the Cauchy-Schwarz inequality that x2
1 +x2

2 +x2
3 ≥ x1x2 +x2x3 +x3x1.

From these two inequalities, deduce that

a3

5a + b
+

b3

5b + c
+

c3

5c + a
=

a4

5a2 + ab
+

b4

5b2 + bc
+

c4

5c2 + ca

≥ (a2 + b2 + c2)2

5(a2 + b2 + c2) + (ab + bc + ca)

≥ 1

6
(a2 + b2 + c2).

The equality holds if and only if a = b = c.

This problem and solution were suggested by Titu Andreescu.

Solution 2: Note that

0 ≤ (41a + 83b) (a− b)2

= 41a3 + a2b− 125ab2 + 83b3,

which is equivalent to

(5a + b)
(
−a2 + 25b2

)
≤ 36

(
a3 + 3b3

)
.

Hence,
a3 + 3b3

5a + b
≥ − 1

36
a2 +

25

36
b2.

Adding this with two other analogous inequalities completes the proof.

Discovery: The solution can be discovered naturally. We start with guessing

a3 + 3b3

5a + b
≥ ta2 +

(
2

3
− t

)
b2,

and rewrite it into

(1− 5t)a3 − ta2b− 5

(
2

3
− t

)
ab2 +

(
7

3
+ t

)
b3 ≥ 0.

Wishing (a− b)2 to be a factor, we use synthetic division to write the left-hand side as

(a− b)2 [(1− 5t)a + (2− 11t)b]−
(

1

3
+ 12t

)
b3,

and get t = −1/36 by setting the remainder equal to 0.

This solution was suggested by Titu Andreescu and independently by Li Zhou, Polk State
College, Winter Haven, FL.

Solution 3:
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It is convenient to use the shorthand notation
∑

cyc ∗ to denote the sum of the three
expressions obtained from ∗ by cyclically permuting the variables a, b, c. For instance,∑

cyc

a4b = a4b + b4c + c4a.

In this notation, by clearing denominators, we may rewrite the desired inequality as

0 ≤
∑
cyc

(190a4b + 35a3b2 + 38ab4 − 35a2b3 − 168a3bc− 60a2b2c). (1)

It is tempting to attempt to prove this using Muirhead’s inequality, but this fails because
we are working with cyclic sums rather than symmetric sums. For instance, it is not true
that ∑

cyc

a4b ≥
∑
cyc

a3b2

(e.g., take (a, b, c) = (10, 7, 1)) even though Muirhead’s inequality does imply the corre-
sponding inequality for symmetric sums.

One must instead keep in mind not the statement of Muirhead’s inequality but its un-
derlying intuition: one should use “less mixed” monomials to dominate “more mixed”
monomials. We will see two key techniques for realizing this intuition in the following
argument. (Note that the breakdown we will give is in no way unique; there is some
flexibility in the choice of how to separate (1) into tractable pieces.)

We first use what one might call a “sum of squares” argument: writing down cyclic sums
of manifestly nonnegative expressions in order to match a few of the terms in (1). For
instance, the following inequalities are all valid:

0 ≤
∑
cyc

84a2b(a− c)2 =
∑
cyc

(84a4b− 168a3bc + 84a2b2c), (2)

0 ≤
∑
cyc

35

2
ab2(a− b)2 =

∑
cyc

(
35

2
a3b2 − 35a2b3 +

35

2
ab4

)
, (3)

0 ≤
∑
cyc

35

2
ab2(a− c)2 =

∑
cyc

(
35

2
a3b2 − 35a2b2c +

35

2
ab2c2

)
, (4)

and these completely account for the summands 35a3b2,−35a2b3,−168a3bc in (1). We
would like to add (2), (3), (4), and one more true inequality to get (1); that final inequality
then would have to be

0 ≤
∑
cyc

(
177

2
a4b + 38ab4 − 253

2
a2b2c

)
. (5)

This inequality does not immediately present itself as a sum of squares, so we resort to
a second technique: the weighted arithmetic-geometric mean inequality. This inequality
implies that for any nonnegative real numbers u, v, w adding up to 1,∑

cyc

a4b =
∑
cyc

(ua4b + vb4c + wc4a) ≥
∑
cyc

a4u+wbu+4vcv+4w.
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We may then deduce that ∑
cyc

a4b ≥
∑
cyc

a2b2c (6)

by solving the linear equations

4u + w = 2, u + 4v = 2, v + 4w = 1

and discovering that the unique real solution

(u, v, w) =

(
6

13
,

5

13
,

2

13

)
consists of nonnegative real numbers. (It is not necessary to check separately that the three
numbers add up to 1, because adding the three given equations together gives 5(u+v+w) =
5.) By switching a and b, we also obtain the valid inequality∑

cyc

ab4 ≥
∑
cyc

a2b2c. (7)

Adding 177/2 times (6) by 177/2 plus 38 times (7) then gives (5), so this inequality is
also valid. As noted earlier, we may then add (5) to (2), (3), (4) to obtain the desired
inequality (1).

This solution was adapted and refined by Kiran Kedlaya from several students’ solutions.

JMO 4. Observe that since α is irrational no two of the points will coincide. It will be useful
to define the auxiliary point P0 such that the length of arc P0P1 is α, when travelling
counter-clockwise around the circle from P0 to P1. We begin by noting that for any n ≥ 3,
if a + b = n then P0 lies on the arc from Pa to Pb containing Pn. For if we travel back
(clockwise) around the circle through a distance of bα from Pn then we reach Pa. The same
translation must map Pb to P0, and since Pn is situated between Pa and Pb, we deduce
that P0 must be also.

The claim is clearly true for n = 3. Now suppose to the contrary that for some value of n
we have a+ b > n and consider the minimal such counterexample. If in fact a+ b > n+1,
then we may translate the three points Pa, Pb, and Pn clockwise around the circle through
a distance α to find points Pa−1 and Pb−1 adjacent to Pn−1 on either side. But then we
would have (a − 1) + (b − 1) > (n − 1) for this trio of points, which contradicts our
assumption that n was the minimal counterexample.

Therefore we must have a+ b = n+1. Again we translate points Pa, Pb, and Pn clockwise
around the circle through a distance α to obtain points Pa−1 and Pb−1 adjacent to Pn−1

on either side with (a− 1)+ (b− 1) = (n− 1). By our earlier observation this implies that
P0 lies on the arc from Pa−1 to Pb−1 containing Pn−1. But now translating forward again,
we conclude that P1 lies on the arc from Pa to Pb containing Pn, contradicting the fact
that Pa and Pb were the nearest adjacent points to Pn on either side. This completes the
proof.

This problem and solution were suggested by Sam Vandervelde.
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JMO 5. For simplicity, we will define g(n) to be n (mod 2012). Note that g(ak)+g(a(2012−k)) is
either 0 or 2012; it is 0 exactly when 2012 divides ak. This means that for 1 ≤ k ≤ 1005,
the number of elements i in {k, 2012− k} such that ai (mod 2012) > bi (mod 2012) is

0 if g(ak) = 0 or g(ak) = g(bk);

2 if g(bk) = 0 and g(ak) 6= 0;

1 otherwise.

Let T = {1, 2, . . . , 1005}. Note that the condition g(ak) = g(bk) is equivalent to g((a −
b)k) = 0. We will try to choose a, b so as to maximize the number of numbers k in T such
that the first of the three cases occurs. From the prime factorization 2012 = 2 · 2 · 503,
the proper divisors of 2012 are 1, 2, 4, 503, and 1006. We shall choose a and a− b to be
multiples of some of these numbers. It is not hard to verify that we can choose a to be a
multiple of 1006 and a− b to be a multiple of 4. We will take a = 1006 and b = 1002.

With this choice of a and b, the second of the three cases (i.e. g(bk) = 0 and g(ak) 6= 0)
never occurs, hence minimizing the number of elements i in T − {1006} such that ai
(mod 2012) > bi (mod 2012). Moreover, g(1006a) = 0, meaning that g(1006a) > g(1006b)
does not hold. This means that our choice of a and b minimizes f(a, b).

Note that g(1006k) = 0 occurs for 502 values in T , and g(1006k) = g(1002k) occurs for 1
value in T . No value in T satisfies both condition. Hence S = 1005− 502− 1 = 502.

Note: Similarly, we can solve the problem in which 2012 is replaced by any positive integer
n ≥ 3. The answer is

n

2

(
1− 1

p

)
if n = pk for some prime p;

n

2

(
1− 1

p1

) (
1− 1

p2

)
otherwise, where p1 and p2 are the two smallest prime divisors of n.

It is worth noting that the answer depends on no more than two prime divisors of n. Hence
it might be interesting to ask the question for a value of n with at least three distinct prime
divisors, or for all n.

This problem and solution were suggested by Warut Suksompong.

JMO 6. Solution 1: The proof is split into two cases.
Case 1: P is on the circumcircle of ABC. Then P is the Miquel point of A′, B′, C ′

with respect to ABC. Indeed, because ∠A′B′C ′ = ∠CBA = ∠CPA = ∠A′PC ′, points
P , A′, B′, C ′ are concyclic, and the same can be said for P , A, B′, C ′ and P , A′, B′, C.
Hence ∠CA′B′ = ∠CPB′ = ∠BPC ′ = ∠BA′C ′, so A′B′C ′ are collinear.
Case 2: P is not on the circumcircle of ABC. Let Q be isogonal conjugate of P with
respect to ABC (which is not degenerate).
Claim. Let Q′ be the isogonal conjugate of P with respect to AB′C ′. Then Q = Q′.
Proof of the claim. Note that

∠BQC = ∠BAC + ∠CPB (because P and Q are isogonal conjugates in ABC)
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= ∠C ′AB′ + ∠B′PC
′

= ∠C ′Q′B′ (because P and Q are isogonal conjugates in AB′C ′).

Let X, Y , Z denote the reflections of P in sides BC, CA, AB, respectively, and let X ′

denote P ’s reflection in side B′C ′ of triangle AB′C ′. Then ∠ZXY = ∠BQC (because QC
is orthogonal to XY and QB is orthogonal to XZ), whereas ∠ZX ′Y ′ = ∠C ′Q′B′ because
Q′B′ is orthogonal to X ′Y and Q′C ′ is orthogonal to X ′Z and Q′C ′ is orthogonal to X ′Z,
so since ∠C ′Q′B′ = ∠BQC, we get ∠ZXY = ∠ZX ′Y . It follows that X, Y , Z, X ′ are
concyclic. The center of the XY Z-circle is Q while the center of the X ′Y ′Z-circle is Q′.
Thus Q = Q′.

Note. We have made use of the well-known fact that the circumcenter of the triangle
determined by the reflections of a point across the sidelines of another given triangle is
precisely the isogonal conjugate of the point with respect to that triangle. For a proof see
R. A. Johnson, Advanced Euclidean Geometry, 1929 ed., reprinted by Dover, 2007.

Similar arguments show that Q is also the isogonal point of P with respect to triangles
A′BC ′ and A′B′C. Therefore,

∠BC ′A′ = ∠AC ′A′ = ∠AC ′P + ∠PC ′Q + ∠QC ′A′

= ∠QC ′B′ + ∠PC ′Q + ∠BC ′P

= ∠BC ′B′ = ∠AC ′B′.

This means that A′, B′, C ′ are collinear. �

This problem and solution were suggested by Titu Andreescu and Cosmin Pohoata.

Solution 2: It’s easy to see (say, by law of sines) that

AC ′

BC ′ =
AP sin ∠APC ′

BP sin ∠BPC ′ ,
BA′

CA′ =
BP sin ∠BPA′

CP sin ∠CPA′ ,
CB′

AB′ =
CP sin ∠CPB′

AP sin ∠APB′ .

The construction of A′, B′, C ′ by reflections implies that

sin ∠APC ′ = sin ∠CPA′, sin ∠BPC ′ = sin ∠CPB′, sin ∠BPC ′ = sin ∠CPB′.

Hence,
AC ′

BC ′ ·
BA′

CA′ ·
CB′

AB′ = 1,

and the proof is complete by Menelaus’ theorem.

This second solution was suggested by Li Zhou, Polk State College, Winter Haven FL.
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