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Remark: The general philosophy of this marking scheme follows that of IMO 2002. This scheme
encourages complete solutions. Partial credits will be given under more strict circumstances. Each
solution by students shall be graded from one of the two approaches: (1) from 7 going down (a
complete solution with possible minor errors); (2) from 0 going up (a solution missing at least one
critical idea.) Most partial credits are not additive. Because there are many results need to be
proved progressively in problem 3, most partial credits in this problem are accumulative. Many
problems have different approaches. Graders are encouraged to choose the approach that most
favorable to students. But the partial credits from different approaches are not additive.

1. Prove that for every positive integer n there exists an n-digit number divisible by 5n all of
whose digits are odd.

Solution: We proceed by induction. The property is clearly true for n = 1. Assume that
N = a1a2 . . . an is divisible by 5n and has only odd digits. Consider the numbers

N1 = 1a1a2 . . . an = 1 · 10n + 5nM = 5n(1 · 2n + M),
N2 = 3a1a2 . . . an = 3 · 10n + 5nM = 5n(3 · 2n + M),
N3 = 5a1a2 . . . an = 5 · 10n + 5nM = 5n(5 · 2n + M),
N4 = 7a1a2 . . . an = 7 · 10n + 5nM = 5n(7 · 2n + M),
N5 = 9a1a2 . . . an = 9 · 10n + 5nM = 5n(9 · 2n + M).

The numbers 1 · 2n + M, 3 · 2n + M, 5 · 2n + M, 7 · 2n + M, 9 · 2n + M give distinct remainders
when divided by 5. Otherwise the difference of some two of them would be a multiple of
5, which is impossible, because 2n is not a multiple of 5, nor is the difference of any two of
the numbers 1, 3, 5, 7, 9. It follows that one of the numbers N1, N2, N3, N4, N5 is divisible by
5n · 5, and the induction is complete.



2. A convex polygon P in the plane is dissected into smaller convex polygons by drawing all of
its diagonals. The lengths of all sides and all diagonals of the polygon P are rational numbers.
Prove that the lengths of all sides of all polygons in the dissection are also rational numbers.

Solution: Let P = A1A2 . . . An, where n is an integer with n ≥ 3. The problem is trivial
for n = 3 because there are no diagonals and thus no dissections. We assume that n ≥ 4.
Our proof is based on the following Lemma.

Lemma 1. Let ABCD be a convex quadrilateral such that all its sides and diagonals have
rational lengths. If segments AC and BD meet at P , then segments AP , BP , CP , DP all
have rational lengths.
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It is clear by Lemma 1 that the desired result holds when P is a convex quadrilateral. Let
AiAj (1 ≤ i < j ≤ n) be a diagonal of P. Assume that C1, C2, . . . , Cm are the consecutive
division points on diagonal AiAj (where point C1 is the closest to vertex Ai and Cm is the
closest to Aj). Then the segments C`C`+1, 1 ≤ ` ≤ m− 1, are the sides of all polygons in the
dissection. Let C` be the point where diagonal AiAj meets diagonal AsAt. Then quadrilateral
AiAsAjAt satisfies the conditions of Lemma 1. Consequently, segments AiC` and C`Aj have
rational lengths. Therefore, segments AiC1, AiC2, . . . , AjCm all have rational lengths. Thus,
C`C`+1 = AC`+1 − AC` is rational. Because i, j, ` are arbitrarily chosen, we proved that all
sides of all polygons in the dissection are also rational numbers.

Now we present four proofs of Lemma 1 to finish our proof.

• First approach We show only that segment AP is rational, the others being similar.
Introduce Cartesian coordinates with A = (0, 0) and C = (c, 0). Put B = (a, b) and
D = (d, e). Then by hypothesis, the numbers

AB =
√

a2 + b2, AC = c, AD =
√

d2 + e2,

BC =
√

(a− c)2 + b2, BD =
√

(a− d)2 + (b− e)2, CD =
√

(d− c)2 + e2,

are rational. In particular,

BC2 −AB2 −AC2 = (a− c)2 + b2 − (a2 + b2)− c2 = 2ac

is rational. Because c 6= 0, a is rational. Likewise d is rational.
Now we have that b2 = AB2−a2, e2 = AD2−d2, (b−e)2 = BD2− (a−d)2 are rational,
and so that 2be = b2 + e2 − (b− e)2 is rational. Because quadrilateral ABCD is convex,
b and e are nonzero and have opposite sign. Hence b

e = 2be
2b2

is rational.
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We now calculate

P =
(

bd− ae

b− e
, 0

)
,

so

AP =
b
e · d− a

b
e − 1

is rational.

• Second approach

Note that, for an angle α, if cos α is rational, then sinα = rα
√

mα for some rational r and
square-free positive integer m (and this expression is unique when r is written in the lowest
term). We say two angles α and β with rational cosine are equivalent if mα = mβ, that is, if
sinα/ sinβ is rational. We establish the following lemma.

Lemma 2. Let α and β be two angles.

(a) If α, β and α + β all have rational cosines, then all three are equivalent.

(b) If α and β have rational cosine values and are equivalent, then α+β has rational cosine
value (and is equivalent to the other two).

(c) If α, β and γ are the angles of a triangle with rational sides, then all three have rational
cosine values and are equivalent.

Proof: Assume that cosα = s and cosβ = t.

(a) Assume that s and t are rational. By the Addition formula, we have

cos(α + β) = cos α cosβ − sinα sinβ, (∗)
or, sin α sinβ = st− cos(α + β), which is rational by the given conditions. Hence α and
β are equivalent. Thus sinα = ra

√
m and sinβ = rb

√
m for some rational numbers ra

and rb and some positive square free integer m. By the Addition formula, we have

sin(α + β) = sinα cosβ + cosα sinβ = (tra + srb)
√

m,

implying that α + β is equivalent to both α and β.

(b) By (∗), cos(α + β) is rational if s, t are rational and α and β are equivalent. Then by
(a), α, β, α + β are equivalent.

(c) Applying the Law of Cosine to triangle ABC shows that cosα, cos β and cos γ are all
rational. Note that cos γ = cos(180◦ − α − β) = − cos(α + β). The desired conclusions
follow from (a).
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We say a triangle rational if all its sides are rational. By Lemma 2 (c), all the angles in
a rational triangle have rational cosine values and are equivalent to each other. To prove
Lemma 1, we set ∠DAC = A1, ∠CAB = A2, ∠ABD = B1, ∠DBC = B2, ∠BCA = C1,
∠ACD = C2, ∠CDB = D1, ∠BDA = D2. Because triangles ABC, ABD, ADC are
rational, angles A2, A1 + A2, A1 all have rational cosine values. By Lemma 2 (a), A1 and
A2 are equivalent. Similarly, we can show that B1 and B2, C1 and C2, D1 and D2 are
equivalent. Because triangle ABC is rational, angles A2 and C1 are equivalent. There all
angles A1, A2, B1, . . . , D2 have rational cosine values and are equivalent.

Because angles A2 and B1 are equivalent, angle A2 +B1 has rational values and is equivalent
to A2 and B1. Thus, ∠APB = 180◦ − (A2 + B1) has rational cosine value and is equivalent
to A2 and B1. Apply the Law of Sine to triangle ABP gives

AB

sin∠APB
=

AP

sin∠B1
=

BP

sin∠A2
,

implying that both AP and BP have rational length. Similarly, we can show that both CP
and DP has rational length, proving Lemma 1.

• Third approach This approach applies the techniques used in the first approach into the
second approach. To prove Lemma 1, we set ∠DAP = A1 and ∠BAP = A2. Applying
the Law of Cosine to triangle ABC, ABC, ADC shows that angles A1, A2, A1 + A2 all has
rational cosine values. By the Addition formula, we have

sinA1 sinA2 = cosA1 cosA2 − cos(A1 + A2),

implying that sinA1 sinA2 is rational.

Thus,
sinA2

sinA1
=

sinA2 sinA1

sin2 A1
=

sinA2 sinA1

1− cos2 A1

is rational.

Note that the ratio between areas of triangle ADP and ABP is equal to PD
BP . Therefore,

BP

PD
=

[ABP ]
[ADP ]

=
1
2AB ·AP · sinA2

1
2AD ·AP · sinA1

=
AB

AD
· sinA2

sinA1
,

implying that PD
BP is rational. Because BP + PD = BD is rational, both BP and PD are

rational. Similarly, AP and PC are rational, proving Lemma 1.
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• Fourth approach This approach is based on the following lemma.

Lemma 3. Let ABC be a triangle, D be a point on side AC, φ1 = ∠DAB, φ2 = ∠DBA,
φ3 = ∠DBC, φ4 = ∠DCB, AB = c, BC = a, AD = x, and DC = y. If the numbers a, c,
and cosφi (1 ≤ i ≤ 4) are all rational, then numbers x and y are also rational.

A
C

B

D

Proof: Note that x + y = AC = c cosφ1 + a cosφ4 is rational. Hence x is rational if and
only if y is rational. Let BD = z. Projecting point D onto the lines AB and BC yields

{
x cosφ1 + z cosφ2 = c,
y cosφ4 + z cosφ3 = a,

or, denoting ci = cosφi for i = 1, 2, 3, 4,
{

c1x + c2z = c,
c4y + c3z = a.

Eliminating z, we get (c1c3)x − (c2c4)y = c3c − c2a, which is rational. Hence there exist
rational numbers, r1 and r2, such that

{
(c1c3)x− (c2c4)y = r1,
x + y = r2.

We consider two cases.

• In this case, we assume that the determinant of the above system, c1c3 + c2c4, is not
equal to 0, then this system has a unique solution (x, y) in rational numbers.

• In this case, we assume that the determinant c1c3 + c2c4 = 0, or

cosφ1 cosφ3 = − cosφ2 cosφ4.

Let’s denote θ = ∠BDC, then φ2 = θ − φ1 and φ3 = 180◦ − (θ + φ4). Then the above
equation becomes

cosφ1 cos(θ + φ4) = cosφ4 cos(θ − φ1).



by the Product-to-sum formulas, we have

cos(θ + φ1 + φ4) + cos(θ + φ4 − φ1) = cos(θ + φ4 − φ1) + cos(θ − φ1 − φ4),

or
cos(θ + φ1 + φ4) = cos(θ − φ1 − φ4).

It is possible only if [θ + φ1 + φ4] ± [θ − φ1 − φ4] = 360◦, that is, either θ = 180◦ or
φ1 + φ4 = 180◦, which is impossible because they are angles of triangles.

Thus, the determinant c1c3 + c2c4 is not equal to 0 and x and y are both rational numbers.

Now we are ready to prove Lemma 1. Applying the Law of Cosine to triangles ABC, ACD, ABD
shows that cos∠BAC, cos∠CAD, cos∠ABD, cos∠ADB are all rational. Applying Lemma
1 to triangle ABD shows that both of the segments BP and DP have rational lengths. In
exactly the same way, we can show that both of the segments AP and CP have rational
lengths.

Note: It’s interesting how easy it is to get a gap in the proof of the Lemma 1 by using the
core idea of the proof of Lemma 3. Here is an example.

Let us project the intersection point of the diagonals, O, onto the four lines of all sides of the
quadrilateral. We get the following 4× 4 system of linear equations:





cosφ1 x + cosφ2y = a,
cosφ3y + cosφ4z = b,
cosφ5z + cos φ6t = c,
cosφ7t + cosφ8x = d.

Using the Kramer’s Rule, we conclude that all x, y, z, and t must be rational numbers,
for all the corresponding determinants are rational. However, this logic works only if the
determinant of the system is different from 0.

Unfortunately, there are many geometric configurations for which the determinant of the
system vanishes (for example, this occurs for rectangles), and you cannot make a conclusion
of rationality of the segments x, y, z, and t. That’s why Lemma 2 plays the central role in
the solution to this problem.



3. Let n 6= 0. For every sequence of integers

A = a0, a1, a2, . . . , an

satisfying 0 ≤ ai ≤ i, for i = 0, . . . , n, define another sequence

t(A) = t(a0), t(a1), t(a2), . . . , t(an)

by setting t(ai) to be the number of terms in the sequence A that precede the term ai and are
different from ai. Show that, starting from any sequence A as above, fewer than n applications
of the transformation t lead to a sequence B such that t(B) = B.

Solution: Note first that the transformed sequence t(A) also satisfies the inequalities
0 ≤ t(ai) ≤ i, for i = 0, . . . , n. Call any integer sequence that satisfies these inequalities an
index bounded sequence.

We prove now that that ai ≤ t(ai), for i = 0, . . . , n. Indeed, this is clear if ai = 0. Otherwise,
let x = ai > 0 and y = t(ai). None of the first x consecutive terms a0, a1, . . . , ax−1 is greater
than x−1 so they are all different from x and precede x (see the diagram below). Thus y ≥ x,
that is, ai ≤ t(ai), for i = 0, . . . , n.

index 0 1 . . . x− 1 . . . i

A a0 a1 . . . ax−1 . . . x
t(A) t(a0) t(a1) . . . t(ax−1) . . . y

This already shows that the sequences stabilize after finitely many applications of the trans-
formation t, because the value of the index i term in index bounded sequences cannot exceed
i. Next we prove that if ai = t(ai), for some i = 0, . . . , n, then no further applications of t
will ever change the index i term. We consider two cases.

• In this case, we assume that ai = t(ai) = 0. This means that no term on the left of ai

is different from 0, that is, they are all 0. Therefore the first i terms in t(A) will also be
0 and this repeats (see the diagram below).

index 0 1 . . . i

A 0 0 . . . 0
t(A) 0 0 . . . 0

• In this case, we assume that ai = t(ai) = x > 0. The first x terms are all different
from x. Because t(ai) = x, the terms ax, ax+1, . . . , ai−1 must then all be equal to x.
Consequently, t(aj) = x for j = x, . . . , i− 1 and further applications of t cannot change
the index i term (see the diagram below).

index 0 1 . . . x− 1 x x + 1 . . . i

A a0 a1 . . . ax−1 x x . . . x
t(A) t(a0) t(a1) . . . t(ax−1) x x . . . x

For 0 ≤ i ≤ n, the index i entry satisfies the following properties: (i) it takes integer values;
(ii) it is bounded above by i; (iii) its value does not decrease under transformation t; and (iv)
once it stabilizes under transformation t, it never changes again. This shows that no more
than n applications of t lead to a sequence that is stable under the transformation t.



Finally, we need to show that no more than n− 1 applications of t is needed to obtain a fixed
sequence from an initial n + 1-term index bounded sequence A = (a0, a1, . . . , an). We induct
on n.

For n = 1, the two possible index bounded sequences (a0, a1) = (0, 0) and (a0, a1) = (0, 1)
are already fixed by t so we need zero applications of t.

Assume that any index bounded sequences (a0, a1, . . . , an) reach a fixed sequence after no more
than n − 1 applications of t. Consider an index bounded sequence A = (a0, a1, . . . , an+1).
It suffices to show that A will be stabilized in no more than n applications of t. We ap-
proach indirectly by assume on the contrary that n + 1 applications of transformations are
needed. This can happen only if an+1 = 0 and each application of t increased the index
n + 1 term by exactly 1. Under transformation t, the resulting value of index term i will not
the effected by index term j for i < j. Hence by the induction hypothesis, the subsequence
A′ = (a0, a1, . . . , an) will be stabilized in no more than n−1 applications of t. Because index n
term is stabilized at value x ≤ n after no more than min{x, n−1} applications of t and index
n + 1 term obtains value x after x exactly applications of t under our current assumptions.
We conclude that the index n+1 term would become equal to the index n term after no more
than n − 1 applications of t. However, once two consecutive terms in a sequence are equal
they stay equal and stabilize together. Because the index n term needs no more than n − 1
transformations to be stabilized, A can be stabilized in no more than n − 1 applications of
t, which contradicts our assumption of n + 1 applications needed. Thus our assumption was
wrong and we need at most n applications of transformation t to stabilize an (n + 1)-term
index bounded sequence. This completes our inductive proof.



4. Let ABC be a triangle. A circle passing through A and B intersects segments AC and BC
at D and E, respectively. Rays BA and ED intersect at F while lines BD and CF intersect
at M . Prove that MF = MC if and only if MB ·MD = MC2.

First Solution: Extend segment DM through M to G such that FG ‖ CD.
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Then MF = MC if and only if quadrilateral CDFG is a parallelogram, or, FD ‖ CG. Hence
MC = MF if and only if ∠GCD = ∠FDA, that is, ∠FDA + ∠CGF = 180◦.

Because quadrilateral ABED is cyclic, ∠FDA = ∠ABE. It follows that MC = MF if and
only if

180◦ = ∠FDA + ∠CGF = ∠ABE + ∠CGF,

that is, quadrilateral CBFG is cyclic, which is equivalent to

∠CBM = ∠CBG = ∠CFG = ∠DCF = ∠DCM.

Because ∠DMC = ∠CMB, ∠CBM = ∠DCM if and only if triangles BCM and CDM are
similar, that is

CM

BM
=

DM

CM
,

or MB ·MD = MC2.

Second Solution:

We first assume that MB · MD = MC2. Because MC
MD = MB

MC and ∠CMD = ∠BMC,
triangles CMD and BMC are similar. Consequently, ∠MCD = ∠MBC.

Because quadrilateral ABED is cyclic, ∠DAE = ∠DBE. Hence

∠FCA = ∠MCD = ∠MBC = ∠DBE = ∠DAE = ∠CAE,
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implying that AE ‖ CF , so ∠AEF = ∠CFE. Because quadrilateral ABED is cyclic,
∠ABD = ∠AED. Hence

∠FBM = ∠ABD = ∠AED = ∠AEF = ∠CFE = ∠MFD.

Because ∠FBM = ∠DFM and ∠FMB = ∠DMF , triangles BFM and FDM are similar.
Consequently, FM

DM = BM
FM , or FM2 = BM · DM = CM2. Therefore MC2 = MB · MD

implies MC = MF .

Now we assume that MC = MF . Applying Ceva’s Theorem to triangle BCF and cevians
BM , CA, FE gives

BA

AF
· FM

MC
· CE

EB
= 1,

implying that BA
AF = BE

EC , so AE ‖ CF .

Consequently, ∠DCM = ∠DAE. Because quadrilateral ABED is cyclic, ∠DAE = ∠DBE.
Hence

∠DCM = ∠DAE = ∠DBE = ∠CBM.

Because ∠CBM = ∠DCM and ∠CMB = ∠DMC, triangles BCM and CDM are similar.
Consequently, CM

DM = BM
CM , or CM2 = BM ·DM .

Combining the above, we conclude that MF = MC if and only if MB ·MD = MC2.



5. Let a, b, c be positive real numbers. Prove that

(2a + b + c)2

2a2 + (b + c)2
+

(2b + c + a)2

2b2 + (c + a)2
+

(2c + a + b)2

2c2 + (a + b)2
≤ 8.

First Solution: By multiplying a, b, and c by a suitable factor, we reduce the problem to
the case when a + b + c = 3. The desired inequality reads

(a + 3)2

2a2 + (3− a)2
+

(b + 3)2

2b2 + (3− b)2
+

(c + 3)2

2c2 + (3− c)2
≤ 8.

Set

f(x) =
(x + 3)2

2x2 + (3− x)2

It suffices to prove that f(a) + f(b) + f(c) ≤ 8. Note that

f(x) =
x2 + 6x + 9

3(x2 − 2x + 3)
=

1
3
· x2 + 6x + 9
x2 − 2x + 3

=
1
3

(
1 +

8x + 6
x2 − 2x + 3

)
=

1
3

(
1 +

8x + 6
(x− 1)2 + 2

)

≤ 1
3

(
1 +

8x + 6
2

)
=

1
3
(4x + 4).

Hence,

f(a) + f(b) + f(c) ≤ 1
3
(4a + 4 + 4b + 4 + 4c + 4) = 8,

as desired.

Second Solution: Note that

(2x + y)2 + 2(x− y)2 = 4x2 + 4xy + y2 + 2x2 − 4xy + 2y2

= 3(2x2 + y2).

Setting x = a and y = b + c yields

(2a + b + c)2 + 2(a− b− c)2 = 3(2a2 + (b + c)2).

Thus, we have

(2a + b + c)2

2a2 + (b + c)2
=

3(2a2 + (b + c)2)− 2(a− b− c)2

2a2 + (b + c)2
= 3− 2(a− b− c)2

2a2 + (b + c)2
.

and its analogous forms. Thus, the desired inequality is equivalent to

(a− b− c)2

2a2 + (b + c)2
+

(b− a− c)2

2b2 + (c + a)2
+

(c− a− b)2

2c2 + (a + b)2
≥ 1

2
.

Because (b+ c)2 ≤ 2(b2 + c2), we have 2a2 +(b+ c)2 ≤ 2(a2 + b2 + c2) and its analogous forms.
It suffices to show that

(a− b− c)2

2(a2 + b2 + c2)
+

(b− a− c)2

2(a2 + b2 + c2)
+

(c− a− b)2

2(a2 + b2 + c2)
≥ 1

2
,



or,
(a− b− c)2 + (b− a− c)2 + (c− a− b)2 ≥ a2 + b2 + c2. (1)

Multiplying this out the left-hand side of the last inequality gives 3(a2+b2+c2)−2(ab+bc+ca).
Therefore the inequality (1) is equivalent to 2[a2 + b2 + c2 − (ab + bc + ca)] ≥ 0, which is
evident because

2[a2 + b2 + c2 − (ab + bc + ca)] = (a− b)2 + (b− c)2 + (c− a)2.

Equalities hold if (b + c)2 = 2(b2 + c2) and (c + a)2 = 2(c2 + a2), that is, a = b = c.

Third Solution: Given a function f of three variables, define the cyclic sum
∑
cyc

f(p, q, r) = f(p, q, r) + f(q, r, p) + f(r, p, q).

We first convert the inequality into

2a(a + 2b + 2c)
2a2 + (b + c)2

+
2b(b + 2c + 2a)
2b2 + (c + a)2

+
2c(c + 2a + 2b)
2c2 + (a + b)2

≤ 5.

Splitting the 5 among the three terms yields the equivalent form

∑
cyc

4a2 − 12a(b + c) + 5(b + c)2

3[2a2 + (b + c)2]
≥ 0. (2)

The numerator of the term shown factors as (2a−x)(2a−5x), where x = b+ c. We will show
that

(2a− x)(2a− 5x)
3(2a2 + x2)

≥ −4(2a− x)
3(a + x)

. (3)

Indeed, (3) is equivalent to

(2a− x)[(2a− 5x)(a + x) + 4(2a2 + x2)] ≥ 0,

which reduces to

(2a− x)(10a2 − 3ax− x2) = (2a− x)2(5a + x) ≥ 0,

evident. We proved that

4a2 − 12a(b + c) + 5(b + c)2

3[2a2 + (b + c)2]
≥ −4(2a− b− c)

3(a + b + c)
,

hence (2) follows. Equality holds if and only if 2a = b + c, 2b = c + a, 2c = a + b, i.e., when
a = b = c.

Fourth Solution: Given a function f of three variables, we define the symmetric sum
∑
sym

f(x1, . . . , xn) =
∑

σ

f(xσ(1), . . . , xσ(n))



where σ runs over all permutations of 1, . . . , n (for a total of n! terms). For example, if n = 3,
and we write x, y, z for x1, x2, x3,

∑
sym

x3 = 2x3 + 2y3 + 2z3

∑
sym

x2y = x2y + y2z + z2x + x2z + y2x + z2y

∑
sym

xyz = 6xyz.

We combine the terms in the desired inequality over a common denominator and use sym-
metric sum notation to simplify the algebra. The numerator of the difference between the
two sides is

∑
sym

8a6 + 8a5b + 2a4b2 + 10a4bc + 10a3b3 − 52a3b2c + 14a2b2c2.

Recalling Schur’s Inequality, we have

a3 + b3 + c3 + 3abc− (a2b + b2c + ca + ab2 + bc2 + ca2)
= a(a− b)(a− c) + b(b− a)(b− c) + c(c− a)(c− b) ≥ 0,

or ∑
sym

a3 − 2a2b + abc ≥ 0.

Hence,
0 ≤ 14abc

∑
sym

a3 − 2a2b + abc = 14
∑
sym

a4bc− 28a3b2c + 14a2b2c2

and by repeated AM-GM Inequality,

0 ≤
∑
sym

4a6 − 4a4bc

(because a46 + a6 + a6 + a6 + b6 + c6 ≥ 6a4bc and its analogous forms)

and
0 ≤

∑
sym

4a6 + 8a5b + 2a4b2 + 10a3b3 − 24a3b2c.

Adding these three inequalities yields the desired result.



6. At the vertices of a regular hexagon are written six nonnegative integers whose sum is 2003.
Bert is allowed to make moves of the following form: he may pick a vertex and replace the
number written there by the absolute value of the difference between the numbers written at
the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the
number 0 appears at all six vertices.

Note: Let
A

B

F

C

E
D

denote a position, where A,B, C, D, E, F denote the numbers written on the vertices of the
hexagon. We write

A
B

F

C

E
D (mod 2)

if we consider the numbers written modulo 2.

Solution: Define the sum and maximum of a position to be the sum and maximum of the
six numbers at the vertices. We will show that from any position in which the sum is odd, it
is possible to reach the all-zero position.

Our strategy alternates between two steps:

(a) from a position with odd sum, move to a position with exactly one odd number;

(b) from a position with exactly one odd number, move to a position with odd sum and
strictly smaller maximum, or to the all-zero position.

Note that no move will ever increase the maximum, so this strategy is guaranteed to terminate,
because each step of type (b) decreases the maximum by at least one, and it can only terminate
at the all-zero position. It suffices to show how each step can be carried out.

First, consider a position

A
B

F

C

E
D

with odd sum. Then either A+C +E or B +D +F is odd; assume without loss of generality
that A + C + E is odd. If exactly one of A, C and E is odd, say A is odd, we can make the
sequence of moves

1
B

F

0
0

D → 1
1
1

0
0

0 → 0
1
1

0
0

0 → 0
1
0

0
0

0 (mod 2),

where a letter or number in boldface represents a move at that vertex, and moves that do
not affect each other have been written as a single move for brevity. Hence we can reach a
position with exactly one odd number. Similarly, if A, C, E are all odd, then the sequence
of moves

1
B

F

1
1

D → 1
0
0

1
1

0 → 1
0
0

0
0

0 (mod 2),

brings us to a position with exactly one odd number. Thus we have shown how to carry out
step (a).

Now assume that we have a position

A
B

F

C

E
D

with A odd and all other numbers even. We want to reach a position with smaller maximum.
Let M be the maximum. There are two cases, depending on the parity of M .



• In this case, M is even, so one of B, C, D, E, F is the maximum. In particular, A < M .
We claim after making moves at B, C, D, E, and F in that order, the sum is odd and
the maximum is less than M . Indeed, the following sequence

1
0
0

0
0

0 → 1
1
0

0
0

0 → 1
1
0

1
0

0 → 1
1
0

1
0

1 → 1
1
0

1
1

1 → 1
1
0

1
1

1 (mod 2).

shows how the numbers change in parity with each move. Call this new position

A′
B′

F ′
C ′

E′ D
′. The sum is odd, since there are five odd numbers. The numbers A′,

B′, C ′, D′, E′ are all less than M , since they are odd and M is even, and the maximum
can never increase. Also, F ′ = |A′ − E′| ≤ max{A′, E′} < M . So the maximum has
been decreased.

• In this case, M is odd, so M = A and the other numbers are all less than M .
If C > 0, then we make moves at B, F , A, and F , in that order. The sequence of
positions is

1
0
0

0
0

0 → 1
1
0

0
0

0 → 1
1
1

0
0

0 → 0
1
1

0
0

0 → 0
1
0

0
0

0 (mod 2).

Call this new position A′
B′

F ′
C ′

E′ D
′. The sum is odd, since there is exactly one odd

number. As before, the only way the maximum could not decrease is if B′ = A; but this
is impossible, since B′ = |A−C| < A because 0 < C < M = A. Hence we have reached
a position with odd sum and lower maximum.
If E > 0, then we apply a similar argument, interchanging B with F and C with E.
If C = E = 0, then we can reach the all-zero position by the following sequence of moves:

A
B

F

0
0

D → A
A

A

0
0

0 → 0
A

A

0
0

0 → 0
0
0

0
0

0.

(Here 0 represents zero, not any even number.)

Hence we have shown how to carry out a step of type (b), proving the desired result. The
problem statement follows since 2003 is odd.

Note: Observe that from positions of the form

0
1
1

1
1

0 (mod 2) or rotations

it is impossible to reach the all-zero position, because a move at any vertex leaves the same
value modulo 2. Dividing out the greatest common divisor of the six original numbers does
not affect whether we can reach the all-zero position, so we may assume that the numbers in
the original position are not all even. Then by a more complete analysis in step (a), one can
show from any position not of the above form, it is possible to reach a position with exactly
one odd number, and thus the all-zero position. This gives a complete characterization of
positions from which it is possible to reach the all-zero position.

There are many ways to carry out the case analysis in this problem; the one used here is fairly
economical. The important idea is the formulation of a strategy that decreases the maximum
value while avoiding the “bad” positions described above.



Second Solution: We will show that if there is a pair of opposite vertices with odd sum
(which of course is true if the sum of all the vertices is odd), then we can reduce to a position
of all zeros.

Focus on such a pair (a, d) with smallest possible max(a, d). We will show we can always
reduce this smallest maximum of a pair of opposite vertices with odd sum or reduce to the
all-zero position. Because the smallest maximum takes nonnegative integer values, we must
be able to achieve the all-zero position.

To see this assume without loss of generality that a ≥ d and consider an arc (a, x, y, d) of the
position

a
x

∗
y

∗ d

Consider updating x and y alternately, starting with x. If max(x, y) > a, then in at most
two updates we reduce max(x, y). Thus, we can repeat this alternate updating process and
we must eventually reach a point when max(x, y) ≤ a, and hence this will be true from then
on.

Under this alternate updating process, the arc of the hexagon will eventually enter an unique
cycle of length four modulo 2 in at most one update. Indeed, we have

1
0
∗

0
∗ 0 → 1

1
∗

0
∗ 0 → 1

1
∗

1
∗ 0 → 1

0
∗

1
∗ 0 → 1

0
∗

0
∗ 0 (mod 2)

and
1

0
∗

0
∗ 0 → 1

0
∗

0
∗ 0 (mod 2); 1

1
∗

0
∗ 0 → 1

1
∗

0
∗ 0 (mod 2)

1
1
∗

1
∗ 0 → 1

1
∗

1
∗ 0 (mod 2); 1

0
∗

1
∗ 0 → 1

0
∗

1
∗ 0 (mod 2),

or
0

0
∗

1
∗ 1 → 0

1
∗

1
∗ 1 → 0

1
∗

0
∗ 1 → 0

0
∗

0
∗ 1 → 0

0
∗

1
∗ 1 (mod 2)

and
0

0
∗

0
∗ 1 → 0

0
∗

0
∗ 1 (mod 2); 0

0
∗

1
∗ 1 → 0

0
∗

1
∗ 1 (mod 2)

0
1
∗

1
∗ 1 → 0

1
∗

0
∗ 1 (mod 2); 0

1
∗

0
∗ 1 → 0

1
∗

0
∗ 1 (mod 2).

Further note that each possible parity for x and y will occur equally often.

Applying this alternate updating process to both arcs (a, b, c, d) and (a, e, f, d) of

a
b

f

c

e
d,

we can make the other four entries be at most a and control their parity. Thus we can create
a position

a
x1

x5

x2

x4
d

with xi + xi+3 (i = 1, 2) odd and Mi = max(xi, xi+3) ≤ a. In fact, we can have m =
min(M1, M2) < a, as claimed, unless both arcs enter a cycle modulo 2 where the values
congruent to a modulo 2 are always exactly a. More precisely, because the sum of xi and xi+3

is odd, one of them is not congruent to a and so has its value strictly less than a. Thus both



arcs must pass through the state (a, a, a, d) (modulo 2, this is either (0, 0, 0, 1) or (1, 1, 1, 0))
in a cycle of length four. It is easy to check that for this to happen, d = 0. Therefore, we can
achieve the position

a
a

a

a

a
0.

From this position, the sequence of moves

a
a

a

a

a
0 → a

0
0

a

a
0 → 0

0
0

0
0

0

completes the task.


